首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Ninety-three crossbred steer calves (BW+/-SD=385+/-50 kg) were used (n=48 steers in yr 1, n=45 steers in yr 2) to examine the relationship among carcass traits, lean, bone, and fat proportions, visceral tissue weights, and pancreatic digestive enzyme activity with DMI, ADG, G:F, and residual feed intake. Calves were progeny from crossbred dams predominantly of Angus and Simmental breeding and were sired by Angus, Simmental, crossbred (predominantly of Angus and Simmental breeding), Charolais, or Piedmontese bulls. Steers were fed a high-moisture corn-based diet for an average of 112 d. Partial correlation analysis accounting for year, pen within year, week of slaughter within year, and sire breed was conducted. Gain:feed was negatively correlated (P 0.10) between performance measures and the pancreatic proportional content of alpha-amylase and trypsin activity (units/kg of BW). These data indicate that carcass fatness traits and changes in the proportional weight of total viscera may be negatively associated with G:F and that visceral fat weight proportion and trim and kidney fat weight proportion may be important factors influencing this relationship.  相似文献   

2.
The objectives of this study were to estimate (co)variance components for growth and feed efficiency measures, and to compare selection strategies to improve economic efficiency of gain. Variance components for pre- and postweaning growth, body weight, and measures of feed efficiency were estimated from data collected on 1,047 Targhee lambs over 7 yr. Approximately 21 d after weaning, lambs were group-fed for 4 wk, with ad libitum access to a diet of 37% whole barley grain and 63% pelleted alfalfa hay. Lambs were then individually fed for 6 wk. Lambs were then returned to group feeding for another 4-wk period. The mean feed conversion ratio (gain/intake) for the individual feeding period was 0.11. Mean postweaning ADG for the total 14-wk feeding period was 0.26 kg. (Co)variance components were estimated from single- and two-trait animal models using REML. The selection strategies compared included direct selection, index selection, and restricted index selection. Estimates of (co)variances derived from single- and two-trait models were similar, except for mid-test body weight. Preweaning growth had a low heritability estimate (0.03 +/- 0.04) compared with postweaning growth measures (0.25 to 0.39), but all measures of growth were highly correlated (r2 > 0.98). Heritability estimates of measures of gain efficiency were variable (total feed intake = 0.39; feed conversion ratio = 0.26; residual feed intake = 0.26). Total feed intake was strongly correlated genetically with feed conversion ratio (0.79) and residual feed intake (0.77). The estimate of genetic correlation between feed conversion ratio and residual feed intake was low (0.23). Comparison of selection strategies showed the superiority of index selection (ADG, total feed, body weight) for economic improvement compared with other strategies. Economic response to direct selection for ADG was at least twice that for direct selection for feed conversion ratio or against total feed intake, and that for restricted indices (selecting against residual feed, while holding body weight and/or gain constant). Selection for ADG may be a practical approach for indirectly improving efficiency of gain in lambs.  相似文献   

3.
Data were collected over the first 4 generations of a divergent selection experiment for residual feed intake of Large White pigs having ad libitum access to feed. This data set was used to obtain estimates of heritability for residual feed intake and genetic correlations (r(a)) between this trait and growth, carcass, and meat quality traits. Individual feed intake of group-housed animals was measured by single-space electronic feeders. Upward and downward selection lines were maintained contemporarily, with 6 boars and 35 to 40 sows per line and generation. Numbers of records were 793 for residual feed intake (RFI1) of boar candidates for selection issued from first-parity (P1) litters and tested over a fixed BW range (35 to 95 kg) and 657 for residual feed intake (RFI2) and growth, carcass, and meat quality traits of castrated males and females issued from second-parity (P2) litters and tested from 28 to 107 kg of BW. Variance and covariance components were estimated using REML methodology applied to a series of multitrait animal models, which always included the criterion for selection as 1 of the traits. Estimates of heritability for RFI1 and RFI2 were 0.14 +/- 0.03 and 0.24 +/- 0.03, respectively, whereas the estimate of r(a) between the 2 traits was 0.91 +/- 0.08. Estimates of r(a) indicated that selection for low residual feed intake has the potential to improve feed conversion ratio and reduce daily feed intake, with minimal correlated effect for ADG of P2 animals. Estimates of r(a) between RFI2 and body composition traits of P2 animals were positive for traits related to the amount of fat depots (r(a) = 0.44 +/- 0.16 for carcass backfat thickness) and negative for carcass lean meat content (r(a) = -0.55 +/- 0.14). There was a tendency for a negative genetic correlation between RFI2 and carcass dressing percent (r(a) = -0.36 +/- 0.21). Moreover, selection for low residual feed intake is expected, through lower ultimate pH and lighter color, to decrease pork quality (r(a) = 0.77 +/- 0.14 between RFI2 and a meat quality index intended to predict the ratio of the weight of ham after curing and cooking to the weight of defatted and boneless fresh ham).  相似文献   

