首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cassava bagasse is an inexpensive and broadly available waste byproduct from cassava starch production. It contains roughly 50% cassava starch along with mostly fiber and could be a valuable feedstock for various bioproducts. Cassava bagasse and cassava starch were used in this study to make fiber-reinforced thermoplastic starch (TPSB and TPSI, respectively). In addition, blends of poly (lactic acid) and TPSI (20%) and TPSB (5, 10, 15, 20%) were prepared as a means of producing low cost composite materials with good performance. The TPS and PLA blends were prepared by extrusion and their morphological, mechanical, spectral, and thermal properties were evaluated. The results showed the feasibility of obtaining thermoplastic starches from cassava bagasse. The presence of fiber in the bagasse acted as reinforcement in the TPS matrix and increased the maximum tensile strength (0.60 MPa) and the tensile modulus (41.6 MPa) compared to cassava starch TPS (0.40 and 2.04 MPa, respectively). As expected, blending TPS with PLA reduced the tensile strength (55.4 MPa) and modulus (2.4 GPa) of neat PLA. At higher TPSB content (20%) the maximum strength (19.9 MPa) and tensile modulus (1.7 GPa) were reduced about 64% and 32%, respectively, compared to the PLA matrix. In comparison, the tensile strength (16.7) and modulus (1.2 GPa) of PLA blends made with TPSI were reduced 70% and 51% respectively. The fiber from the cassava bagasse was considered a filler since no increase in tensile strength of PLA/TPS blends was observed. The TPSI (33.1%) had higher elongation to break compared to both TPSB (4.9%) and PLA (2.6%). The elongation to break increased from 2.6% to 14.5% by blending TPSI with PLA. In contrast, elongation to break decreased slightly by blending TPSB with PLA. Thermal analysis indicated there was some low level of interaction between PLA and TPS. In PLA/TPSB blends, the TPSB increased the crystallinity of the PLA component compared to neat PLA. The fiber component of TPSB appeared to have a nucleating effect favoring PLA crystallization.  相似文献   

2.
This work developed biodegradable foam trays from cassava starch blended with the natural polymers of fiber and chitosan. The kraft fiber at 0, 10, 20, 30 and 40% (w/w of starch) was mixed with cassava starch solution. Chitosan solution at 0, 2, 4 and 6% (w/v) was added into starch/fiber batter with 1:1. Hot mold baking was used to develop the cassava starch-based foam by using an oven machine with controlled temperature at 250 °C for 5 min. Results showed that foam produced from cassava starch with 30% kraft fiber and 4% chitosan had properties similar to polystyrene foam. Color as L*, a* and b* value of starch foam tray was slightly increased. Density, tensile strength and elongation of the starch-based foam were 0.14 g/cm3, 944.40 kPa and 2.43%, respectively, but water absorption index (WAI) and water solubility index (WSI) were greater than the polystyrene foam.  相似文献   

3.
Sugarcane bagasse cellulose was subjected to the extremely low acid (ELA) hydrolysis in 0.07% H2SO4 at 190, 210 and 225 °C for various times. The cellulose residues from this process were characterized by TGA, XRD, GPC, FTIR and SEM. A kinetic study of thermal decomposition of the residues was also carried out, using the ASTM and Kissinger methods. The thermal studies revealed that residues of cellulose hydrolyzed at 190, 210 and 225 °C for 80, 40 and 8 min have initial decomposition temperature and activation energy for the main decomposition step similar to those of Avicel PH-101. XRD studies confirmed this finding by showing that these cellulose residues are similar to Avicel in crystallinity index and crystallite size in relation to the 110 and 200 planes. FTIR spectra revealed no significant changes in the cellulose chemical structure and analysis of SEM micrographs demonstrated that the particle size of the cellulose residues hydrolyzed at 190 and 210 °C were similar to that of Avicel.  相似文献   

