首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Based upon alloantibodies produced after sensitizing dogs with transfused blood, more than a dozen blood group systems have been recognized thus far, and some have been classified as dog erythrocyte antigens (DEA). HYPOTHESIS: A new canine red cell antigen was suspected, based on the development of specific alloantibodies in a Dalmatian previously sensitized by blood transfusions. ANIMALS: Twenty-six Dalmatians (including 1 Dalmatian in need of blood compatibility studies); 55 canine blood donors. METHODS: Serologic tests, including blood typing, crossmatching, and direct Coombs' test were performed by standard tube techniques and a novel gel column technology adapted from human blood banking. RESULTS: By day 40 after transfusion of an anemic Dalmatian, all major crossmatch tests to 55 non-Dalmatian dogs were incompatible. The 2 initial donors, who were compatible before transfusion, were also now incompatible, suggesting the development of an alloantibody to a common red cell antigen. No siblings were available, but 4 of 25 unrelated Dalmatians were crossmatch compatible, suggesting that they were missing the same red cell antigen. The patient was blood typed DEA 1.1, 3, 4, and 5 positive, but DEA 7 negative. Further blood typing and crossmatching results did not support an association to any of these known blood types. The alloantibodies produced were determined to be of the immunoglobulin G class. CONCLUSIONS AND CLINICAL IMPORTANCE: Based upon the identification of an acquired alloantibody in a Dalmatian, a presumably new common blood type named Dal was identified. Dalmatians lacking the Dal antigen are likely at risk of delayed and acute hemolytic transfusion reactions.  相似文献   

2.
BACKGROUND: Naturally occurring alloantibodies produced against A and B red cell antigens in cats can cause acute hemolytic transfusion reactions. Blood incompatibilities, unrelated to the AB blood group system, have also been suspected after blood transfusions through routine crossmatch testing or as a result of hemolytic transfusion reactions. HYPOTHESIS: Incompatible crossmatch results among AB compatible cats signify the presence of a naturally occurring alloantibody against a newly identified blood antigen in a group of previously never transfused blood donor cats. The associated alloantibody is clinically important based upon a hemolytic transfusion reaction after inadvertent transfusion of red cells expressing this red cell antigen in a feline renal transplant recipient that lacks this red cell antigen. METHODS: Blood donor and nonblood donor cats were evaluated for the presence of auto- and alloantibodies using direct antiglobulin and crossmatch tests, respectively, and were blood typed for AB blood group status. Both standard tube and novel gel column techniques were used. RESULTS: Plasma from 3 of 65 cats and 1 feline renal transplant recipient caused incompatible crossmatch test results with AB compatible erythrocytes indicating these cats formed an alloantibody against a red cell antigen they lack, termed Mik. The 3 donors and the renal transplant recipient were crossmatch-compatible with one another. Tube and gel column crossmatch test results were similar. CONCLUSIONS AND CLINICAL IMPORTANCE: The absence of this novel Mik red cell antigen can be associated with naturally occurring anti-Mik alloantibodies and can elicit an acute hemolytic transfusion reaction after an AB-matched blood transfusion.  相似文献   

3.
4.
The blood group antigen Dog Erythrocyte Antigen (DEA) 1.1 is clinically the most important canine blood group as DEA 1.1 antibodies are capable of causing acute haemolytic, potentially life-threatening transfusion reactions. Dogs do not have naturally occurring antibodies to DEA 1.1 but are rapidly sensitised by the first incompatible transfusion. The prevalence of DEA 1.1 in the general dog population is estimated at 42-46%. Canine blood donors registered with the Onderstepoort Animal Blood Bank (n = 93) as well as potential donors (n = 140) were typed for DEA 1.1 using a monoclonal antibody card kit. All dogs came from the Onderstepoort area, near Pretoria, Gauteng province, South Africa. Overall prevalence of DEA 1.1 was 47%. Prevalence was 47% in purebred dogs and 48% in mongrels. Distinct breed differences were noted with less than 20% of German shepherd dogs and Boxers and greater than 75% of Rottweilers, Great Danes, St Bernards and Dalmations testing DEA 1.1 positive. Knowledge of local breed differences will increase effectiveness of blood donor recruitment.  相似文献   