4.
Relationships between residual feed intake (RFI) and other performance variables were determined using 54 purebred Angus steers. Individual feed intake and BW gain were recorded during a 70-d post-weaning period to calculate RFI. After the 70-d post-weaning test, steers were fed a finishing ration to a similar fat thickness (FT), transported to a commercial facility, and slaughtered. A subsample of carcasses (n = 32) was selected to examine the relationships among RFI, meat quality, and palatability. Steers were categorized into high (> 0.5 SD above the mean; n = 16), medium (mid; +/- 0.5 SD from the mean; n = 21), and low (< 0.5 SD below the mean; n = 17) RFI groups. No differences were detected in ADG, initial BW, and d 71 BW among the high, mid, and low RFI steers. Steers from the high RFI group had a greater DMI (P = 0.004) and feed conversion ratio (FCR; DMI:ADG; P = 0.002) compared with the low RFI steers. Residual feed intake was positively correlated with DMI (r = 0.54; P = 0.003) and FCR (r = 0.42; P = 0.002), but not with initial BW, d 71 BW, d 71 ultrasound FT, initial ultrasound LM area, d 71 ultrasound LM area, or ADG. The FCR was positively correlated with initial BW (r = 0.46; P = 0.0005), d 71 BW (r = 0.34; P = 0.01), and DMI (r = 0.40; P = 0.003) and was negatively correlated with ADG (r = -0.65; P = 0.001). There were no differences among RFI groups for HCW, LM area, FT, KPH, USDA yield grade, marbling score, or quality grade. Reflectance color b* scores of steaks from high RFI steers were greater (P = 0.02) than those from low RFI steers. There was no difference between high and low RFI groups for LM calpastatin activity. Warner-Bratzler shear force and sensory panel tenderness and flavor scores of steaks were similar across RFI groups. Steaks from high RFI steers had lower (P = 0.04) off-flavor scores than those from low RFI steers. Cook loss percentages were greater (P = 0.005) for steaks from low RFI steers than for those from mid RFI steers. These data support current views that RFI is independent of ADG, but is correlated with DMI and FCR. Importantly, the data also support the hypothesis that there is no relationship between RFI and beef quality in purebred Angus steers.  相似文献   

5.
Traits used for identification of replacement beef heifers and feeding levels provided during postweaning development may have major financial implications due to effects on maintenance requirements and level of lifetime production. The current study evaluated the effects of 2 levels of feeding during the postweaning period on growth, G:F, and ultrasound carcass measurements of heifers, and the associations among these traits. Heifers (1/2 Red Angus, 1/4 Charolais, and 1/4 Tarentaise) born in 3 yr were randomly assigned to a control (fed to appetite; n = 205) or restricted (fed at 80% of that consumed by controls adjusted to a common BW basis; n = 192) feeding during a 140-d postweaning period. Heifers were individually fed a diet of 68% corn silage, 18% alfalfa, and protein-mineral supplement (DM basis) in pens equipped with Calan gates. Ultrasound measurements of LM area, intramuscular fat, and subcutaneous fat thickness over the LM were made on d 140 (382 +/- 0.8 d of age). Average daily DMI was 4.1 and 5.6 kg/d for restricted and control heifers, respectively (P < 0.001). Feed restriction decreased (P < 0.001) BW (292 vs. 314 kg), ADG (0.52 vs. 0.65 kg/d), LM area (55 vs. 59 cm2), intramuscular fat (3.2 vs. 3.5%), and subcutaneous fat thickness over the LM (3.2 vs. 3.9 mm), but increased G:F (0.12 vs. 0.11) when compared with control at the end of the 140-d study. The magnitude of the associations of DMI with ADG (r = 0.32 vs. 0.21), 140-d BW (r = 0.78 vs. 0.36), hip height (r = 0.57 vs. 0.17), LMA (r = 0.30 vs. 0.18), and BCS (r = 0.17 vs. 0.11) was greater in restricted- than control-fed heifers. Variance of residual feed intake, calculated within each treatment, was greater (P < 0.01) in control (0.088) than restricted (0.004) heifers, and magnitude of association between residual feed intake and average DMI was greater in control (r = 0.88) than restricted (r = 0.41) heifers. Pregnancy rate tended (P = 0.11) to be reduced in heifers that had been developed on restricted feeding (86.3 +/- 2.3 vs. 91.5 +/- 2.3%). However, ADG was greater (P < 0.001) in restricted than control heifers (0.51 vs. 0.46 kg/d) while grazing native range in the 7 mo after restriction. In summary, restricted heifers consumed 22% less feed on a per-pregnant-heifer basis during the development period and had a greater magnitude of association between DMI and several growth-related traits at the end of the 140-d postweaning feeding period, which is indicative of improved efficiency.  相似文献   

