首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 4-year-old, spayed female, domestic shorthair cat was presented for lethargy, nonregenerative anemia, and inappetence. Results of a CBC included macrocytic, normochromic, nonregenerative anemia and a glucocorticoid-associated leukogram. On blood smear examination, neutrophils had abnormal features including hyposegmentation and a diffuse chromatin pattern with nuclear filament formation and nuclear blebbing. Microscopic examination of a roll preparation of bone marrow revealed hypolobulated megakaryocytes with asynchronous maturation of nuclei. The granulocytic to erythrocyte (G:E) ratio was 76. Segmented neutrophils had asynchronous maturation and dysplastic features. The entire erythroid lineage was markedly decreased for the degree of anemia and rare dysplastic features were noted in erythroid precursor cells. The interpretation of bone marrow findings was erythroid hypoplasia, megakaryocytic dysplasia, and granulocytic hyperplasia with dysplasia. Histopathologic examination of a bone marrow core sample also revealed myeloid hyperplasia and erythroid hypoplasia. The result of a direct immunofluorescence assay for FeLV performed on the bone marrow roll preparation was positive. A diagnosis of dysmyelopoiesis associated with FeLV infection was made. This case was unique in that the dysplastic changes occurred in cell lines that did not have associated cytopenias. The dysmyelopoiesis most closely resembled myelodysplastic syndrome with refractory cytopenia (MDS-RC); however, secondary dysmyelopoiesis could not be ruled out.  相似文献   

2.
Hematological abnormalities were investigated in 13 cats with myelodysplastic syndrome (MDS). Examination of the peripheral blood samples from the 13 cats revealed anemia in 11 cats, leukopenia in 9 cats, and thrombocytopenia in 9 cats. Four cats had pancytopenia (30.8%) and 9 cats had bicytopenia (69.2%). Dysplastic changes of erythrocytes, neutrophils, and platelets in the peripheral blood were found in 5, 10 and 8 cats, respectively. Bone marrow examination of the 13 cats revealed that ratios of blast cells to all nucleated cells (ANC) ranged from 0 to 20%. Ratios of erythroid progenitor cells to ANC were more than 50% in 3 cats and less than 50% in 10 cats. Eosinophils accounted for more than 5% of non-erythroid cells in 10 cats. Dysplastic changes in the granurocytic, erythrocytic, and megakaryocytic cells in the bone marrow were found in 11, 7 and 5 cats, respectively. Dysplastic changes in these cats included giant neutrophils, ring-nucleated neutrophils, binuclear myelocytes, hypersegmented and hyposegmented neutrophils, megaloblastoid erythroblasts, multinucleated erythroblasts, micromegakaryocytes, and segmented multinucleated megakaryocytes. Virological examination indicated the presence of feline leukemia virus antigen in the peripheral blood from all of the 13 cats with MDS. The peripheral blood cytopenias and dysplastic changes in each blood cell lineage in the bone marrow were shown to be important for the diagnosis of MDS in cats.  相似文献   

3.
A three-year-old cat with lymphadenopathy, non-regenerative anaemia and marked leucocytosis (171.3 x 10(9) white blood cells/l) was diagnosed with monocytic leukaemia and treated with a combination of anticancer drugs. A number of mature and immature monocyte-like cells were detected in the peripheral blood and bone marrow; they proved to be monocytic cells by cytochemical examination and an analysis of their cell surface phenotype, indicating that the cat suffered from acute myeloid leukaemia, subclassified as monocytic leukaemia (M5). Treatment with cytarabine, doxorubicin, vincristine and prednisolone greatly reduced the number of blast cells in the cat's peripheral blood and bone marrow. The cat was in partial remission for 67 days and survived for 95 days after it was first examined.  相似文献   