4.
Biocomposites derived from polymeric resin and lignocellulosic fibers may be processed at temperatures ranging from 100 °C to 230 °C for durations of up to 30 min. These processing parameters normally lead to the degradation of the fiber's mechanical properties such as Young's modulus (E), ultimate tensile strength (UTS) and percentage elongation at break (%EB). In this study, the effect of processing temperature and duration of heating on the mechanical properties of coir fibers were examined by heating the fibers in an oven at 150 °C and 200 °C for 10, 20 and 30 min to simulate processing conditions. Degradation of mechanical properties was evaluated based on the tensile properties. It was observed that the UTS and %EB of heat treated fibers decreased by 1.17-44.00% and 15.28-81.93%, respectively, compared to untreated fibers. However, the stiffness or E of the fibers increased by 6.3-25.0%. Infra red spectroscopy (FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) were used to elucidate further the influence of chemical, thermal and microstructural degradation on the resulting tensile properties of the fibers. The main chemical changes observed at 2922, 2851, 1733, 1651, 1460, 1421 and1370 cm−1 absorption bands were attributed to oxidation, dehydration and depolymerization as well as volatization of the fiber components. These phenomena were also attributed to in the TGA, and in addition the TGA showed increased thermal stability of the heat treated coir fibers with reference to the untreated counterparts which was most probably due to increased recrystallization and cross linking. The microstructural features including microcracks, micropores, collapsed microfibrils and sort of cooled molten liquid observed on the surface of heat treated coir fibers from the scanning electron microscope (SEM) could not directly be linked to the effect of temperature and durations of heating although such features may have largely account for the lower tensile properties of heat treated coir fibers with reference to untreated ones.  相似文献   

5.
This study was conducted to evaluate the suitability of using residual plant fibers from agricultural waste streams as reinforcement in thermoplastic composites. Three groups of plant fibers evaluated included cotton burrs, sticks and linters from cotton gin waste (CGW), guayule whole plant, and guayule bagasse. The plant fibers were characterized for physical (bulk density and particle size distribution) and chemical properties (ash, lignin and cellulose contents). A laboratory experiment was designed with five fiber filler treatments, namely control (oak wood fiber as the filler - OWF), cotton burr and sticks (CBS), CBS with 2% (by weight) second cut linters (CBL), CBS with 30% (by weight) guayule whole plant (CGP), and CBS with 30% (by weight) guayule bagasse (CGB). The composite samples were manufactured with 50% of fiber filler, 40% of virgin high-density polyethylene (HDPE), and 10% other additives by weight. The samples were extruded to approximately 32 × 7 mm cross-sectional profiles, and tested for physico-mechanical properties. The CBS and CBL had considerably lower bulk density than the other fibers. Cotton linters had the highest α-cellulose (66.6%), and lowest hemicellulose (15.8%) and lignin (10.5%) of all fibers tested. Guayule whole plant had the lowest α-cellulose and highest ash content. Both CBS and guayule bagasse contained α-cellulose comparable to OWF, but slightly lower hemicellulose. Evaluation of composite samples made from the five fiber treatments indicated that fibers from cotton gin byproducts and guayule byproducts reduced the specific gravity of the composites significantly. However, the CBS and CBL samples exhibited high water absorption and thickness swelling, but the addition of guayule bagasse reduced both properties to similar levels as the wood fiber. The CGP exhibited significantly lower coefficient of thermal expansion. Composite samples with the five different fiber fillers showed similar hardness and nail holding capacity, yet oak fibers imparted superior strength and modulus under flexure and compression with the exception of the compressive modulus of CGB composites. In general, both cotton ginning and guayule processing byproducts hold great potential as fiber fillers in thermoplastic composites.  相似文献   

6.
The present work deals with production of ethanol from sweet sorghum bagasse by a zygomycetes fungus Mucor hiemalis. The bagasse was treated with phosphoric acid and sodium hydroxide, with or without ultrasonication, prior to enzymatic hydrolysis by commercial cellulase and β-glucosidase enzymes. The phosphoric acid pretreatment was performed at 50 °C for 30 min, while the alkali treatment performed with 12% NaOH at 0 °C for 3 h. The pretreatments resulted in improving the subsequent enzymatic hydrolysis to 79-92% of the theoretical yield. The best hydrolysis performance was obtained after pretreatment by NaOH assisted with ultrasonication. The fungus showed promising results in fermentation of the hydrolyzates. In the best case, the hydrolyzate of NaOH-ultrasound pretreated bagasse followed by 24 h fermentation resulted in about 81% of the corresponding theoretical ethanol yield. Furthermore, the highest volumetric ethanol productivity was observed in the hydrolyzates of NaOH pretreated bagasse, especially after ultrasonication in pretreatment stage.  相似文献   