6.
The optimum duration of test for the measurement of ADG, ADFI, feed:gain ratio [which is the reciprocal of the efficiency of gain (G:F) and therefore increases as the efficiency of gain decrease and vice versa], and residual feed intake was examined in growing pigs. Data from 144 hybrid (mainly Large White x Landrace) pigs involved in a longitudinal (n = 54) and serial slaughter (n = 90) experiment were used. The pigs were housed in individual pens from 70 +/- 1 d of age (mean +/- SD) and fed ad libitum a pelleted commercial diet. Feed intake and BW data on pigs that had a minimum of 10-wk records were partitioned into a 14-d adjustment and a 56-d test period. Phenotypic correlations among weekly measurements were used to examine the repeatability of each trait. Changes in phenotypic residual variance and correlation using shortened (7-, 14-, 21-, 28-, 35-, 42-, and 49-d) tests compared with the full-length 56-d test were used as criteria to assess the optimum test duration. The results of the phenotypic correlations among weekly measurements indicated that ADFI, which was characterized by moderate to high correlations (0.41 to 0.81), was more repeatable than ADG, which was characterized by low correlations (0.00 to 0.43). Mean gut fill (n = 107) was 4.2% of BW but was characterized by large variation among the pigs (SD = 1.8; CV = 42.2%). This variation in gut fill was a major contributor to the low repeatability of the measurement of ADG. These repeatability results indicated that ADG, rather than ADFI, will determine the optimum duration of test for the feed efficiency traits. The results of the shortened relative to the full-length test indicate that for growing pigs under good nutrition and ad libitum feeding, a 28-d test was adequate for the measurement of feed intake, whereas a 35-d test was required to measure ADG, feed:gain ratio, and residual feed intake without compromising the accuracy of measurement.  相似文献   

7.
Feeding behavior and temperament may be useful in genetic evaluations either as indicator traits for other economically relevant traits or because the behavior traits may have a direct economic value. We determined the variation in feeding behavior and temperament of beef cattle sired by Angus, Charolais, or Hybrid bulls and evaluated their associations with performance, efficiency, and carcass merit. The behavior traits were daily feeding duration, feeding head down (HD) time, feeding frequency (FF), and flight speed (FS, as a measure of temperament). A pedigree file of 813 animals forming 28 paternal half-sib families with about 20 progeny per sire was used. Performance, feeding behavior, and efficiency records were available on 464 animals of which 381 and 302 had records on carcass merit and flight speed, respectively. Large SE reflect the number of animals used. Direct heritability estimates were 0.28 +/- 0.12 for feeding duration, 0.33 +/- 0.12 for HD, 0.38 +/- 0.13 for FF, and 0.49 +/- 0.18 for FS. Feeding duration had a weak positive genetic (r(g)) correlation with HD (r(g) = 0.25 +/- 0.32) and FS (r(g) = 0.42 +/- 0.26) but a moderate negative genetic correlation with FF (r(g) = -0.40 +/- 0.30). Feeding duration had positive phenotypic (r(p)) and genetic correlations with DMI (r(p) = 0.27; r(g) = 0.56 +/- 0.20) and residual feed intake (RFI; r(p) = 0.49; r(g) = 0.57 +/- 0.28) but was unrelated phenotypically with feed conversion ratio [FCR; which is the reciprocal of the efficiency of growth (G:F)]. Feeding duration was negatively correlated with FCR (r(g) = -0.25 +/- 0.29). Feeding frequency had a moderate to high negative genetic correlation with DMI (r(g) = -0.74 +/- 0.15), FCR (r(g) = -0.52 +/- 0.21), and RFI (r(g) = -0.77 +/- 0.21). Flight speed was negatively correlated phenotypically with DMI (r(p) = -0.35) but was unrelated phenotypically with FCR or RFI. On the other hand, FS had a weak negative genetic correlation with DMI (r(g) = -0.11 +/- 0.26), a moderate genetic correlation with FCR (r(g) = 0.40 +/- 0.26), and a negative genetic correlation with RFI (r(g) = -0.59 +/- 0.45). The results indicate that behavior traits may contribute to the variation in the efficiency of growth of beef cattle, and there are potential correlated responses to selection to improve efficiency. Feeding behavior and temperament may need to be included in the definition of beef cattle breeding goals, and approaches such as the culling of unmanageable cattle and the introduction of correct handling facilities or early life provision of appropriate experiences to improve handling will be useful.  相似文献   