4.
Secondary dyserythropoiesis has been associated with vincristine administration in dogs. Evaluation of bone marrow aspirates for the presence of morphologic abnormalities in the erythroid lineage aids in the diagnosis. However, morphologic features of circulating erythroid precursors in these cases have not been described previously. The purpose of this report was to describe the cytologic features of dyserythropoiesis in peripheral blood and also bone marrow smears in a case series of dogs with immune‐mediated thrombocytopenia (IMT) treated with vincristine sulfate. Nineteen dogs receiving vincristine for treatment of IMT were identified by retrospectively searching a computerized medical record system. There were 5 dogs that had dysplastic erythroid precursors in peripheral blood smears within 7 days of vincristine treatment. Two of those 5 dogs also had evidence for erythrodysplasia in modified Wright's‐stained bone marrow smears obtained postvincristine administration. Morphologic changes included bizarre or inappropriate mitotic figures, abnormal nuclear configurations (fragmentation, elongation, indentation, and binucleation), atypical nuclear remnants (Howell‐Jolly bodies), or nuclear and cytoplasmic asynchrony within the erythroid precursors. A brief review of the literature with discussion of the etiologies for dyserythropoiesis is provided. The dyserythropoiesis was clinically insignificant in all 5 cases and resolved. However, pathologists and clinicians should be aware of these potential findings to prevent misdiagnosis of other conditions.  相似文献   

5.
A two-year-old dog having presented with neurological signs showed marked leukocytosis and appearance of blast cells in the peripheral blood. Hematological and bone marrow examination showed an increase in blasts having both myeloid and monocytic cells characteristics. The dog was diagnosed with acute myelomonocytic leukemia (AML-M4) on the basis of bone marrow findings. Although the dog was treated with a multi-combination chemotherapy, the neurological abnormalities progressed and the dog was euthanized. Myelographic examination and necropsy revealed the extradural lesion formed by AML-M4 around the cervical spinal cord and this lesion was considered as a cause of the neurological signs.  相似文献   

6.
A 2-year, 3-month-old Holstein cow presented with anorexia and enlarged superficial lymph nodes. Fine needle aspiration cytology of the superficial lymph nodes revealed large blast cells. Hematological examination revealed anemia, neutropenia, and blast cells in peripheral blood. Blast cells were the predominant cell type in bone marrow aspirates. Of the non-erythroid cells, 26%, 58%, and 18% were positive for myeloperoxidase, α-naphthyl acetate esterase, and naphthol AS-D chloroacetate esterase, respectively. Pathological examination revealed the proliferation of neoplastic cells, which were positive for monocytic markers, in the affected lymph nodes. The cow was diagnosed with acute myelomonocytic leukemia based on these findings. This report highlights the importance of performing bone marrow aspiration cytology and cytochemical staining when diagnosing bovine myeloid leukemia.  相似文献   

7.
A 16-month-old female spayed Labrador Retriever was referred to the University of Edinburgh for exercise intolerance, inappetence, and severe anemia. A CBC showed severe nonregenerative anemia and moderate numbers of atypical cells with morphologic features most consistent with megakaryoblastic origin. Similar cells were identified in a bone marrow aspirate and accounted for 23% of all nucleated cells. Atypical promegakaryocytes and megakaryocytes were also noted. Myelodysplastic syndrome affecting the megakaryocytic lineage was suspected. Cytologic examination of a fine-needle aspirate of the spleen revealed rare megakaryoblasts similar to those in blood and bone marrow. At necropsy, the bone marrow consisted of atypical megakaryoblasts and megakaryocytes that were also infiltrating spleen, liver, lymph nodes, renal perihilar tissue, and visceral adipose tissue, consistent with acute megakaryoblastic leukemia. Immunohistochemical analysis of splenic sections confirmed megakaryoblastic origin (immunoreactive for CD61 and von Willebrand factor). Some leukemic cells were also immunoreactive for myeloperoxidase (MPO). This aberrant immunophenotype suggested both megakaryocytic and granulocytic/monocytic differentiation of the leukemic cells. To our knowledge, this is the first report of MPO-positive acute megakaryoblastic leukemia in a dog.  相似文献   