5.
Canine blood typing has become an established and essential laboratory test due to the rising demand for safe and efficient blood transfusions. The most immunogenic and clinically important blood type is DEA 1.1. Little is known about DEA 1.1 frequencies or special characteristics among different canine breeds. 304 dogs were tested for DEA 1.1. DEA 1.1-typing was performed using a commercial gel column technique (ID-Gel Test Canine DEA 1.1, DiaMed, Cressier, Switzerland). Fifty-three percent of all tested dogs reacted positive for DEA 1.1, whereas 49 % of the mixed breeds tested DEA 1.1-positive. All Bernese mountain dogs (n = 22) and Rottweilers (n = 9) tested positive for DEA 1.1, while all Boxers (n = 8), Flat-Coated Retrievers (n = 9), and Border Collies (6) tested negative for DEA 1.1. The prevalence of DEA 1.1 in dogs in Switzerland was found to be comparable to that reported from other countries. The tested breeds were found to differ considerably in the frequency of DEA 1.1. This knowledge is useful for selection of blood donors. However, DEA 1.1 blood typing of donor and recipient prior to transfusion and cross matching in sensitized dogs is unavoidable.  相似文献   

6.
OBJECTIVE: To compare canine blood-typing results determined by use of the card (CARD), gel (GEL), Michigan State University (MSU), and tube (TUBE) tests. SAMPLE POPULATION: Blood samples from 23 healthy dogs. PROCEDURES: Blood samples anticoagulated with EDTA were screened by use of each blood-typing method according to manufacturers' protocols. RESULTS: Strong RBC agglutination reactions were observed with dog erythrocyte antigen (DEA) 1.1 reagents of the CARD and GEL tests as well as MSU test (only after adding Coombs' reagent) in 9 blood samples. By use of the CARD test, RBCs from 4 additional dogs agglutinated weakly; on the basis of MSU test results, these 4 dogs were classified as DEA 1.2 positive. All blood samples agglutinated with the B antigen reagent of the TUBE test. All but 2 blood samples had strong positive reactions with the DEA 4 reagent of the MSU test. All but 3 blood samples reacted with the E antigen reagent of the TUBE test. Three blood samples agglutinated with the DEA 3 reagent of the MSU test and A antigen reagent of the TUBE test. Five blood samples had strong agglutination reactions with the DEA 5 reagent of the MSU test. CONCLUSIONS AND CLINICAL RELEVANCE: Use of the CARD test allows for rapid identification of DEA 1.1 but may produce weak reactions with blood from DEA 1.2-positive dogs. The GEL test is a reliable and rapid clinical laboratory method for identification of DEA 1.1. The MSU test requires Coombs' reagent for identification of DEA 1.1 and 1.2.  相似文献   

7.
Background: It is controversial whether or not pregnant bitches become sensitized to red blood cell (RBC) antigens.
Hypothesis: Bitches do not develop alloantibodies to RBC antigens during gestation and can be used safely as blood donors.
Animals: The study group included 35 healthy female dogs with a prior history of 1 (n = 12), 2 (n = 14), or ≥ 3 (n = 9) pregnancies. The control group consisted of 15 healthy female dogs without any history of pregnancy.
Methods: All dogs were blood typed for dog erythrocyte antigens (DEA) 1.1, 1.2, 3, 4, 5, and 7 using ethylenediaminetetraacetic acid blood samples and polyclonal antisera. Antibody screening was performed with serum and canine RBC panels of known blood type. An autocontrol and direct antiglobulin test were performed to rule out the presence of autoantibodies.
Results: The only alloantibodies identified were those against DEA 7 and the prevalence of anti-DEA 7 alloantibodies was similar in dogs with known history of pregnancy (11.4%) and in the control group (13.3%).
Conclusions and Clinical Importance: These results confirm previous studies and clinical transfusion medicine experience. Naturally occurring anti-DEA 7 alloantibodies have been reported but their clinical relevance has not been shown. Pregnancy does not appear to sensitize dogs to RBC antigens. Consequently, dogs with prior history of pregnancy can be used safely as blood donors. Conversely, no additional pretransfusion compatibility studies would be required should these dogs themselves need to be transfused.  相似文献   

8.
Acute Hemolytic Transfusion Reaction in an Abyssinian Cat With Blood Type B   总被引:1,自引:0,他引:1  
After receiving a transfusion with unmatched blood, an anemic Abyssinian cat developed an acute hemolytic transfusion reaction. Similar to many other purebred cats, the recipient had type B blood with strong serum anti-A alloantibodies, whereas the donor had blood type A. Subsequent transfusions with type B blood proved effective and without adverse reactions. This case of a clinical A-B incompatibility reaction emphasizes the need for blood typing and/or crossmatching prior to transfusing cats.  相似文献   