8.
Seventy-six primiparous Duroc and Landrace sows from two genetic lines with or without selection for improved sow productivity were used to identify sow traits that affect postweaning gain (positive or negative) and feed intake. Sows lost weight (P less than .01) and consumed less feed (P less than .01) during wk 1 postweaning (37 d) compared with wk 2, 3, and 4. Sows gained more weight during wk 2 and 3 (P less than .01) than during wk 4. Weekly feed consumption was similar during wk 2 and 4 and highest during wk 3 (P less than .05). Sow weight gain postweaning was predicted by sow weaning weight (P less than .01) and adjusted 21-d litter weight (P less than .05) during wk 1, wk 1 to 2, and wk 1 to 4 feeding periods. Feed consumption was best predicted by adjusted litter weaning weight (P less than .01), sow weaning weight (P less than .01), average backfat at farrowing (P less than .01), average backfat change (P less than .05), and adjusted 21-d litter weight (P less than .05). Feed intake was positively correlated (P less than .01; r = .77) and sow weight at breeding, farrowing, and weaning was negatively correlated (P less than .05; r = -.23, -.21, and -.26, respectively) with sow weight gain. Average backfat at weaning was negatively correlated (P less than .05) with gain and feed intake during each period. Adjusted 21-d litter weight and adjusted litter weaning weight were positively correlated with postweaning feed intake (P less than .05; r = .22 and .23, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Feed intake and efficiency of growth are economically important traits of beef cattle. This study determined the relationships of daily DMI, feed:gain ratio [F:G, which is the reciprocal of the efficiency of gain (G:F) and therefore increases as the efficiency of gain decreases and vice versa, residual feed intake (RFI), and partial efficiency of growth (efficiency of ADG, PEG) with growth and carcass merit of beef cattle. Residual feed intake was calculated from phenotypic regression (RFIp) or genetic regression (RFIg) of ADG and metabolic BW on DMI. An F1 half-sib pedigree file containing 28 sires, 321 dams, and 464 progeny produced from crosses between Alberta Hybrid cows and Angus, Charolais, or Alberta Hybrid bulls was used. Families averaged 20 progeny per sire (range = 3 to 56). Performance, ultrasound, and DMI data was available on all progeny, of which 381 had carcass data. Phenotypic and genetic parameters were obtained using SAS and ASREML software, respectively. Differences in RFIp and RFIg, respectively, between the most and least efficient steers (i.e., steers with the lowest PEG) were 5.59 and 6.84 kg of DM/d. Heritabilities for DMI, F:G, PEG, RFIp, and RFIg were 0.54 +/- 0.15, 0.41 +/- 0.15, 0.56 +/- 0.16, 0.21 +/- 0.12, and 0.42 +/- 0.15, respectively. The genetic (r = 0.92) and phenotypic (r = 0.97) correlations between RFIp and RFIg indicated that the 2 indices are very similar. Both indices of RFI were favorably correlated phenotypically (P < 0.001) and genetically with DMI, F:G, and PEG. Residual feed intake was tendentiously genetically correlated with ADG (r = 0.46 +/- 0.45) and metabolic BW (r = 0.27 +/- 0.33), albeit with high SE. Genetically, RFIg was independent of ADG and BW but showed a phenotypic correlation with ADG (r = -0.21; P < 0.05). Daily DMI was correlated genetically (r = 0.28) and phenotypically (r = 0.30) with F:G. Both DMI and F:G were strongly correlated with ADG (r > 0.50), but only DMI had strong genetic (r = 0.87 +/- 0.10) and phenotypic (r = 0.65) correlations with metabolic BW. Generally, the phenotypic and genetic correlations of RFI with carcass merit were not different from zero, except genetic correlations of RFI with ultrasound and carcass LM area and carcass lean yield and phenotypic correlations of RFI with backfat thickness (P < 0.01). Daily DMI had moderate to high phenotypic (P < 0.01) and genetic correlations with all the ultrasound and carcass traits. Depending on how RFI technology is applied, adjustment for body composition in addition to growth may be required to minimize the potential for correlated responses to selection in cattle.  相似文献   

