首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

? Key message

Intensive measurements of basic specific gravity and relative water content of lumens show that within-stem variations strongly depend on species and cannot be summarised through the typical patterns reported in the literature; breast height measurements are not always representative of the whole stem.

? Context

Knowledge of the distribution of wood properties within the tree is essential for understanding tree physiology as well as for biomass estimations and for assessing the quality of wood products.

? Aims

The radial and vertical variations of basic specific gravity (BSG) and relative water content of lumens (RWC L ) were studied for five species: Quercus petraea/robur, Fagus sylvatica, Acer pseudoplatanus, Abies alba and Pseudotsuga menziesii. The observations were compared with typical patterns of variations reported in the literature.

? Methods

Wood discs were sampled regularly along tree stems and X-rayed in their fresh and oven-dry states.

? Results

At breast height, BSG was found to clearly increase radially (pith to bark) for two species and to decrease for one species. For F. sylvatica and A. alba, the radial variations of BSG were rather U-shaped, with in particular inner wood areas showing respectively lower and higher BSG than the corresponding mature wood. RWC L increased generally from inner to outer area but wet sapwood was clearly distinguishable only for the coniferous species. Vertical variations of BSG and RWC L were strongly dependant on the species with usually non-linear patterns.

? Conclusion

The observed variations of BSG were only partially in agreement with the reported typical radial patterns. Despite the vertical variations, the mean BSG of a cross-section at breast height appeared to be a good estimator of the mean BSG of the whole stem (although the difference was statistically significant for coniferous species), whereas breast height measurement of RWC L was not representative of the whole stem.
  相似文献   

2.

Key message

Pronounced clonal variation and moderate to high broad-sense heritability estimates of susceptibility to Neonectria neomacrospora were found in Abies nordmanniana in three sites. Significant genotype by environment (G × E) interaction was detected across sites.

Context

Nordmann fir, a widely used Christmas tree species in Europe, has, since 2011, been increasingly damaged by a canker disease caused by Neonectria neomacrospora.

Aims

The objective was to study the genetic variation and genotype by environment interaction in the susceptibility of Nordmann fir to N. neomacrospora.

Methods

Damage caused by N. neomacrospora was evaluated using a visual scale in three Nordmann fir clonal seed orchards in Denmark, partly containing the same clones.

Results

Damage due to N. neomacrospora was substantial at all three sites, and no clone was completely resistant to N. neomacrospora, but a large genetic variation in the susceptibility was detected among clones. Estimates of single-site individual broad-sense heritability for susceptibility varied between 0.38 and 0.47. The average type-B genetic correlation for damage score across sites was 0.34.

Conclusion

Genetic variation was very pronounced, and significant G × E interactions were detected for susceptibility. Further investigations of narrow-sense heritability, expression of the trait in younger material, and identification of the cause of G × E for N. neomacrospora susceptibility in Nordmann fir across different sites are recommended.
  相似文献   

3.

Key message

The genetic structure of Juniperus phoenicea in the Mediterranean Basin is inferred using amplified fragment length polymorphism markers (AFLP) markers. As other Mediterranean conifers, J. phoenicea populations show moderate levels of genetic diversity and interpopulational differentiation. The pattern of distribution of genetic diversity seems highly influenced by the climatic fluctuations which occurred in the Pleistocene.

Context

It has been stated that the genetic structure of Mediterranean conifers is mediated by the historical climatic changes and the geological rearrangements which occurred in the Mediterranean Basin. J. phoenicea provides an excellent example to test how its genetic structure is influenced by these events.

Aims

In this work, we study the amount and distribution of genetic diversity of J. phoenicea complex, in order to evaluate its taxonomic status and to reveal underlying phylogeographic patterns.

Methods

The molecular diversity was analyzed for 805 individuals from 46 populations throughout its distribution range using AFLP markers. Principal coordinate analysis, analysis of molecular variance (AMOVA), and Bayesian-based analysis were applied to examine the population structure.