9.
The severity of a transfusion reaction depends on alloantibody titres within the recipients' blood. Determination of an agglutination titre of naturally occurring alloantibody may help to assess the risk of transfusion reactions following an unmatched transfusion in a cat population. In this group of 312 cats 227 had blood type A, 78 had blood type B, and seven had type AB blood. All type B cats tested showed gross evidence of agglutinating anti-A antibody with plasma titres ranging from 2 to 256. Among the 227 type A domestic cats tested for plasma anti-B alloantibody titres, 70% had gross agglutination with titres ranging from 2 to 16, while 17.6% had microscopic agglutination. The remaining 12.4% of the type A cats were negative for both gross and microscopic agglutination. Based on agglutinating titres, the relative risk of a transfusion reaction when type A or AB blood was given to a type B cat was 6.4% with acute severe reaction, acute mild reactions in 85.9% and premature red cell destruction in 7.7%. On the other hand, transfusion of type AB blood or type B blood to type A cats carries a potential risk of acute mild transfusion reaction in 4.4% and premature red cell destruction in 83.3%. Transfusion of type A or B blood to type AB cats results in no apparent clinical transfusion reactions.  相似文献   

10.
This report describes a case of macroglobulinemia in a six year old castrate male Collie cross dog with clinical signs of epistaxis, anemia, retinopathy and high serum viscosity. The highest total serum protein was 12 g/dl with approximately 60% monoclonal beta globulin. Proteinuria, Bence Jones protein and osteolytic lesions were not detected.Chemotherapy and partial removal of the plasma protein by withdrawal of whole blood and transfusion with packed red cells from a DEA negative donor resulted in transient clinical remission.  相似文献   

11.
A murine IgM monoclonal antibody, which recognizes dog erythrocyte antigen (DEA) 1.1, has been produced. The antibody correctly identified canine RBC possessing DEA 1.1 in a panel of RBC typed by an independent laboratory. Reactivity of the monoclonal antibody was compared with canine anti-DEA 1.1 antiserum with 163 RBC samples from 145 dogs. Results of agglutination tests with the 2 reagents were in agreement for all samples. A card agglutination test that uses the monoclonal antibody with blood is described. A monoclonal antibody-based test should facilitate blood typing for DEA 1.1 in clinical practice.  相似文献   

12.
Background: Blood groups in dogs are designated as dog erythrocyte antigen (DEA) 1.1, 1.2, 3, 4, 5, 7, and Dal. There is limited information about the frequency of different antigens in Greyhound dogs, despite their frequent use as blood donors. Objectives: The aims of this study were to determine the frequencies of DEA 1.1, 1.2, 3, 4, 5, and 7 in Greyhounds, to compare the frequencies with those of non‐Greyhound dogs, and to evaluate the presence of naturally occurring anti‐DEA antibodies. Methods: Blood was collected from 206 Greyhound and 66 non‐Greyhound dogs being screened as potential blood donors. Blood‐typing was performed at Animal Blood Resources International by tube agglutination utilizing polyclonal anti‐DEA antibodies. Results: Of the Greyhound dogs, 27/206 (13.1%) were positive for DEA 1.1, and this frequency was significantly lower (P<.0001) than for non‐Greyhound dogs of which 40/66 (60.6%) were DEA 1.1‐positive. The frequency of positivity for both DEA 1.1 and 1.2 was also lower in Greyhounds (P<.0001). There were no significant differences between Greyhounds and non‐Greyhounds for DEA 1.2, 3, 4, 5, or 7. All 137 dogs (113 Greyhounds and 24 non‐Greyhounds) that were evaluated for naturally occurring anti‐DEA antibodies in serum were negative. A higher percentage of Greyhound dogs (57.3%, 118/206) were considered “universal donors” (negative for all DEAs except DEA 4) compared with non‐Greyhound dogs (28%, 13/46). Conclusion: The frequency of positivity for DEA 1.1 in our population of Greyhounds was significantly lower than previously reported for dogs. Furthermore, a large majority of Greyhounds met the criteria for universal donors.  相似文献   