10.
The objectives of this study were to characterize feed efficiency traits and to examine phenotypic correlations between performance and feeding behavior traits, and ultrasound measurements of carcass composition in growing bulls. Individual DMI and feeding behavior traits were measured in Angus bulls (n=341; initial BW=371.1+/-50.8 kg) fed a corn silage-based diet (ME=2.77 Mcal/kg of DM) for 84 d in trials 1 and 2 and for 70 d in trials 3 and 4 by using a GrowSafe feeding system. Meal duration (min/d) and meal frequency (events/d) were calculated for each bull from feeding behavior recorded by the GrowSafe system. Ultrasound measures of carcass 12th-rib fat thickness (BF) and LM area (LMA) were obtained at the start and end of each trial. Residual feed intake (RFIp) was computed from the linear regression of DMI on ADG and midtest BW(0.75) (metabolic BW, MBW), with trial, trial by ADG, and trial by midtest BW(0.75) as random effects (base model). Overall ADG, DMI, and RFIp were 1.44 (SD=0.29), 9.46 (SD=1.31), and 0.00 (SD=0.78) kg/d, respectively. Stepwise regression analysis revealed that inclusion of BW gain in BF and LMA in the base model increased R(2) (0.76 vs. 0.78) and accounted for 9% of the variation in DMI not explained by MBW and ADG (RFIp). Residual feed intake and carcass-adjusted residual feed intake (RFIc) were moderately correlated with DMI (0.60 and 0.55, respectively) and feed conversion ratio (FCR; 0.49 and 0.45, respectively), and strongly correlated with partial efficiency of growth (PEG; -0.84 and -0.78, respectively), but not with ADG or MBW. Gain in BF was weakly correlated with RFIp (0.30), FCR (-0.15), and PEG (-0.11), but not with RFIc. Gain in LMA was weakly correlated with RFIp (0.17) and FCR (-0.19), but not with PEG or RFIc. The Spearman rank correlation between RFIp and RFIc was high (0.91). Meal duration (0.41), head-down duration (0.38), and meal frequency (0.26) were correlated with RFIp and accounted for 35% of the variation in DMI not explained by MBW, ADG, and ultrasound traits (RFIc). These results suggest that adjusting residual feed intake for carcass composition will facilitate selection to reduce feed intake in cattle without affecting rate or composition of gain.  相似文献   

11.
As part of a divergent selection experiment (high vs low feed conversion) designed to obtain realized genetic parameter estimates for postweaning feed conversion, 35 Angus bull calves were selected each year from 1979 through 1983 to be fed in a 140-d postweaning performance test. From these 35 individually-fed bulls, the three most efficient and three least efficient (in terms of kilograms of total digestible nutrients required per kilogram of gain) were selected each year to each be mated to approximately 20 purebred Angus cows in a test herd. In the last 2 yr of the experiment, feed:gain ratios were adjusted for differences in maintenance requirements before selection. An alternative to selection based on feed/gain or adjusted feed/gain would have been to select on an index of feed intake and gain (Index3 = -1.0 feed intake + 3.87 gain) where feed intake was either unadjusted or adjusted (AdjIndex3) for differences in maintenance requirements. Residual correlations (year effects removed) among the four selection critera were large ([r[ greater than or equal to .76; P less than .01) as were correlations among ranks of the bulls based on the four selection criteria ([r[ greater than or equal to .75). Predicted genetic change for fee:gain ratio in both the high and low directions was greatest when selection was based on feed:gain ratio or Index3. Genetic changes expected to result from selection for feed:gain ratio or Index3 were similar, as were genetic changes expected due to selection for adjusted feed:gain ratio or AdjIndex3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
Residual feed intake (RFI) has been proposed as an index for determining beef cattle energetic efficiency. Although the relationship of RFI with feed conversion ratio (FCR) is well established, little is known about how RFI compares to other measures of efficiency. This study examined the phenotypic relationships among different measures of energetic efficiency with growth, feed intake, and ultrasound and carcass merit of hybrid cattle (n = 150). Dry matter intake, ME intake (MEI), ADG, metabolic weight (MWT), and FCR during the test averaged 10.29 kg/d (SD = 1.62), 1,185.45 kJ/(kg0.75 x d) (SD = 114.69), 1.42 kg/d (SD = 0.25), 86.67 kg0.75 (SD = 10.21), and 7.27 kg of DM/kg of gain (SD = 1.00), respectively. Residual feed intake averaged 0.00 kg/d and ranged from -2.25 kg/d (most efficient) to 2.61 kg/d (least efficient). Dry matter intake (r = 0.75), MEI (r = 0.83), and FCR (r = 0.62) were correlated with RFI (P < 0.001) and were higher for animals with high (>0.5 SD) RFI vs. those with medium (+/-0.5 SD) or low (<0.5 SD) RFI (P < 0.001). Partial efficiency of growth (PEG; energetic efficiency for ADG) was correlated with RFI (r = -0.89, P < 0.001) and was lower (P < 0.001) for high- vs. medium- or low-RFI animals. However, RFI was not related to ADG (r = -0.03), MWT (r = -0.02), relative growth rate (RGR; growth relative to instantaneous body size; r = -0.04), or Kleiber ratio (KR; ADG per unit of MWT; r = -0.004). Also, DMI was correlated (P < 0.01) with ADG (r = 0.66), MWT (r = 0.49), FCR (r = 0.49), PEG (r = -0.52), RGR (r = 0.18), and KR (r = 0.36). Additionally, FCR was correlated (P < 0.001) with ADG (r = -0.63), PEG (r = -0.83), RGR (r = -0.75), and KR (r = -0.73), but not with MWT (r = 0.07). Correlations of measures of efficiency with ultrasound or carcass traits generally were not different from zero except for correlations of RFI, FCR, and PEG, respectively, with backfat gain (r = 0.30, 0.20, and -0.30), ultrasound backfat (r = 0.19, 0.21, and -0.25), grade fat (r = 0.25, 0.19, and -0.27), lean meat yield (r = -0.22, -0.18, and 0.24), and yield grade (r = 0.28, 0.24, and -0.25). These phenotypic relationships indicate that, compared with other measures of energetic efficiency, RFI should have a greater potential to improve overall production efficiency and PEG above maintenance, and lead to minimal correlated changes in carcass merit without altering the growth and body size of different animals.  相似文献   