8.
We evaluated the utility of cytochemistry, immunophenotyping, flow cytometry, and in vitro culture with forced differentiation of leukemic cells as diagnostic aids to identify the malignant cell ontogeny in a dog with leukemia. A tentative diagnosis of monoblastic leukemia was established by microscopic examination of Romanowsky-stained blood smears and bone marrow aspirate smears. This diagnosis also was supported by the light scatter signature that identified the blast cells as large, non-granular monocytic cells using a CellDyn 3500 automated hematology analyzer; as well as by the detection of N-butyrate esterase and the lack of choloroacetate esterase or leukocyte peroxidase by cytochemical staining. Subsequently, leukemic cells were isolated from the dog's peripheral blood and placed into tissue culture or cryopreserved. The leukemic cells grew in suspension cultures and proliferated spontaneously for up to 4 days. By day 7, proliferation was negligible. Upon culture with conditioned supernatant using mitogen-stimulated human T cells as a source of cytokines, an increased proportion of cells entered S phase by day 2 of culture; however, proliferation declined markedly by day 4, at which time the cells had apparently differentiated to adherent, vacuolated macrophages. The cytokine-stimulated leukemic cells were positive for the monocyte/macrophage specific markers alpha-1-antitrypsin, alpha-1-antichymotrypsin, lysozyme, CD14, MHC class II, and calprotectin, an antigen found in differentiated macrophages and granulocytes. Despite the strong tendency of the leukemic cells towards monocytic differentiation, our results suggested that they retained some features of a myelomonocytic precursor. These data show that cytochemistry, immunophenotyping, flow cytometry, and in vitro differentiation of canine leukemia cells are useful tools for confirming the lineage of malignant hematopoietic cells.  相似文献   

9.
A purebred female Beagle dog that had received 2,000 R of protracted wholebody gamma-irradiation from 60Co when 14 months old had hematologic changes consistent with a myeloproliferative disorder 3 years after the termination of radiation exposure. Peripheral blood and bone marrow findings during the 7-month period before death showed progressive anemia with increased numbers of platelets; immature granulocytes, monocytes and promonocytes. A period of partial remission occurred during which time the peripheral blood was aleukemic, although there was marked thrombocytosis and abnormal erythropoiesis which was evidenced by bizarre circulating nucleated red cells, anisocytosis, poikilocytosis and Howell-Jolly bodies. The dog had a terminal crisis with marked leukocytosis, most cells in the peripheral blood being bizarre monocytes and promonocytes. Tissues obtained at necropsy showed diffuse as well as focal infiltration of the spleen, liver, lymph nodes, heart, kidney and gastrointestinal wall with immature neoplastic cells resembling monocytes and monocytic precursors. The monocytic differentiation of the invasive cell population was confirmed by morphological, cytochemical, histological, ultrastructural and in vitro cell culture studies.  相似文献   

10.
Abstract: A 14‐year‐old spayed American Paint mare was evaluated for mild colic, anorexia, pyrexia, and pancytopenia. Physical examination revealed mild tachycardia, tachypnea, and pale mucous membranes. Serial laboratory analyses revealed progressive pancytopenia, hyperfibrinogenemia, and hyperglobulinemia. A few large atypical cells were observed in peripheral blood smears. Results of tests for equine infectious anemia and antipenicillin antibody were negative. Serum protein electrophoresis indicated a polyclonal gammopathy. Smears of bone marrow aspirates contained hypercellular particles, but cell lines could not be identified because the cells were karyolytic, with pale basophilic smudged nuclei and lack of cellular detail. A diagnosis of bone marrow necrosis was made. Treatment consisted of antimicrobials, nonsteroidal anti‐inflammatory drugs, and corticosteroids. The pyrexia resolved; however, the pancytopenia progressively worsened and petechiation and epistaxis developed. The horse was humanely euthanized. Postmortem examination revealed a diffuse round cell neoplasm infiltrating the kidneys, spleen, lymph nodes, lungs, and bone marrow. Immunophenotyping results (CD3+, CD79α−) indicated the neoplastic cells were of T‐cell lineage. Infiltration of lymphoma cells into the bone marrow appeared to have resulted in severe myelophthisis and bone marrow necrosis. Bone marrow necrosis has been associated previously with lymphoma in humans and dogs. To our knowledge, this is the first reported case of lymphoma resulting in bone marrow necrosis in a horse.  相似文献   