Results

AFLP markers revealed moderate levels of intrapopulation genetic diversity, pairwise genetic differentiation, and a clear pattern of isolation by distance. Bayesian analysis of population structure showed five clusters related to the taxonomic status of J. phoenicea and J. turbinata, and a geographic pattern of genetic structure in J. turbinata.

Conclusion

All the analysis separate J. phoenicea from J. turbinata. For J. turbinata, up to four groups can be distinguished from a phylogeographic point of view. The genetic structure of J. turbinata seems highly influenced by climatic and geologic fluctuations occurring since the Oligocene.
  相似文献   

4.

Key message

In Abies alba Mill. stands and mixed stands of A. alba and Picea abies L. (H. Karst), microsites neighbouring the trunks of adult trees were more conducive to A. alba regeneration. Although at the stand level, the effect of Fagus sylvatica L. was positive; the local effect of the adult F. sylvatica neighbourhood was insignificant. Hence, forming mixed stands with a fine-grained mosaic of admixed species might better facilitate natural regeneration of A. alba than monospecific stands.

Context

The establishment of natural regeneration in Abies alba Mill. stands is a slow, spatially heterogeneous and stochastic process. Recent studies based on inventory data indicate that A. alba more readily regenerates in mixed stands than in monospecific stands.

Aims

The objective was to examine how this positive association evidenced at the stand level operates on the scale of microsites with contrasting local species composition and stand density.

Methods

In 8 monospecific and 22 mixed stands with Fagus sylvatica L. or Picea abies L. (H. Karst), microsites with a contrasting density of A. alba seedlings were selected and compared in terms of local species composition, stand density, canopy characteristics and topsoil properties.

Results

In A. alba stands, seedling density was positively associated with the proximity of adult trees. In mixed stands of A. alba and P. abies, adult trees of both species exerted a positive effect on A. alba regeneration, but the P. abies neighbourhood influenced regeneration occurrence more strongly than the A. abies neighbourhood. In mixtures with F. sylvatica, however, the effect of local stand density and local species composition was not evidenced at all.

Conclusion

Although at the stand level, P. abies and F. sylvatica exert a positive effect on A. alba regeneration, on the microsite scale, their influences differ. In stands with a dominance of A. alba, the hampered seedling establishment in gaps may be considered an inhibitive effect that facilitates the emergence of other species.
  相似文献   

5.

Key message

Geometric morphometric analyses (GMMs) of the leaf shape can distinguish two congeneric oak species Quercus dentata Thunberg and Quercus aliena Blume in sympatric areas.

Contexts

High genetic and morphological variation in different Quercus species hinder efforts to distinguish them. In China, Q. dentata and Q. aliena are generally sympatrically distributed in warm temperate forests, and share some leaf morphological characteristics.

Aims

The aim of this study was to use the morphometric methods to discriminate these sympatric Chinese oaks preliminarily identified from molecular markers.

Methods

Three hundred sixty-seven trees of seven sympatric Q. dentata and Q. aliena populations were genetically assigned to one of the two species or hybrids using Bayesian clustering analysis based on nSSR. This grouping served as a priori classification of the trees. Shapes of 1835 leaves from the 367 trees were analyzed in terms of 13 characters (landmarks) by GMMs. Correlations between environmental and leaf morphology parameters were studied using linear regression analyses.

Results

The two species were efficiently discriminated by the leaf morphology analyses (96.9 and 95.9% of sampled Q. aliena trees and Q. dentata trees were correctly identified), while putative hybrids between the two species were found to be morphologically intermediate. Moreover, we demonstrated that the leaf morphological variations of Q. aliena, Q. dentata, and their putative hybrids are correlated with environmental factors, possibly because the variation of leaf morphology is part of the response to different habitats and environmental disturbances.

Conclusion

GMMs were able to correctly classify individuals from the two species preliminary identified as Q. dentata or Q. aliena by nSSR. The high degree of classification accuracy provided by this approach may be exploited to discriminate other problematic species and highlight its utility in plant ecology and evolution studies.
  相似文献   

6.