7.
An ionic liquid (IL)-water mixture employed to treat lignocellulosic biomass is promising. The addition of water decreases viscosity and process cost so as to improve the IL practical application. In this work, effects of temperature (50-170 °C), water content (0-80 wt%), treating duration (0.5-4 h) and pressure (0.1-3.2 MPa) on treating legume straw process using a 1-butyl-3-methylimidazolium chloride ([C4mim]Cl)-water mixture were experimentally investigated. Legume straw was found to be partially dissolved, and the dissolved substances can be flocculated by adding the coagulating agent—water (equal to volume of the solution). For this process at 0.1 MPa, the maximum 29.1 wt% legume straw is dissolved in the [C4mim]Cl-water mixture with water content of 20 wt% at 150 °C during 2 h, which is much higher than 9.8 wt% using pure [C4mim]Cl. A hemicellulose-free lignin-rich material (64.0 wt% lignin and 35.3 wt% cellulose) is obtained by adding the water. Even for 0.5 h, 22.3 wt% of legume straw is dissolved in the case of water content of 20 wt%, 150 °C and 0.1 MPa. High pressure favors the dissolution of legume straw but lignin content in the residue has no obvious change. The addition of proper amount of water facilitates the dissolution of legume straw and a relative rapid dissolving rate can be achieved in a [C4mim]Cl-water mixture. There are great differences in chemical and physical properties between legume straw and the obtained samples (residue and floc) due to the dissolution and reconstitution.  相似文献   

8.
The ability of activated carbon to remove pollutants from water in packed column systems is dependent on granular material with mechanical strength sufficient to avoid attrition caused by stream flow. Therefore, an appropriate balance between surface area and hardness is essential when using activated carbon in real systems. The purpose of this research is to determine the optimal production conditions that generate activated carbon with adequate physical properties to be used in packed systems from agave bagasse, a waste product from the mezcal industries in Mexico. Activated carbons were produced by chemical activation (ZnCl2 or H3PO4). Response surface methodology (RSM) was used to evaluate the effect of the activation temperature (250-550 °C), activation time (0-50 min), and the concentration of activating agent (0.2-1.4; g activating agent/g bagasse) on both surface area and hardness. The production conditions that generated optimal characteristics in the activated carbon were 392 °C, 1.02 g activating agent/g bagasse and 23.8 min for H3PO4 activated samples and 456 °C, 1.08 g activating agent/g bagasse and 23.8 min for ZnCl2 activated samples. The surface area and hardness of the activated carbon produced from bagasse under these conditions were similar to activated commercial carbons (surface area > 800 m2/g and hardness > 85%).  相似文献   

9.
Rice starch suspensions of 10% dry matter (DM) were treated by heat (0.1 MPa at 20–85 °C) or pressure/heat combinations (100–600 MPa at 20, 40 and 50 °C) for 15 min to investigate their gelatinization and rheological characteristics. The maximum swelling index of about 12 g water per gram of DM was obtained by thermal treatment at 85 °C, meanwhile, that of 7.0 g was observed by 600-MPa pressurization at 50 °C. The higher temperatures or pressures resulted in the higher degrees of gelatinization. Furthermore, treatments of 0.1 MPa at 85 °C, 500 MPa at 50 °C and 600 MPa at various temperatures caused complete gelatinization of rice starch. The consistency index (K) and storage modulus (G′) dramatically increased from 70 °C or 400 MPa. The G′ values were higher in pressure-treated samples than those in thermal-treated samples. Therefore, an application of pressure/heat combinations as a processing method to improve the quality of rice starch products would be possible.  相似文献   