14.
Genetic parameters for the efficiency of gain traits on 380 boars and the genetic relationships with component traits were estimated in 1,642 pigs (380 boars, 868 gilts, and 394 barrows) in 7 generations of a Duroc population. The efficiency of gain traits included the feed conversion ratio (FCR) and residual feed intake (RFI) and their component traits, ADG, metabolic BW (MWT), and daily feed intake (FI). The RFI was calculated as the difference between the actual and expected FI. The expected FI was predicted by the nutritional requirement and by the residual of phenotypic (RFI(phe)) and genetic (RFI(gen)) regressions from the multivariate analysis for FI on MWT and ADG. The means for RFI(phe) and RFI(gen) were close to zero, and the mean for nutritional RFI was negative (-0.11 kg/d). The traits studied were moderately heritable (ranging from 0.27 to 0.53). The genetic and phenotypic correlations between ADG and FI were moderate to high, whereas the genetic correlation between MWT and FI was moderate, and the phenotypic correlation between them was low. The corresponding correlations between RFI(phe) and RFI(gen) were > 0.95, implying that they can be regarded as the same trait. The genetic and phenotypic correlations of FCR with measures of RFI were high but lower than unity. The RFI(phe) was phenotypically independent of its component traits, MWT (r(p) = 0.01) and ADG (r(p) = 0.03). The RFI(gen) was genetically independent of MWT (r(g) = -0.04), whereas there was a weak genetic relationship (r(g) = 0.15) between RFI(gen) and ADG. Residual FI was more heritable than FCR, and the genetic and phenotypic correlations of RFI(phe) and RFI(gen) with FI were positive and stronger than that of FCR with FI. These results provide evidence that RFI(phe) or RFI(gen) should be included in breeding programs for Duroc pigs to make genetic improvement in the efficiency of gain.  相似文献   

15.
This study was conducted to determine the optimum test duration and the effect of missing data on accuracy of measuring feed efficiency and its 4 related traits ADG, DMI, feed conversion ratio, and residual feed intake in beef cattle using data from 456 steers with 5,397 weekly averaged feed intakes and BW repeated measurements taken over 91 d. Data were collected using the GrowSafe System at the University of Alberta Kinsella Research Station. The changes and relative changes in phenotypic residual variances and correlations (Pearson and Spearman) among data from shortened test durations (7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, or 84 d) and a 91-d test were used to determine the optimum test duration for the 4 traits. The traits were fitted to a mixed model with repeated measures using SAS. Test durations for ADG, DMI, feed conversion ratio, and residual feed intake could be shortened to 63, 35, 42, and 63 d, respectively, without significantly reducing the accuracy of the tests when BW was measured weekly. The accuracy of the test was not compromised when up to 30% of the records were randomly removed after the first 35 d on test. These results have valuable and practical implications for performance and feed efficiency testing in beef cattle.  相似文献   