Key message

Pinus sylvestris seedlings quickly expand their roots to deeper soil layers while Pseudotsuga menziesii concentrates its root system in the topsoil, thereby running the risk of desiccation during long dry spells, as indicated by lower survival after simulated summer drought.

Context

Pseudotsuga menziesii (Douglas-fir) is regarded as a promising species to maintain the productivity of Central European lowland forests given the projected increase of long dry spells.

Aims

Will the species be able to regenerate from seed and spread outside plantations in a drier temperate Europe?

Methods

We measured the relative growth rate, biomass allocation, root architecture, and phenotypic plasticity of Pseudotsuga menziesii seedlings sown in a common garden and grown under current precipitation and prolonged drought, respectively. The species’ competitive ability with respect to Pinus sylvestris L., the most drought-tolerant native conifer in Central Europe, was assessed during three growing seasons.

Results

Pinus sylvestris seedlings had higher relative growth rates than did Pseudotsuga menziesii seedlings, first in terms of aboveground biomass and later in terms of shoot height. This resulted in heavier and taller seedlings after three growing seasons under both moist and dry conditions. Shorter vertical roots corresponded with lower survival of Pseudotsuga menziesii seedlings under dry conditions.

Conclusion

Fast root proliferation allows Pinus sylvestris seedlings to reach deeper water pools that are less rapidly depleted during transient drought. By contrast, the shallow root system might put Pseudotsuga menziesii seedlings at the risk of desiccation during prolonged dry spells.
  相似文献   

7.

Key message

In Europe, P. nigra wood presents a density pattern of longitudinal variation with an increase from east to west. However, no latitudinal tendencies were detected. Compared to other Portuguese resinous species, P. nigra revealed higher density, identical radial growth and intra-ring heterogeneity, which presents advantages for industry purposes. The environmental factors (Sites effect) manifest more strongly in the latewood components while the Trees/Sites effect is more strongly expressed in the earlywood components.

Context

Although P. nigra Arnold is one of the most important conifers in Europe, little is known about the wood’s characteristics in the southwest European region.

Aims

Our aims are to outline a first approach to study the growth and wood quality in P. nigra in Portugal comparing to other European natural stands and other resinous species.

Methods

Inter- and intra-wood density variation of P. nigra from six Portuguese sites was studied using microdensitometry. Analysis of variance (ANOVA) was performed in three subsets: 50 common rings, core (juvenile wood) and peripheral analysis (mature wood).

Results

The average ring density was 0.588 g cm?3, with maximum values in the north and low altitudes. Regarding growth traits, no latitudinal and altitudinal tendencies were detected. Compared to the main timber species in Portugal (P. pinaster Aiton), P. nigra showed similar radial growth, higher density but lower intra-ring density homogeneity. The Sites effect mainly influenced latewood density components, while the Trees/Sites effect primarily influenced earlywood components. The Rings effect was found to be relatively low, with a density decrease in the tree’s first years followed by an increase in the periphery. Growth traits showed a reduction from pith to bark.

Conclusion

Considering the quality (density) and growth features of the Black pine, this species could be useful for the reforestation of mountainous Southern Europe areas that are not favourable for other species.
  相似文献   

8.

Key message

The high flammability of some companion species in Quercus suber forests, estimated in laboratory tests, could potentially generate an increase in fire vulnerability and in fire risk.

Context

Recurrent wildfire is one of the main causes of forest degradation, especially in the Mediterranean region. Increased fire frequency and severity due to global change could reduce the natural resilience of cork oak to wildfire in the future. Hence, it is important to evaluate the flammability of companion species in cork oak forests in the particularly dry bioclimatic conditions of North Africa.

Aims

This study aimed to assess and compare flammability parameters at laboratory scale among ten companion frequent species in cork oak forests.