10.
Enzymatic hydrolysis of steam pretreated sugarcane bagasse was performed to investigate the production of glucose and xylose. A blend of industrial enzymes (Novozymes) was used. The enzymes were used either without having been washed or having been washed with water or 1% aqueous NaOH solution. The influence of the size of sugarcane bagasse and the proportion of the enzymatic cocktail, which was composed of endoglucanases/cellobiohydrolases (Celluclast 1.5L) and β-glucosidase (Novozym 188) cellulases mixtures, was investigated. The tests were performed at a temperature of 50 °C and at a pH of 4.8 during a period of 72 h. The assays that were conducted with a pretreated sugarcane bagasse that was washed with a 1% aqueous NaOH solution without milling led to the largest amounts of glucose after 72 h, which was independent of the proportions of enzymes used in experiments with the smallest amounts of enzymes. The largest amount of xylose was obtained with a pretreated sugarcane bagasse that was not washed.  相似文献   

11.
Ethanol production by Saccharomyces cerevisiae UFPEDA1238 was performed in simultaneous saccharification and fermentation of delignified sugarcane bagasse. Temperature (32 °C, 37 °C), agitation (80; 100 rpm), enzymatic load (20 FPU/g cellulose and 10%, v/v β-glucosidase or 10 FPU/g cellulose and 5% β-glucosidase) and composition of culture medium were evaluated. Ethanol concentration, enzymatic convertibility of cellulose and volumetric productivity were higher than 25 g/L, 72% and 0.70 g/L h, respectively, after 30 h, when the culture medium 1 and 20 FPU/g cellulose/10%, v/v β-glucosidase or the culture medium 2 and 10 FPU/g cellulose/5% β-glucosidase were used in SSF at 37 °C and 80 rpm. In the SSF with culture medium 2 (supplemented with ammonium, phosphate, potassium and magnesium), 150 L ethanol/t bagasse was achieved, with minimum enzyme loading (10 FPU/g cellulose and 5%, v/v β-glucosidase) for 8%, w/v of solids, which is often an important requirement to provide cost-efficient second generation ethanol processes.  相似文献   

12.
Thermoplastic films from wheat proteins   总被引:1,自引:0,他引:1  
We show that the wheat proteins gluten, gliadin and glutenin can be compression molded into thermoplastic films with good tensile strength and water stability. Wheat gluten is inexpensive, abundantly available, derived from renewable resource and therefore widely studied for potential thermoplastic applications. However, previous reports on developing thermoplastics from wheat proteins have used high amounts of glycerol (30-40%) and low molding temperature (90-120 °C) resulting in thermoplastics with poor tensile properties and water stability making them unsuitable for most thermoplastic applications. In this research, we have developed thermoplastic films from wheat gluten, gliadin and glutenin using low glycerol concentration (15%) but high molding temperatures (100-150 °C). Our research shows that wheat protein films with good tensile strength (up to 6.7 MPa) and films that were stable in water can be obtained by choosing appropriate compression molding conditions. Among the wheat proteins, wheat gluten has high strength and elongation whereas glutenin with and without starch had high strength and modulus but relatively low elongation. Gliadin imparts good extensibility but decreased the water stability of gluten films. Gliadin films had strength of 2.2 MPa and good elongation of 46% but the films were unstable in water. Although the tensile properties of wheat protein films are inferior compared to synthetic thermoplastic films, the type of wheat proteins and compression molding conditions can be chosen to obtain wheat protein films with properties suitable for various applications.  相似文献   

13.
Gelatinized waxy and normal corn starches at various concentrations (20–50%) in water were stored under temperature cycles of 4°C and 30°C (each for 1 day) up to 7 cycles or at a constant temperature of 4°C for 14 days to investigate the effects of temperature cycling on the retrogradation of both starches. Compared to starches stored only at 4°C, both starches stored under the 4/30°C temperature cycles exhibited smaller melting enthalpy for retrogradation (ΔHr), higher onset temperature (To), and lower melting temperature range (Tr) regardless of the starch concentration tested. Fewer crystallites might be formed under the temperature cycles compared to the isothermal storage, but the crystallites formed under temperature cycling appeared more homogeneous than those under the isothermal storage. The effect of starch content on the retrogradation was greater when the starch gels were stored under cycled temperatures. The reduction in ΔHr and the increase in conclusion temperature (Tc) by retrogradation under 4/30°C temperature cycles became more apparent when the starch concentration was lower (20 or 30%). Degree of retrogradation based on melting enthalpy was greater in normal corn starch than in waxy corn starch when starch content was low.  相似文献   