11.
Myelodysplastic syndromes are a heterogeneous group of acquired primary and secondary alterations of hematopoietic stem cells that result in cytopenias in blood and cytologic features of dysplasia in blood and/or bone marrow. To better understand the cytologic features that would permit differentiation of primary and secondary forms of myelodysplasia, we reviewed 267 consecutive bone marrow reports from dogs. These reports indicated that 34 dogs (12.7%) had dysgranulopoiesis, dyserythropoiesis, and/or dysthrombopoiesis in >10% of granulopoietic cells, erythroid cells, and/or megakaryocytes, respectively. Thirteen dogs had primary myelodysplastic syndromes, and 21 had secondary myelodysplastic syndromes. Of the 13 dogs with primary myelodysplasia, 4 were subclassified as myelodysplastic syndrome with refractory anemia (MDS-RA), and 9 were subclassified as myelodysplastic syndrome with excess blasts (MDS-EB). Secondary conditions associated with dysplasia in the bone marrow included malignant lymphoma (n = 5), myelofibrosis (n = 3), immune-mediated thrombocytopenia (n = 4), immune-mediated hemolytic anemia (n = 5), multiple myeloma with melphalan administration (n = 1), pyometra with estrogen administration (n = 1), polycythemia vera (n = 1), and thrombopathia (n = 1). MDS-RA was characterized by <5% myeloblasts in bone marrow, normal granulocyte maturation ratio, increased erythroid maturation ratio, and dysplastic changes in >15% of erythroid cells. MSD-EB was characterized by >/=5% myeloblasts in bone marrow, high granulocyte maturation and erythroid maturation ratios, >/=32% dysplastic granulocytes, and the presence of small atypical immature myeloid cells. Secondary myelodysplastic syndromes were characterized by <5% myeloblasts in bone marrow, variable granulocyte maturation and erythroid maturation ratios, and variable dysplastic features. These results indicate that morphology alone cannot be used to distinguish primary and secondary myelodysplastic syndromes in dogs.  相似文献   

12.
A 9-year-old female spayed mixed breed dog was evaluated at the University of Florida Small Animal Hospital for marked leukocytosis with no associated clinical signs. CBC abnormalities included marked leukocytosis (106,000/μL), marked monocytosis (78,000/μL), and the presence of 13% blast cells (13,832/μL), supporting a diagnosis of leukemia. Cytopenias and dysplastic changes in other cell lines were not present. Microscopic examination of bone marrow showed hypercellular uniparticles with a marginal increase in frequency of unclassified blast cells (2%), but was otherwise unremarkable. Flow cytometric immunophenotyping of blood cells determined that leukemic cells were CD45(+) , CD14(+) , and CD34(-) , and based on side scatter and CD45 reactivity the marrow contained 19% monoblasts. By immunocytochemical staining, the leukemic cells in the bone marrow were CD11b(+) , CD11c(+) , CD11d(+) , MHC-II(+) , MPO(+) , and CD34(-) . Fluorescence in situ hybridization (FISH) analysis of peripheral blood leukocytes documented a chromosomal translocation producing a BCR-ABL gene hybrid, similar to the "Philadelphia" chromosome abnormality recognized in human chronic myelogenous leukemia, as well as a phosphatase and tensin homolog (PTEN) gene deletion. Hydroxyurea therapy was attempted, but was ineffective; the dog died 7 months after initial presentation. Clinical and laboratory findings and the protracted course supported a diagnosis of chronic monocytic leukemia (CMoL) and, to our knowledge, this is the first case of CMoL with a BCR-ABL chromosomal abnormalitiy described in dogs. This may have clinical implications for treatment of dogs with chronic leukemias associated with particular genetic mutations. However, more case studies are needed to further characterize this disease.  相似文献   

