首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 482 毫秒
1.
亚洲中部干旱区"中亚天山北坡-新疆天山北坡-甘肃祁连山北坡"山前平原,在古丝绸之路和现代丝绸之路经济带时期均为社会、经济、文化最繁荣的重要地区。而一个地区某生物的生长发育除与降水、气温有关外,还与当地的水热匹配特征密切相关。中亚天山北坡区段水热不同步-新疆天山北坡区段水热较同步-甘肃祁连山北坡河西走廊区段水热同步的生态环境,深刻地影响着当地的天然动植物种类及其生长发育,使某些生物在研究区内各区段间形成了发生中心区、扩散区及无发生区的规律性分布;不同区段多项绿洲农业技术的差异性也反映出其对当地水热匹配特征的适应性。  相似文献   

2.
亚洲中部高山降水稳定同位素空间分布特征   总被引:1,自引:0,他引:1  
为了揭示中亚高山地区大气降水稳定同位素的时空分布特征,开展不同尺度下干旱区水文循环的研究,分析了亚洲中部天山、昆仑山、祁连山地区18个站点的降水氢氧稳定同位素资料。结果表明:天山、昆仑山和祁连山地区降水稳定同位素季节变化较为明显,表现出夏半年高、冬半年低的变化趋势。3个地区降水稳定同位素的空间分布也呈现出显著的季节差异。除昆仑山外,天山和祁连山大气降水线方程的斜率均低于全球大气降水线,说明这些地区的降水受到较强的蒸发影响。研究区各站点降水稳定同位素均呈显著的温度效应,区域内降水量效应不明显。春、夏季昆仑山地区3站点的降水δ^18O高程效应较明显,降水δ^18O随海拔上升而降低,其余地区没有明显的高程效应。除昆仑山地区西合休外,亚洲高山地区氘盈余(d值)总体表现出冬半年高,夏半年低的变化趋势。  相似文献   

3.
Vegetation dynamics and its response to climate change in Central Asia   总被引:1,自引:0,他引:1  
YIN Gang 《干旱区科学》2016,8(3):375-388
The plant ecosystems are particularly sensitive to climate change in arid and semi-arid regions. However, the responses of vegetation dynamics to climate change in Central Asia are still unclear. In this study, we used the normalized difference vegetation index(NDVI) data to analyze the spatial-temporal changes of vegetation and the correlation of vegetation and climatic variables over the period of 1982–2012 in Central Asia by using the empirical orthogonal function and least square methods. The results showed that the annual NDVI in Central Asia experienced a weak increasing trend overall during the study period. Specifically, the annual NDVI showed a significant increasing trend between1982 and 1994, and exhibited a decreasing trend since 1994. The regions where the annual NDVI decreased were mainly distributed in western Central Asia, which may be caused by the decreased precipitation. The NDVI exhibited a larger increasing trend in spring than in the other three seasons. In mountainous areas, the NDVI had a significant increasing trend at the annual and seasonal scales; further, the largest increasing trend of NDVI mainly appeared in the middle mountain belt(1,700–2,650 m asl). The annual NDVI was positively correlated with annual precipitation in Central Asia, and there was a weak negative correlation between annual NDVI and temperature. Moreover, a one-month time lag was found in the response of NDVI to temperature from June to September in Central Asia during 1982–2012.  相似文献   

4.
Altai (also named Altay in China) Mountain Country (Mountain System) is a unique natural region,located on the border between different floristic regimes of the Boreal and ancient Mediterranean sub-kingdoms,where distribution of plant species is actually limited. It is known to have sufficient endemic floral biodiversity in the Northern Asia. Many plants of Altai Mountain System need effective care and proper conservation measures for their survival and longer-term protection. Important Plant Area identified as the IUCN (the International Union for Conservation of Nature),specified criteria attract global attention for protection of floral biodiversity across the world. The records of 71 plant species from the Chinese Altai Mountains attributed to the criterion A and the dark conifer forests of Chinese Altai Mountains satisfied the criterion C,which may help qualify to fulfill the national obligation of the Convention on Biological Diversity.  相似文献   