14.
Corn is widely used as animal feed as well as for fuel ethanol production. Fiber present in corn is not digested well by non-ruminants such as chicken and swine. Also, this fiber does not participate in conversion of starch to ethanol. Fiber separation from ground corn flour using the Elusieve process, a combination of sieving and elutriation (air classification) results in high starch animal feed, and in increased ethanol productivity. The objective of this study was to understand the effect of retention screen size in the hammer mill on fiber separation from corn flour using the Elusieve process. Four different retention screen opening sizes were studied; 1.4 mm (3.5/64”), 2.0 mm (5/64”), 2.8 mm (7/64”) and 3.2 mm (8/64”). Ground corn flour was sieved into size fractions and the size fractions were subjected to air classification. As the retention screen size increased, fiber separation improved, and the difference in starch content between enhanced flour and original flour increased. The highest starch content of 64.1-65.2% was in the enhanced flour from Elusieve processing of corn flour obtained by using 3.2 mm (8/64”) retention screen in the hammer mill, while the starch content of the original corn flour was 62.5%. It is expected that at some threshold retention screen size, the fiber separation using the Elusieve process would be deteriorated. This threshold retention screen size was not reached in this study.  相似文献   

15.
The expansion of Brazilian agricultural production was very important in the last decade. A number of waste residues were produced showing an enormous potential for industrial crops and products. Sugarcane bagasse is the most important one and it has been investigated for chipboard panel's preparation. In this sense, this work aims to develop, characterize and compare chipboard panels made with sugarcane bagasse with urea formaldehyde (UF) and melamine formaldehyde (MF) resins. Panels were obtained with a mixture of sugarcane bagasse and particles, like pine or eucalyptus, with and without paraffin in the formulation. Nine different types of panels have been made, all with 9% in resin mix, under a pressing cycle of 4.0 MPa cm2, and temperature of 160 °C. Under physical tests, the panels complied with the American Standard CS 236-66 for trading chipboards of medium density and, in most cases the results obtained were lower than the ones raised in the literature. Under mechanical tests, that same standard was not complied with and, in most cases the results were close to or higher than those obtained in the literature.  相似文献   

16.
Response surface methodology (RSM) was used to optimize the conditions for the production of endo β-1,4 glucanase, a component of cellulase by Aspergillus nidulans MTCC344 under solid state fermentation, using bagasse as the chief substrate. A four-factor-five-level central composite design was employed for experimental design and analysis of the results. Maximum cellulase activity (CMCase was 28.96 U g−1) can be attained at the optimum conditions, 16.8 mm bagasse bed height, 60% moisture content, pH 4.25 and temperature 40 °C in the solid state fermenter. These data were rather close to the experimental results obtained (CMCase was 28.84 U g−1). A. nidulans MTCC344 was able to hydrolyze pretreated bagasse completely after 8 days of incubation with significant endo β-1,4 glucanase activities. The results of Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) of bagasse showed structural changes through pretreatment, in favor of enzymatic hydrolysis. Bagasse with alkali pretreatment using sodium hydroxide is a source of lignocelluloses able to improve the yield of endo β-1,4 glucanase by the strain of A. nidulans. The endo β-1,4 glucanase produced during the bioconversion of cellulose to glucose by A. nidulans MTCC344 is strongly dependent on the pretreatment given before hydrolysis.  相似文献   