16.
Angus bulls and heifers from lines divergently selected for serum IGF-I concentration were used to evaluate the effects of IGF-I selection line on growth performance and feed efficiency in 2 studies. In study 1, bulls (low line, n = 9; high line, n = 8; initial BW = 367.1 +/- 22.9 kg) and heifers (low line, n = 9; high line, n = 13; initial BW = 286.4 +/- 28.6 kg) were adapted to a roughage-based diet (ME = 1.95 Mcal/kg of DM) for 24 d and fed individually for 77 d by using Calan gate feeders. In study 2, bulls (low line, n = 15; high line, n = 12; initial BW = 297.5 +/- 34.4 kg) and heifers (low line, n = 9; high line, n = 20; initial BW = 256.0 +/- 25.1 kg) were adapted to a grain-based diet (ME = 2.85 Mcal/kg of DM) for 32 d and fed individually for 70 d by using Calan gate feeders. Blood samples were collected at weaning and at the start and end of each study, and serum IGF-I concentration was determined. Residual feed intake (RFI) was calculated, within study, as the residual from the linear regression of DMI on midtest BW(0.75), ADG, sex, sex by midtest BW(0.75) and sex by ADG. In study 1, calves from the low IGF-I selection line had similar initial and final BW and ADG, compared with calves from the high IGF-I selection line. In addition, DMI and feed conversion ratio were similar between IGF-I selection lines; however, calves from the low IGF-I selection line tended (P < 0.10) to have lesser RFI than calves from the high IGF-I selection line (-0.26 vs. 0.24 +/- 0.31 kg/d). In study 2, IGF-I selection line had no influence on performance or feed efficiency traits. However, there was a tendency (P = 0.15) for an IGF-I selection line x sex interaction for RFI. Bulls from the low IGF-I selection line had numerically lesser RFI than those from the high IGF-I selection line, whereas in heifers, the IGF-I selection line had no effect on RFI. In studies 1 and 2, weaning and initial IGF-I concentrations were not correlated with either feed conversion ratio or RFI. However, regression analysis revealed a sex x IGF-I concentration interaction for initial IGF-I concentration in study 1 and weaning IGF-I concentration in study 2 such that the regression coefficient was positive for bulls and negative for heifers. These data suggest that genetic selection for postweaning serum IGF-I concentration had a minimal effect on RFI in beef cattle.  相似文献   

17.
To assess the effects of creep feed consumption on individual feed intake characteristics and performance of group-housed weaned pigs, 16 litters (149 piglets) were fed a commercial creep feed (3,040 kcal NE/kg, 15.2 g lysine/kg) supplemented with 1% chromic oxide. Another five litters (48 piglets) were not given access to creep feed (no-feed). Piglets were weaned at 28 d after birth. On d 18, 22, and 27 of age, fecal samples from all the piglets were taken using fecal loops. A green color of the feces indicated that the piglet had eaten creep feed. Piglets that had green-colored feces three times were considered as eaters. Piglets that never showed green-colored feces were considered as non-eaters. At weaning 22 piglets of each type (no-feed, non-eaters, and eaters) were selected based on BW, litter origin, and sex. These 66 pigs were assigned to six pens equipped with computerized feeding stations. Eaters, non-eaters, and no-feed pigs were equally divided over all six pens. After weaning a prestarter (d 0 to 13) and a starter diet (d 14 to 34) were offered for ad libitum consumption. The individual feed intake characteristics of latency time (interval between weaning and first feed intake) and initial feed intake (intake during the first 24 h following first feed intake) and performance traits were determined for all piglets. The pigs that were designated as eaters needed less time between weaning and first feed intake than the pigs that were designated as non-eaters and no-feed pigs (P = 0.04 and P = 0.06, respectively). Initial feed intake was not affected (P > 0.1) by feed intake prior to weaning. However, during d 0 to 8 the eaters had more visits per day during which feed was consumed than both the non-eaters and no-feed pigs. Averaged over the first 8 d after weaning, the ADFI and ADG of the eaters were higher than that of the non-eaters and no-feed pigs (P < 0.05). Averaged over the total 34-d period the effect of creep feed intake on postweaning ADFI was much less pronounced (P = 0.20), whereas ADG of the eaters was the highest (P < 0.05). Creep feed intake during the sucking period stimulates early postweaning feed intake as well as postweaning performance.  相似文献   

18.
Genetic parameters for feed efficiency traits of 740 Wagyu bulls and growth and carcass traits of 591 of their progeny, and the genetic relationship between the traits of bulls and their progeny were estimated with the residual maximum likelihood procedure. The estimations were made for the test periods of 140 days (77 bulls), 112 days (663 bulls) and 364 days (591 steer progeny). Feed efficiency traits of bulls included feed conversion ratio (FCR), phenotypic residual feed intake (RFIphe) and genetic residual feed intake (RFIgen). Progeny traits were bodyweight at the start of the test (BWS), bodyweight at finish (BWF), average daily gain (ADG), rib eye area (REA), marbling score (MSR), dressing percentage (DRS) and subcutaneous fat thickness (SFT). The estimated heritability for MSR (0.52) was high and for BWS (0.35), BWF (0.40) and ADG (0.30) were moderate, whereas REA, DRS and SFT were low. Positive genetic correlations among BWS, BWF, ADG and SFT and negative genetic correlations between MSR and DRS and between REA and SFT were found. The genetic correlations between residual feed intake (RFIphe and RFIgen) of bulls and bodyweights (BWS and BWF) of their progeny ranged from ?0.27 to ?0.61. Residual feed intake was positively correlated with REA and DRS and negatively correlated with MSR and SFT. No responses in ADG and weakly correlated responses in REA and DRS of progeny were found to select against feed efficiency traits of bulls. The present experiment provides evidence that selection against lower RFI (higher feed efficiency) would be better than selection against lower FCR for getting better correlated responses in bodyweights.  相似文献   