13.
A 7-year-old, intact male Dachshund was presented to the Lyon veterinary school for lethargy and anorexia of several weeks duration. The main clinical signs were pale and icteric mucous membranes, hepatomegaly, splenomegaly, and lymphadenopathy. Results of a CBC and plasma biochemistry tests revealed severe nonregenerative anemia, thrombocytopenia, and increased alanine aminotransferase and alkaline phosphatase activities. Blood smear evaluation and cytologic examination of lymph node and bone marrow aspirate specimens revealed a large population of poorly differentiated blast cells with morphologic features suggesting megakaryocytic lineage. A low number of well-differentiated but dysplastic megakaryocytes also were observed in lymph node and bone marrow smears. A few blast cells were erythrophagocytic. Blast cells were positive for glycoprotein IIIa, factor VIII-related antigen, and factor XIII using immunocytochemistry. The dog was euthanized and necropsied. Histologic findings consisted of diffuse, massive infiltration of lymph nodes, liver, and spleen by megakaryoblasts and atypical megakaryocytes, with widespread thrombosis. This case confirms the usefulness of immunochemistry, including for factor XIII, in the diagnosis of megakaryoblastic leukemia, and demonstrates the unique features of tumor cell erythrophagocytosis and marked fibrinous thrombosis, which have not been reported previously in dogs.  相似文献   

14.
An unusual combination of blood cytopenias and monocytic proliferation was observed in a dog. Initial hematologic findings included severe thrombocytopenia, neutropenia, mild nonregenerative anemia and apparently normal bone marrow. Subsequently, a severe persistent monocytosis developed and the bone marrow became populated with monocytes and cytophagic macrophages. Splenomegaly was due to reticuloendothelial hyperplasia and extramedultary hematopoiesis. Treatment consisted of splenectomy and azathioprine but the response was poor and the dog was euthanized. Postmortem examination revealed a hypocellular bone marrow which contained moderate numbers of monocytes and plasma cells. Neoplastic proliferation was absent in visceral organs. No definite diagnosis was established; chronic blood cell consumption, perhaps immune-mediated, may have been responsible for the extensive reticuloendothelial hyperplasia and cytophagia.  相似文献   

15.
A 7‐year‐old castrated male domestic shorthair cat was presented for evaluation of decreased appetite and respiratory signs. A CBC run on presentation revealed severe nonregenerative anemia, thrombocytopenia, and leukocytosis characterized by a prominent population of blasts, having morphologic features suggestive of a monocytic lineage. The cat tested positive for FIV, FeLV, Mycoplasma haemominutum, and only mild abnormalities were identified on the chemistry panel. Bone marrow biopsies were obtained to investigate the bicytopenia and the possibility of a hematopoietic neoplasm. Although the bone marrow aspirate was nondiagnostic, the core biopsy was markedly hypercellular with a population of blasts, largely replacing the normal hematopoietic tissue. Immunohistochemical staining revealed that the blasts were CD3‐negative, Pax5‐negative, dimly CD18‐positive, and moderately positive for Iba1. These findings, in addition to the prominent monocytic differentiation seen in peripheral blood, supported a diagnosis of acute monocytic leukemia. Palliative antiviral and antibiotic treatment and blood transfusion were performed. The patient was discharged on his fourth day of hospitalization. However, 15 days following discharge, the cat was euthanized due to the worsening of his systemic signs. This report discusses the classifications of myeloid leukemias, implications of infectious diseases in the pathogenesis of neoplasia in cats, and the use of Iba1, a “pan‐monocytic/histiocytic” marker, in the diagnosis of acute leukemia.  相似文献   

16.
OBJECTIVE: To further classify dysmyelopoiesis as diagnosed by use of a general classification scheme and to determine clinical features and laboratory test results that could be used to differentiate between the various forms of dysmyelopoiesis in cats. DESIGN: Retrospective case series. Sample Population-Bone marrow slides from 34 cats. PROCEDURES: Medical records of cats in which dysmyelopoiesis was diagnosed on the basis of blood and bone marrow analyses from 1996 to 2005 were reviewed. Criteria for inclusion in the study were findings of > 10% dysplastic cells in 1 or more hematologic cell lines in the bone marrow and concurrent cytopenias in the blood. Cats that met these criteria were classified into subcategories of myelodysplastic syndromes or secondary dysmyelopoiesis on the basis of reevaluation of slides. RESULTS: Of 189 bone marrow slides reviewed, 34 (14.9%) had > 10% dysplastic cells in 1 or more cell lines. Cats were subcategorized as having myelodysplastic syndrome with excessive numbers of blast cells (n = 13), myelodysplastic syndrome with refractory cytopenias (8), a variant form of myelodysplastic syndrome (1), and secondary dysmyelopoiesis (12). Findings of dysmyelopoiesis and autoagglutination in cats with myelodysplastic syndrome and in those with immune-mediated anemia complicated differentiating between the 2 conditions. CONCLUSIONS AND CLINICAL RELEVANCE: Differentiating cats with myelodysplastic syndromes from cats with immune-mediated hemolytic anemia was difficult because severe anemia and autoagglutination may be concurrent findings in both conditions. Differentiating between myelodysplastic syndrome with excessive numbers of blast cells and myelodysplastic syndrome with refractory cytopenias was useful in predicting clinical outcome.  相似文献   