Methods

Fuel samples were collected in a cork oak (Quercus suber L) forest in the southern part of the mountains of Tlemcen (Western Algeria). A series of flammability tests were carried out using a Mass Loss Calorimeter device (FTT ®). A cluster analysis to classify flammability of the selected species was conducted using the K-means algorithm.

Results

The results revealed differences in the four flammability parameters (ignitability, sustainability, combustibility and consumability), in both fresh and dried fine fuel samples from Quercus suber, Pinus halepensis, Quercus ilex, Quercus faginea, Erica arborea, Arbutus unedo, Pistacia lentiscus, Calicotome spinosa, Juniperus oxycedrus and Tetraclinis articulata. Application of the K-means clustering algorithm showed that C. spinosa, T. articulata, J. oxycedrus and P. halepensis are highly flammable because of their high combustibility and sustainability.

Conclusion

The findings identify species that could potentially increase the vulnerability of cork oak forests to forest fires.
  相似文献   

9.

Key message

The radial wood growth curves of Cinnamomum kanehirae Hayata (an endangered species of subtropical Taiwan) exhibit an S shape. The dominant trees displayed a larger radial growth than the codominant trees, and their growth was more sensitive to air temperature.

Context

Knowledge of wood radial growth is important for evaluating the factors that limit tree growth performance. The relevant experiments have mostly been conducted in cold and temperate ecosystems, but rarely in subtropical ecosystems.

Aims

In this study, we aimed to construct a unified radial growth model for Cinnamomum kanehirae Hayata and to identify its sensitivity to temperature.

Methods

The wood radial increments were quantified for 3 years by either pinning or microcoring. The radial wood growth curves were modelled integratively by semiparametric regression and individually by curve fitting. The effects of tree social class, interannual and environmental factors on radial growth were analysed quantitatively.

Results

A unified S-shaped growth model for C. kanehirae was successfully constructed. By including the social class effect, the model was significantly improved. The maximum radial increment (A) was significantly correlated with the maximum growth rate (μ); both A and μ were significantly higher in dominant than in codominant trees. The time-varying radial growth rate was more sensitive to air temperature in dominant than in codominant trees.

Conclusion

Semiparametric models revealed an S-shaped growth curve of C. kanehirae and confirmed the higher temperature sensitivity of dominant trees compared to codominant trees in humid subtropical areas.
  相似文献   

10.

Key message

Seedling ontogeny exerted a greater influence on physiological activity of Quercus rubra seedlings than genetics; thus, it may be more important to use an appropriate growth index to account for seedling ontogeny in experiments than to control for genetic variation.

Context

Members of the genus Quercus exhibit semi-determinate growth, resulting in complex and developmentally variable endogenous physiological patterns. The Quercus morphological index (QMI; Hanson et al. Tree Physiol. 2:273-281, 1986) was developed as a tool to relate physiological patterns to morphologically identifiable ontological stages, thereby allowing for treatment or measurement of seedlings at uniform ontological stages rather than strictly by chronology.

Aims

Although clear physiological patterns relative to seedling ontogeny have been observed using the QMI in pre-transplant half-sibling seedlings, we sought to determine whether physiological patterns remain consistent across genotypes within a species.

Methods

We examined net photosynthesis, transpiration, leaf chlorophyll concentrations, and chlorophyll fluorescence (F v /F m ) throughout the first flush after transplant for northern red oak (Quercus rubra L.) seedlings from three half-sibling families.

Results

Neither net photosynthesis nor transpiration rates varied by family, whereas leaf chlorophyll concentrations and F v /F m differed significantly. Despite family differences for magnitudes of some parameters, no interactions between QMI growth stage and family were observed, and patterns of all parameters relative to growth stage were consistent across families. Net photosynthetic rates, transpiration rates, and F v /F m increased during the flush, while leaf chlorophyll concentration decreased, suggesting that chlorophyll synthesis is not a limiting factor during leaf maturation in this species.