13.
Background: Transfusion of red blood cell (RBC) products carries considerable risk for adverse reactions, including life‐threatening hemolytic reactions. Objective: To report the occurrence and investigation of life‐threatening acute transfusion reactions with hemolysis in dogs likely related to inappropriate blood product storage. Animals: Four dogs with acute transfusion reactions and other recipients of blood products. Methods: Medical records were reviewed from 4 dogs with suspected acute hemolytic transfusion reactions after receiving RBC products at a veterinary clinic over a 1‐month period. Medical records of other animals receiving blood products in the same time period also were reviewed. Blood compatibility and product quality were assessed, subsequent transfusions were closely monitored, and products were diligently audited. Results: During or immediately after RBC product transfusion, 4 dogs developed hemolysis, hemoglobinuria, or both. Two dogs died and 1 was euthanized because of progressive clinical signs compatible with an acute hemolytic transfusion reaction. Blood type and blood compatibility were confirmed. RBC units from 2 blood banks were found to be hemolyzed after storage in the clinic's refrigerator; no bacterial contamination was identified. After obtaining a new refrigerator dedicated to blood product storage, the problem of hemolyzed units and acute transfusion reactions with hemolysis completely resolved. Conclusions: Acute life‐threatening transfusion reactions can be caused by inappropriate storage of RBC products. In addition to infectious disease screening and ensuring blood‐type compatibility, quality assessment of blood products, appropriate collection, processing, and storage techniques as well as recipient monitoring are critical to provide safe, effective transfusions.  相似文献   

14.
Background: Testing for canine blood types other than dog erythrocyte antigen 1.1 (DEA 1.1) is controversial and complicated by reagent availability and methodology. Objectives: The objectives of this study were to use available gel column technology to develop an extended blood‐typing method using polyclonal reagents for DEA 1.1, 1.2, 3, 4, 7, and Dal and to assess the use of gel columns for cross‐matching. Methods: Dogs (43–75) were typed for DEA 1.1, 1.2, 3, 4, 7, and Dal. Methods included tube agglutination (Tube) using polyclonal reagents, a commercially available DEA 1.1 gel column test kit (Standard‐Gel) using monoclonal reagent, and multiple gel columns (Extended‐Gel) using polyclonal reagents. Blood from 10 recipient and 15 donor dogs was typed as described above and cross‐matched using the gel column technique. Results: Of 43 dogs typed for DEA 1.1, 23, 25, and 20 dogs were positive using Standard‐Gel, Extended‐Gel, and Tube, respectively. Typing for DEA 1.2 was not achievable with Extended‐Gel. For 75 dogs typed for DEA 3, 4, and 7, concordance of Extended‐Gel with Tube was 94.7%, 100%, and 84%, respectively. Dal, determined only by Extended‐Gel, was positive for all dogs. Post‐transfusion major cross‐matches were incompatible in 10 of 14 pairings, but none were associated with demonstrable blood type incompatibilities. Conclusions: Gel column methodology can be adapted for use with polyclonal reagents for detecting DEA 1.1, 3, 4, 7, and Dal. Agglutination reactions are similar between Extended‐Gel and Tube, but are more easily interpreted with Extended‐Gel. When using gel columns for cross‐matching, incompatible blood cross‐matches can be detected following sensitization by transfusion, although in this study incompatibilities associated with any tested DEA or Dal antigens were not found.  相似文献   

15.
This survey assessed the feline transfusion practices at the University of Berlin from 1998 to 2001 in regard to patient population, indications, efficacy, and transfusion reactions. Blood was obtained from seven healthy in-house donors and 127 mostly indoor client-owned pet cats. Over a 3-year period 91 cats were transfused with blood type compatible blood. The blood was fresh (within 8 h of collection) or stored no longer than 15 days. Transfusions were required because of blood loss anaemia (n=40), haemolytic anaemia (n=13), ineffective erythropoiesis (n=35), hypoproteinaemia (n=2) or coagulopathy (n=2). The anaemic cats had a pretransfusion haematocrit of 5-20% (m [median]=13), and received one to six transfusions (m=1). The survival rates of the anaemic cats at 1 and 10 days after transfusion were 84 and 64%, respectively. None of the deaths appeared to be related to transfusion reactions. The major crossmatch, undertaken before 117 transfusions, was incompatible for eight cats. All except for one had previously been transfused. Lysis of transfused cells in six cases resulted in a less than expected haematocrit rise and an increase in serum bilirubin. Transient mild transfusion reactions were only noted in two cats during the second or third transfusion. In conclusion, with proper donor selection and appropriate compatibility screening, blood transfusions are well tolerated, appear effective, and may increase chances of survival.  相似文献   