17.
A 4-year, 7-month-old Holstein cow presented with anorexia. Physical examination revealed masses in the interscapular region and vagina. Blast cells were detected in the masses and peripheral blood by fine needle aspiration cytology and hematological examination. By bone marrow aspiration, blast cells constituted up to 24.2% of all nucleated cells, and 22% and 2% of non-erythroid cells stained positive for myeloperoxidase and alpha-naphthyl acetate esterase (ANAE), respectively. Pathological examination revealed the mass lesions consisted of a proliferation of tumor cells, which were positive for monocytic markers (HLA-DR and Iba-1). The cow was diagnosed with acute myelomonocytic leukemia (AMML). Even when tumor cells are ANAE-negative, AMML cannot be completely ruled out and should be considered when diagnosing cattle with leukemia/lymphoma.  相似文献   

18.
BACKGROUND: Flow cytometry may be used to determine immunophenotype or lineage of leukemic cells, but few antibodies are available that are specific for cells of monocytic and granulocytic lineage. OBJECTIVE: The purpose of this study was to evaluate the flow cytometric staining patterns of 3 commercial monoclonal antibodies for monocytes and granulocytes in clinically healthy dogs and in dogs with acute myeloid leukemia (AML). METHODS: Mouse antihuman macrophage antibody (MAC387), mouse anti-human myeloperoxidase (MPO), and a canine neutrophil-specific antibody (NSA) were evaluated using flow cytometry on blood from 6 clinically healthy control dogs, and on blood (n = 7) and/or bone marrow (n = 2) from 8 dogs with AML. A diagnosis of acute leukemia was confirmed by >30% blasts in bone marrow or >30% blasts in peripheral blood, together with bi- or pancytopenia, circulating CD34-positive blast cells, and clinical signs of disease. Leukemic samples also were evaluated using a wide panel of monoclonal antibodies. RESULTS: MAC387 stained neutrophils and monocytes from control dogs, although the staining profiles for the 2 cell types differed. MPO and NSA resulted in strong positive staining of neutrophils; MPO also stained monocytes weakly. Lymphocytes did not stain with any of the antibodies. One case was classified as AML of granulocytic lineage (AML-M1), 6 cases were classified as acute monocytic leukemia (AML-M5), and 1 case was classified as acute myelomonocytic leukemia (AML-M4). Neoplastic myeloblasts in the dog with granulocytic AML were positive for MPO, NSA, MAC387, and CD4. All monoblasts from the dogs with AML-M5 were positive for CD14, 5 of 6 were positive for MAC387, and 2 were positive for MPO. NSA staining was negative in the 2 dogs with AML-M5 in which it was evaluated. In the dog with AML-M4 variable percentages of blast cells were positive for CD14, MPO, MAC387, CD4, and NSA. CONCLUSIONS: Antigens identified by antibodies to MAC387, MPO, and NSA were expressed not just by normal mature neutrophils and monocytes, but also by neoplastic myeloblasts and monoblasts. These 3 antibodies may be useful as part of a wider panel for immunophenotyping AML in dogs.  相似文献   