Conclusion

Findings indicate that QMI-based physiological patterns may be at least regionally applicable within a given Quercus species.
  相似文献   

11.

Key message

Water availability and soil pH seem to be major constraints for enzyme activities in calcareous soils under Pinus halepensis and acidic soils under Pinus sylvestris plantations respectively. Proposals for improving enzyme activities may include the promotion of broadleaf species to increase soil pH and the modulation of stand density or the implementation of soil preparation techniques to facilitate water infiltration.

Context

Soil enzymes play a key role in nutrient turnover in forest ecosystems, as they are responsible for the transformation of organic matter into available nutrients for plants. Enzyme activities are commonly influenced by temperature, humidity, nutrient availability, pH, and organic matter content.

Aims

To assess the differences between enzyme activities in calcareous soils below Pinus halepensis and acidic soils below Pinus sylvestris plantations in Spain and to trace those differences back to edapho-climatic parameters to answer the questions: Which environmental factors drive enzyme activities in these soils? How can forest management improve them?

Methods

The differences in climatic, soil physical, chemical, and biochemical parameters and the correlations between these parameters and enzyme activities in soils were assessed.

Results

Low pH and high level of phenols in acidic soils under Pinus sylvestris and water deficit in calcareous soils under Pinus halepensis plantations appeared to be the most limiting factors for enzyme activities.

Conclusion

Options such as the promotion of native broadleaf species in the Pinus sylvestris stands and the modulation of Pinus halepensis stand density or the implementation of soil preparation techniques may improve enzyme activities and, therefore, nutrient availability.
  相似文献   

12.

Key message

The changes in the relative biomass allocation to roots in juvenile stands of fast-growing ( Leucaena leucocephala Lam., Moringa oleifera Lam., and Jatropha curcas L.) and slow-growing ( Anacardium occidentale L. and Parkia biglobosa Jacq.) afforestation species are driven mainly by ontogeny rather than resource availability. However, silvicultural management aiming at increasing availability of water and particularly nutrients enhances biomass production in all species.

Context

Understanding the patterns of biomass allocation among tree species in response to ontogeny and to variation in resource availability is key to the successful restoration of degraded land using forest plantations.

Aims

This study assessed the effects of resource availability and ontogeny on biomass accumulation and partitioning in five semi-arid afforestation species.

Methods

The aboveground and belowground biomass production of fast-growing Leucaena leucocephala Lam., Moringa oleifera Lam., and Jatropha curcas L. and slow-growing Anacardium occidentale L. and Parkia biglobosa Jacq. was monitored following the application of manure (1 kg plant?1) and/or supplemental irrigation (0.5 L per sapling daily) during the first two rainy seasons and the intervening dry season on degraded cropland in Northern Benin.

Results

Biomass accumulation in the fast-growing species was positively impacted by fertilization and irrigation during both rainy seasons. The slow-growing species responded positively to the silvicultural treatments during the dry and second rainy season. The application of fertilizer alone increased the biomass of P. biglobosa by up to 335% during the dry season. Fifteen months after planting, manure-treated L. leucocephala accumulated the most biomass (2.9 kg tree?1). The root fraction decreased with increasing tree size in all species. The comparison of root versus shoot allocation in trees of equal size indicated that the treatment-induced shifts in biomass partitioning were controlled by ontogeny, which explained 86–95% of the variation in root-shoot biomass relationships.

Conclusion

While ontogeny was the main driver of biomass partitioning, increased resource availability induced a larger production of biomass, overall leading to greater aboveground production in all species.
  相似文献   

13.

? Key message

Natural regeneration of P. abies (L.) H. Karst. may reach high densities in lower mountain elevations. The highest densities were found in sites with moderate light availability, with low pH, and not near the riverbank. However, age-height classes differed in the predicted magnitude of response, but were consistent in response directions. Mosses and understory species typical of coniferous forests were positively correlated with regeneration density.