17.
The fatty acid composition, Acid Value, and the content and composition of tocopherols, tocotrienols, carotenoids, phytosterols, and steryl ferulates were determined in corn germ oil and four post-fermentation corn oils from the ethanol dry grind process. The oxidative stability index at 110 °C was determined for the five oils, and four oils were compared for their stability during storage at 40 °C as determined by peroxide value and hexanal content. The fatty acid composition of all five oils was typical for corn oil. The Acid Value (and percentage of free fatty acids) was highest (28.3 mg KOH/g oil) in corn oil extracted centrifugally from a conventional dry grind ethanol processing facility and for oil extracted, using hexane, from distillers dried grains with solubles (DDGS) from a raw starch ethanol processing facility (20.8 mg KOH/g oil). Acid Value was lowest in two oils extracted centrifugally from thin stillage in a raw starch ethanol facility (5.7 and 6.9 mg KOH/g oil). Tocopherols were highest in corn germ oil (∼1400 μg/g), but tocotrienols, phytosterols, steryl ferulates, and carotenoids were higher in all of the post-fermentation corn oils. Hexane extracted oil from DDGS was the most oxidatively stable as evaluated by OSI and storage test at 40 °C, followed by centrifugally extracted thin stillage oil from the raw starch ethanol process, and centrifugally extracted thin stillage oil from the conventional dry grind ethanol process. Corn germ oil was the least oxidatively stable. When stored at room temperature, the peroxide value of centrifugally extracted thin stillage oil from the raw starch ethanol process did not significantly increase until after six weeks of storage, and was less than 2.0 mequiv. peroxide/kg oil after three months of storage. These results indicate that post-fermentation corn oils have higher content of valuable functional lipids than corn germ oil. Some of these functional lipids have antioxidant activity which increases the oxidative stability of the post-fermentation oils.  相似文献   

18.
In situ melting and crystallization of short-linear α-1,4-glucan (short-chain amylose, or SCA) from debranched waxy starches were investigated by synchrotron wide-angle X-ray diffraction. Amorphous SCA was prepared by dissolving completely debranched waxy starches in alkaline solution and neutralized by hydrochloric acid. When hydrated with 50% water at 25 °C, all amorphous SCA crystallized immediately and gave a B-type structure. The SCA from debranched waxy potato starch had a longer average chain length and a higher melting temperature but relatively lower crystallinity upon hydration; it was not completely melted at 100 °C and retained its original B-type structure during rapid cooling. In contrast, the SCA from debranched waxy wheat and waxy maize starches had a large portion of low molecular weight fractions, a higher crystallinity upon hydration, and a lower melting temperature. These differences suggest that amylopectin short chains crystallized more readily but their crystals were weaker than those of long chains. After the B-type crystals of hydrated SCA from waxy wheat and waxy maize starches melted, they reformed into the A-type polymorph upon rapid cooling. The thermal properties showed that the A-type polymorph of debranched waxy wheat and waxy maize starches had a higher melting temperature than their B-type structure.  相似文献   

19.
The surface topography, tensile properties, and thermal properties of ramie fibers were investigated as reinforcement for fully biodegradable and environmental-friendly ‘green’ composites. SEM micrographs of a longitudinal and cross-sectional view of a single ramie fiber showed a fibrillar structure and rough surface with irregular cross-section, which is considered to provide good interfacial adhesion with polymer resin in composites. An average tensile strength, Young’s modulus, and fracture strain of ramie fibers were measured to be 627 MPa, 31.8 GPa, and 2.7 %, respectively. The specific tensile properties of the ramie fiber calculated per unit density were found to be comparable to those of E-glass fibers. Ramie fibers exhibited good thermal stability after aging up to 160°C with no decrease in tensile strength or Young’s modulus. However, at temperatures higher than 160°C the tensile strength decreased significantly and its fracture behavior was also affected. The moisture content of the ramie fiber was 9.9%. These properties make ramie fibers suitable as reinforcement for ‘green’ composites. Also, the green composites can be fabricated at temperatures up to 160°C without reducing the fiber properties.  相似文献   

20.
This work evaluates the use of sugarcane bagasse (SCB) as a source of cellulose to obtain whiskers. These fibers were extracted after SCB underwent alkaline peroxide pre-treatment followed by acid hydrolysis at 45 °C. The influence of extraction time (30 and 75 min) on the properties of the nanofibers was investigated. Sugarcane bagasse whiskers (SCBW) were analyzed by transmission electron microscopy (TEM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA) in air atmosphere. The results showed that SCB could be used as source to obtain cellulose whiskers and they had needle-like structures with an average length (L) of 255 ± 55 nm and diameter (D) of 4 ± 2 nm, giving an aspect ratio (L/D) around 64. More drastic hydrolysis conditions (75 min) resulted in less thermally stable whiskers and caused some damage on the crystal structure of the cellulose as observed by XRD analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号