19.
The objectives of this study were to quantify the phenotypic variation in residual feed intake (RFI) in pregnant beef heifers offered a grass silage diet and to characterize their productivity. Seventy-three pregnant (mean gestation d 198, SD = 27 d) Simmental and Simmental × Holstein-Friesian heifers (mean initial BW 548, SD = 47.5 kg) were offered grass silage ad libitum. Heifer DMI, BW, BCS, skeletal measurements, ultrasonic fat and muscle depth, visual muscularity score, rumen fermentation, total tract digestibility, blood metabolite and hematology variables, feeding, and activity behavior were measured during an 84-d feed intake study. After parturition calf birth weight, calving difficulty, cow serum IgG, hematology variables, and calf humoral immune status were measured. In a subset of cows (n = 28), DMI, milk yield and various body composition variables were also measured approximately 3 wk postpartum. Phenotypic RFI was calculated for each animal as the difference between actual DMI and expected DMI. Expected DMI was computed for each animal by regressing average daily DMI on conceptus-adjusted mean BW(0.75) and conceptus-adjusted ADG over an 84-d period. Within breed, heifers were ranked by RFI into low (efficient), medium, and high (inefficient) groups by dividing them into thirds. Heifers with high RFI had 8.8 and 17.1% greater (P < 0.001) DMI than medium and low RFI groups, respectively. The RFI groups did not differ in ADG or BW (P > 0.05). Residual feed intake was positively correlated with DMI (r = 0.85) but not with feed conversion ratio, ADG, or BW. The RFI groups did not differ (P > 0.05) in skeletal size, BCS, ultrasonic fat depth, total tract digestibility, calf birth weight, calving difficulty, serum IgG concentrations, or milk yield. Visual muscularity scores, initial test and postpartum ultrasonic muscle depth were negatively correlated with RFI (P < 0.05). Including mean ultrasonic muscle depth into the base RFI regression model increased its R(2) (0.29 to 0.38). Pearson rank correlation between RFI and muscle-adjusted RFI was 0.93. The results show that efficient RFI heifers consumed less feed without any compromise in growth, body composition, or maternal traits measured.  相似文献   

20.
Records on 514 bulls from the sire population born from 1978 to 2004, and on 22,099 of their field progeny born from 1997 to 2003 with available pedigree information (total number = 124,458) were used to estimate genetic parameters for feed intake and energy efficiency traits of bulls and their relationships with carcass traits of field progeny. Feed intake and energetic efficiency traits were daily feed intake, TDN intake, feed conversion ratio (FCR), TDN conversion ratio (TDNCR), residual feed intake (RFI), partial efficiency of growth, relative growth rate, and Kleiber ratio. Progeny carcass traits were carcass weight (CWT), yield estimate, ribeye area, rib thickness, subcutaneous fat thickness (SFT), marbling score (MSR), meat color standard (MCS), fat color standard (FCS), and meat quality grade. All measures of feed intake and energetic efficiency were moderately heritable (ranged from 0.24 to 0.49), except for partial efficiency of growth and relative growth rate, which were high (0.58) and low (0.14), respectively. The phenotypic and genetic correlations between FCR and TDNCR were >or=0.93. Selection for Kleiber ratio will improve all of the energetic efficiency traits with no effect on feed intake measures (daily feed intake and TDN intake). The genetic correlations of FCR, TDNCR, and RFI of bulls with most of the carcass traits of their field progeny were favorable (ranged from -0.24 to -0.72), except with fat color standard (no correlation), MCS, and SFT. Positive (unfavorable) genetic correlations of MCS with FCR, TDNCR, and RFI (0.79, 0.70, and 0.51, respectively) were found. The SFT was negatively genetically correlated with FCR and TDNCR (-0.32 and -0.20, respectively); however, the genetic correlation between RFI and SFT was not significantly different from zero (r(g) = -0.08 +/- 0.12). Favorable correlated responses in CWT, yield estimate, ribeye area, rib thickness, MSR, and meat quality grade would be predicted for selection against any measure of energetic efficiency. The correlated responses in CWT and MSR of progeny were greater for selection against RFI than for selection against any other energetic efficiency trait. Results of this study indicate that RFI should be preferred over other measures of energetic efficiency to include in selection programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号