? Context

Norway spruce Picea abies (L.) H. Karst. in Central Europe is at risk under climate change scenarios, particularly in mountain regions. Little is known about the impact of environmental factors on the natural regeneration of P. abies in low-elevation mountain forests.

? Aims

We aimed to assess impacts of distance from the riverbank, soil pH, and light availability on natural P. abies regeneration. We hypothesized that (1) natural P. abies regeneration would depend on light availability and soil pH and (2) there are understory plant species which may indicate the microsites suitable for natural regeneration of P. abies.

? Methods

The study was conducted in the Sto?owe Mountains National Park (SW Poland, 600–800 m a.s.l.). We established 160 study plots (25 m2) for natural regeneration, light availability, soil pH, and understory vegetation assessment.

? Results

The highest densities of natural regeneration of P. abies were observed in sites with moderate light availability (0.1–0.2 of open sky) and low pH (3.5–4.5), and located relatively far from the riverbank. Cover of 22 understory plant species were correlated with natural P. abies regeneration densities, mostly positively.

? Conclusion

Different stages of natural regeneration of P. abies revealed different regeneration niches. Most understory plant species (bryophytes and herbs typical of coniferous forests) do not compete with natural regeneration of P. abies.
  相似文献   

14.

Key message

Historic transfer of larch from Alpine sources to Southern and Eastern Carpathians has been verified by means of nuclear genetic markers. Tyrolean populations can be differentiated into a north-western and south-eastern group, while Romanian populations are separated according to the Southern and Eastern Carpathians. Low-level introgression from Alpine sources is found in autochthonous Carpathian populations.

Context

Large scale human mediated transfer of forest reproductive material may have strongly modified the gene pool of European forests. Particularly in European larch, large quantities of seeds from Central Europe were used for plantations in Southern and Eastern Europe starting in the mid nineteenth century.

Aims

Our main objective was to provide DNA marker based evidence for the anthropogenic transfer of Alpine larch reproductive material to native Carpathian populations.

Methods

We studied and compared 12 populations (N?=?771) of Larix decidua in the Alps (Austria, Italy) and in the Southern and Eastern Carpathians (Romania) using 13 microsatellites.

Results

High genetic diversity (He?=?0.752; RS?=?9.4) and a moderate genetic differentiation (FST?=?0.13; GST?=?0.28) among populations were found; Alpine and Carpathian populations were clearly separated by clustering methods. A Tyrolean origin of plant material was evident for one out of four adult Romanian populations. In the transferred population, a genetic influence from Carpathian sources was found neither in adults nor in juveniles, while the natural regeneration of two Romanian populations was genetically affected by Alpine sources to a minor degree (2.2 and 2.9% allochthonous individuals according to GeneClass and Structure, respectively).

Conclusion

Tracing back of plant transfer by means of genetic tools is straightforward, and we propose further studies to investigate gene flow between natural and transferred populations.
  相似文献   

15.

Key message

Multiple lines of evidence suggest acoustic wave velocity (AWV) would provide a rapid and efficient method to indirectly select for superior pulp yield in Eucalyptus globulus breeding programs.

Context

Eucalyptus globulus is one of the most widely planted hardwood species in temperate regions of the world and is primarily grown for pulpwood.

Aims

To determine if acoustic wave velocity (AWV) can be used to indirectly select for kraft pulp yield in E. globulus.

Methods

Genetic group effects, additive and non-additive variance components, and genetic correlations were estimated for AWV and pulpwood traits, including Kraft pulp yield. In a separate trial, the relative position of quantitative trait loci (QTL) for these traits was compared.

Results

Estimated narrow-sense heritabilities for AWV and pulp yield were both 0.26, and these traits were strongly genetically correlated (0.84). Furthermore, co-located QTL for these traits were identified. Further evidence that AWV could be used to indirectly select for pulp yield was provided by the ranking of genetic groups—Otways and King Island had the highest AWV and pulp yield and Strzelecki and Tasmania the lowest. There was no evidence of dominance variation in wood property traits.