19.
Blood and bone marrow smears from 49 dogs and cats, believed to have myeloproliferative disorders (MPD), were examined by a panel of 10 clinical pathologists to develop proposals for classification of acute myeloid leukemia (AML) in these species. French-American-British (FAB) group and National Cancer Institute (NCI) workshop definitions and criteria developed for classification of AML in humans were adapted. Major modifications entailed revision of definitions of blast cells as applied to the dog and cat, broadening the scope of leukemia classification, and making provisions for differentiating erythremic myelosis and undifferentiated MPD. A consensus cytomorphologic diagnosis was reached in 39 (79.6%) cases comprising 26 of AML, 10 of myelodysplastic syndrome (MDS), and 3 of acute lymphoblastic leukemia (ALL). Diagnostic concordance for these diseases varied from 60 to 81% (mean 73.3 +/- 7.1%) and interobserver agreement ranged from 51.3 to 84.6% (mean 73.1 +/- 9.3%). Various subtypes of AML identified included Ml, M2, M4, M5a, M5b, and M6. Acute undifferentiated leukemia (AUL) was recognized as a specific entity. M3 was not encountered, but this subclass was retained as a diagnostic possibility. The designations M6Er and MDS-Er were introduced where the suffix "Er" indicated preponderance of erythroid component. Chief hematologic abnormalities included circulating blast cells in 98% of the cases, with 36.7% cases having >30% blast cells, and thrombocytopenia and anemia in approximately 86 to 88% of the cases. Bone marrow examination revealed panmyeloid dysplastic changes, particularly variable numbers of megaloblastoid rubriblasts and rubricytes in all AML subtypes and increased numbers of eosinophils in MDS. Cytochemical patterns of neutrophilic markers were evident in most cases of Ml and M2, while monocytic markers were primarily seen in M5a and M5b cases. It is proposed that well-prepared, Romanowsky-stained blood and bone marrow smears should be examined to determine blast cell types and percentages for cytomorphologic diagnosis of AML. Carefully selected areas of stained films presenting adequate cellular details should be used to count a minimum of 200 cells. In cases with borderline diagnosis, at least 500 cells should be counted. The identity of blast cells should be ascertained using appropriate cytochemical markers of neutrophilic, monocytic, and megakaryocytic differentiation. A blast cell count of > 30% in blood and/or bone marrow indicates AML or AUL, while a count of < 30% blasts in bone marrow suggests MDS, chronic myeloid leukemias, or even a leukemoid reaction. Myeloblasts, monoblasts, and megakaryoblasts comprise the blast cell count. The FAB approach with additional criteria should be used to distinguish AUL and various subtypes of AML (Ml to M7 and M6Er) and to differentiate MDS, MDS-ER, chronic myeloid leukemias, and leukemoid reaction. Bone marrow core biopsy and electron microscopy may be required to confirm the specific diagnosis. Immunophenotyping with lineage specific antibodies is in its infancy in veterinary medicine. Development of this technique is encouraged to establish an undisputed identity of blast cells. Validity of the proposed criteria needs to be substantiated in large prospective and retrospective studies. Similarly, clinical relevance of cytomorphologic, cytochemical, and immunophenotypic characterizations of AML in dogs and cats remains to be determined.  相似文献   

20.
A 7-year-old female Leonberger dog was referred to the National Veterinary School of Lyon Teaching Hospital with a 2-day history of anorexia and bleeding. A mammary mass had been removed 7 months earlier, but histologic examination was not performed. On physical examination, the dog was depressed and had pale mucous membranes and numerous petechiae and hematomas. Significant laboratory findings were moderate thrombocytopenia, prolonged prothrombin, activated partial thromboplastin, and thrombin times, hypofibrinogenemia, and increased concentration of fibrin(ogen) degradation products. A peripheral blood smear, buffy coat preparation, and bone marrow aspirate contained low numbers of large atypical cells that had moderate nuclear:cytoplasmic ratios, oval nuclei with multiple prominent nuclei, and basophilic cytoplasm with villous projections. A small nodule was found in the left inguinal mammary gland, and a fine-needle aspirate contained cells similar to those in blood and bone marrow. In samples of blood, bone marrow, and the mammary mass, the neoplastic cells were immunoreactive for cytokeratin. The diagnosis was mammary carcinoma with secondary disseminated intravascular coagulation (DIC) and disseminated tumor cells in bone marrow and circulating tumor cells in blood; this diagnosis was not confirmed by histopathologic examination. Owing to clinical deterioration and the poor prognosis, the dog was euthanized and a necropsy was not performed. This is the first report of a canine mammary carcinoma with circulating tumor cells and secondary DIC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号