16.
Transfusion practices and costs in dogs.   总被引:3,自引:0,他引:3  
A geographically stratified sample of 25 small-animal practices administering at least six transfusions to dogs over the last 12 months was surveyed to determine how veterinarians obtain blood for transfusions, the direct costs of administering transfusions, and the impact of available blood on the management of critically ill dogs. The primary source of donor blood for each practice was a borrowed dog (12 practices) or in-house dogs kept on the premises (12 practices). Only one practice obtained blood from a nearby veterinary school. There was a wide variation in practices regarding testing for diseases and screening of donors. Thirty-six percent of practices surveyed did not screen dogs for infectious diseases or evaluate hematologic variables prior to blood donation. Twenty-four percent of the respondents evaluated the donors solely for the purposes of detecting microfilaria. The remaining 40% of the practices performed one or more of the tests generally recommended as part of a screening program for potential blood donors. The blood type of donors was determined in eight of the practices, whereas blood typing of recipients was not routinely performed. Ten of 25 practices performed blood crossmatches, but only one practice performed crossmatches in all cases. The distribution of direct costs per whole blood transfusion (500-ml unit) ranged from 25 to more than $300, with three fourths of the practices having costs less than $100. The higher-cost practices were those that maintained donors on the premises specifically for blood donation purposes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Although nearly all domestic shorthair and longhair cats have type-A blood (greater than 99%), the frequency of blood type B in various feline breeds ranges from 0 to 59%. All blood-type-B cats have strong natural alloantibodies, predominantly of the IgM class, whereas blood-type-A cats have low alloantibody titers of the IgG and IgM classes. We therefore studied the efficacy and safety of transfusing 20 ml of matched and mismatched 14C-potassium cyanate-labeled blood to cats. In autologous and allogeneic matched transfusions of blood-type-A and type-B cats, the half-life of labeled erythrocytes proved to be similar (29 to 39 days). In contrast, type-B erythrocytes transfused into 5 blood-type-A cats had a mean (+/- SD) half-life of only 2.1 +/- 0.2 days and induced minor transfusion reactions. Half of the type-A blood given to 4 blood-type-B cats was destroyed within minutes to 6 hours (mean +/- SD = 1.3 +/- 2.3 hours), depending on the alloantibody titer. After 1 day, none of the labeled erythrocytes were detected. Mismatched transfusions in blood-type-B cats caused marked transient reactions including systemic anaphylactic signs (hypotension, bradycardia, apnea, urination, defecation, vomiting, and severe neurologic depression) and hemolytic signs (hemoglobinemia and pigmenturia) associated with severe reduction in plasma alloantibody titer and complement activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
对猪血红蛋白作为血液替代品的效果进行研究,提取猪血红蛋白,经PEG聚合及纯化,输给试验犬,检测、记录犬输入聚合血红蛋白前后的临床指标,并在输血后进行血常规和尿常规检测。结果表明,将聚合猪血红蛋白输入犬体内没有发生明显的溶血和凝血等输血反应,通过尿常规检测聚合血红蛋白在体内可存在7 d;第2次聚合血红蛋白输血也没有出现临床不良反应。结果显示聚合血红蛋白作为血液替代品有较好的临床应用前景。  相似文献   

19.
Human leukocyte antigen (HLA)-haploidentical stem cell transplantation is an opportunity for nearly all patients lacking an HLA matched stem cell donor. However, graft rejection and graft-versus-host disease (GvHD) as well as infectious complications still result in high treatment-related mortality. Here, we used the dog as a preclinical model for the study of tolerance induction with the aim to optimize and to improve a clinical protocol of haploidentical stem cell transplantation. For this purpose CD6-depleted peripheral blood stem cells (PBSCs) were transfused 6d after transplantation of unmodified bone marrow from dog leukocyte antigen (DLA)-haploidentical littermate donors in order to induce immune tolerance. Besides hematopoietic stem cells CD6-depleted PBSC contain, NK cells and a minority of suppressive CD8-positive cells that may suppress activated T lymphocytes. Recipients were conditioned with, cyclophosphamide and antithymocyte globulin (ATG) preceded by a transfusion of donor buffy coat and either 1, 2 or 3 × 3.3 Gy total body irradiation (TBI). Postgrafting immunosuppression was limited to 30 d of cyclosporine and methotrexate. The additional administration of CD6-depleted PBSCs after unmodified marrow could not prevent GvHD, but it may improve engraftment and chimerism after conditioning with 2 × 3.3 Gy TBI. Reasons for incomplete suppression and possible improvements for clinical applications are discussed.  相似文献   

20.
Zinc-induced hemolytic anemia in a dog   总被引:2,自引:0,他引:2  
A dog ingested a zinc nut that was retained in the stomach and caused a life-threatening hemolytic crisis with renal, gastrointestinal, and hepatic dysfunction. The dog was stabilized by blood transfusion and was anesthetized, and the zinc nut was removed with a fiberoptic endoscope. With continued supportive care, the dog recovered. Metallic zinc is found in high concentrations in nuts, bolts, and pennies. Zinc toxicosis should be considered in cases of unexplained hemolytic anemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号