Conclusion

Together, these findings suggest that AWV could be used as a selection criterion for kraft pulp yield in E. globulus breeding programs.
  相似文献   

16.

Key message

A generalized algebraic difference approach (GADA) developed in this study improved the estimation of aboveground biomass dynamics of Cunninghamia lanceolata (Lamb.) Hook and Castanopsis sclerophylla (Lindl.) Schott forests. This could significantly improve the fieldwork efficiency for dynamic biomass estimation without repeated measurements.

Context

The estimation of biomass growth dynamics and stocks is a fundamental requirement for evaluating both the capability and potential of forest carbon sequestration. However, the biomass dynamics of Cunninghamia lanceolata and Castanopsis sclerophylla using the generalized algebraic difference approach (GADA) model has not been made to date.

Aims

This study aimed to quantify aboveground biomass (AGB, including stem, branch and leaf biomass) dynamics and AGB increment in C. lanceolata and C. sclerophylla forests by combining a GADA for diameter prediction with allometric biomass models.

Methods

A total of 12 plots for a C. lanceolata plantation and 11 plots for a C. sclerophylla forest were selected randomly from a 100 m × 100 m systematic grid placed over the study area. GADA model was developed based on tree ring data for each stand.

Results

GADA models performed well for diameter prediction and successfully predicted AGB dynamics for both stands. The mean AGB of the C. lanceolata stand ranged from 69.4 ± 7.7 Mg ha?1 in 2010 to 102.5 ± 11.4 Mg ha?1 in 2013, compared to 136.9 ± 7.0 Mg ha?1 in 2010 to 154.8 ± 8.0 Mg ha?1 in 2013 for C. sclerophylla. The stem was the main component of AGB stocks and production. Significantly higher production efficiency (stem production/leaf area index) and AGB increment was observed for C. lancolata compared to C. sclerophylla.

Conclusion

Dynamic GADA models could overcome the limitations posed by within-stand competition and limited biometric data, can be applied to study AGB dynamics and AGB increment, and contribute to improving our understanding of net primary production and carbon sequestration dynamics in forest ecosystems.
  相似文献   

17.

Key message

Large genetic variation was found in Prunus avium L. populations from the northern parts of the species distribution range. The ranking of genotypes in terms of growth was stable when tested at three trial sites within the northern parts of the species distribution range.

Context

Peripheral populations especially those in the leading edge are isolated from rest of the areas in the species distribution range. This can make them less genetically diverse yet genetically distinct from the rest of the populations in the species distribution range. Evaluation of their genetic diversity is thus crucial in understanding the local adaptation potential of a species.

Aims

We investigated the genetic diversity and genotype by environment interaction at the northern parts of the distribution range of P. avium.

Methods

Quantitative genetic variation of growth, stem form, and spring phenology were assessed in progenies from 93 plus trees of P. avium selected from 43 locations at the north of the species distribution range in Sweden and tested at two Swedish sites and one Danish site.

Results

We find large quantitative genetic variation in growth and phenology at the northern part of the distribution range of P. avium. Only a limited genotype by environment interaction was observed with no clear indication of local adaptation at the northern parts of the species distribution.

Conclusion

We conclude that P. avium harbors a high level of genetic diversity at the north of its distribution range. Present patterns therefore reflect more likely the recent introduction of the species and dispersal dynamics rather than a long-term loss of diversity along South-North ecological clines during the Holocene. With no indications of genetic depletion in growth or phenology, the gene pool in the breeding program is considered suitable for the future propagation of the species in the tested area.
  相似文献   

18.

Key message

Quercus secondary forests show a gradual transition toward mixed forests, with sweet chestnut ( Castanea sativa ) becoming increasingly abundant in the western Spanish Central System. Additionally, in chestnut-dominated stands, it shows a certain resistance to competitive displacement by Quercus pyrenaica . Our results partially refute the traditional view that C. sativa is unable to recruit in the absence of cultural inputs.

Context

Sweet chestnut, Castanea sativa, is a component of European broadleaf forests and is one of the most managed trees. Due to a reduction in cultural inputs, chestnut-dominated stands tend to be invaded by other species, and it is unclear how chestnut is able to persist in natural mixed forests.

Aims

Our work aimed to identity the main factors that limit the establishment of C. sativa and to analyze the recruitment and mortality processes of C. sativa trees.

Methods

The age, growth ring patterns, regeneration density, and the spatial structure of trees and saplings in 11 plots in the Spanish Central System were analyzed.

Results

Chestnut seedling density increased with C. sativa basal area, but transition toward the sapling stage appeared limited owing to light availability. In Quercus pyrenaica secondary forests, sparse canopies did not constrain chestnut regeneration, and in old chestnut stands, C. sativa showed a certain resistance to competitive displacement. By contrast, mixed young coppices showed a high mortality, most likely due to competition with other vigorous resprouters.

Conclusion

Quercus secondary forests showed a gradual transition toward mixed forests with sweet chestnut becoming increasingly more abundant. In old stands, C. sativa is likely to persist under a gap-phase mode of regeneration. Our results partially refute the traditional view that C. sativa is unable to recruit in the absence of cultural inputs.
  相似文献   

19.

Key message

This paper presents a greenhouse study for assessing the genetic variation in maritime pine (Pinus pinaster Aiton) in response to pinewood nematode (Bursaphelenchus xylophilus (Steiner et Buhren) Nickle), which is a causal agent of pine wilt disease. Fifteen out of 96 half-sib families were selected as less susceptible. This experiment is an important first step for creating a resistance breeding program.

Context

Pine wilt disease is caused by the pinewood nematode (Bursaphelenchus xylophilus (Steiner et Buhren) Nickle), a quarantine pest, and is a concern to maritime pine (Pinus pinaster) in Portugal due to its economic, environmental, and social impacts. This disease is regarded as a major threat to European forests.

Aims

This paper aimed to evaluate the genetic variation in maritime pine families that were inoculated with pinewood nematode, identify the most resistant families, and establish the guidelines for a resistance improvement program.

Methods

Two-year-old half-sib progenies obtained from 96 plus trees were inoculated. The plants were monitored for survival on four different dates. The statistical analysis followed the mixed model theory.

Results

Genetic variability of the susceptibility to pine wilt disease was observed. At 157 days after inoculation, the 15 highest genetic ranking families out of 96 were selected, having a predicted survival mean of 15.6% instead of 11.0% on average for the all 96 families.

Conclusion

This study allows for the implementation of an improvement program to help control pine wilt disease.
  相似文献   

20.

Key message

Acacia melanoxylon produces abundant seeds leading to large seed banks in the soil. These seeds display a large viability and their germination is stimulated by heat. To control the populations, it is necessary to remove adults and young individuals, and to prevent seedling establishment after fire occupying the space with rapid growth and high competitive native species.

Context

Acacia melanoxylon displays a widespread distribution in South West Europe, and an improved knowledge of its reproductive characteristics is required in order to control its expansion.

Aims

This experiment was designed to provide useful indicators for an efficient management of A. melanoxylon populations based on its biological cycle in relation to fire.

Methods

We explored the reproductive biology of A. melanoxylon, from seed dissemination—–quantifying seed rain over a year, their germination with and without fire—the seedling and sapling banks and the structure of the adult population. We analysed the effects of fire, seed maturation and scarification on the viability of seeds and the stimulation of seed germination in the aerial seed bank and in the different strata of the soil seed bank.

Results

Our results indicate that A. melanoxylon produced millions of seeds per ha and per year, half of which germinated and the other half went to the soil seed bank, maintaining the viability many years. The germination was the most critical step in the population dynamics of this species, and fire stimulates germination up to 90%.

Conclusion

A. melanoxylon adults and seedlings removal, followed by colonization of rapid growth and high competitive native species that cover the ground very quickly would be a good control action.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号