5.
人类活动对亚洲中部水环境安全的威胁   总被引:1,自引:0,他引:1  
主要依赖河流出山口的径流量维系山地-绿洲-荒漠间脆弱生态平衡的亚洲中部干旱区,其水分循环过程完全不同于湿润区。平原区不产生径流,地表水和地下水同源于山区,一个流域就是一个以地表水和地下水相互依赖的生态功能单元,其中河流是纽带,连接山区径流形成区与平原径流散失区或消耗区,以水分循环为主体,并与生物、生态系统紧密相联系,构成一个独特而又完整的內陆水分循环体系。自然要素的变化,特别是人类的参与或介入,改变了水分循环的规律,对亚洲中部干旱区水和环境的形成具有很大的威胁。用多年的观测数据来讨论人类活动的影响,并提出维系和保持干旱区水环境的建议。  相似文献   

6.
YAO Linlin 《干旱区科学》2022,14(5):521-536
Hydrothermal condition is mismatched in arid and semi-arid regions, particularly in Central Asia (including Kazakhstan, Kyrgyzstan, Tajikistan, Uzbekistan, and Turkmenistan), resulting many environmental limitations. In this study, we projected hydrothermal condition in Central Asia based on bias-corrected multi-model ensembles (MMEs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) under four Shared Socioeconomic Pathway and Representative Concentration Pathway (SSP-RCP) scenarios (SSP126 (SSP1-RCP2.6), SSP245 (SSP2-RCP4.5), SSP460 (SSP4-RCP6.0), and SSP585 (SSP5-RCP8.5)) during 2015-2100. The bias correction and spatial disaggregation, water-thermal product index, and sensitivity analysis were used in this study. The results showed that the hydrothermal condition is mismatched in the central and southern deserts, whereas the region of Pamir Mountains and Tianshan Mountains as well as the northern plains of Kazakhstan showed a matched hydrothermal condition. Compared with the historical period, the matched degree of hydrothermal condition improves during 2046-2075, but degenerates during 2015-2044 and 2076-2100. The change of hydrothermal condition is sensitive to precipitation in the northern regions and the maximum temperatures in the southern regions. The result suggests that the optimal scenario in Central Asia is SSP126 scenario, while SSP585 scenario brings further hydrothermal contradictions. This study provides scientific information for the development and sustainable utilization of hydrothermal resources in arid and semi-arid regions under climate change.  相似文献   

7.
基于CRU资料的中亚地区气候特征   总被引:4,自引:1,他引:3  
黄秋霞  赵勇  何清 《干旱区研究》2013,30(3):396-403
基于中亚地区1971-2000年的CRU资料,利用一元线性回归法,分析中亚地区30 a的气候变化特征。结果表明:土库曼斯坦和乌兹别克斯坦的沙漠地区是中亚最为干旱的地区,也是气温最高的地区。塔吉克斯坦和吉尔吉斯斯坦冬季和春季降水多,夏季和秋季降水少,气温变化幅度相对较小。哈萨克斯坦的降水呈现西多东少,且主要集中在夏季,气温变化幅度较大,且西暖东冷。中亚地区气温年较差较小。新疆与中亚五国的气候有明显差异,新疆降水主要集中在夏季的天山山区,气温增暖明显,最高和最低气温与中亚西部的变化趋势相反。  相似文献   

8.
新疆苔藓植物的研究现状与展望   总被引:8,自引:2,他引:8  
新疆苔藓植物系统,全面的研究起步较晚,到目前为止,主要研究仅限于苔藓植物区系,形态解剖学的研究,同国内其它地区的苔藓植物区系研究尚有较大的差距,目前已记录的新疆苔藓植物有55科、163属、419种,而且昆仑山和阿尔秦山 的区系研究还有待于进一步深入,尤其是在新疆苔藓植物生态学和多样性方面的研究仍处于空白状态,本文介绍了新疆苔藓植物研究的现状,存在的问题及对今后研究工作的展望。  相似文献   

9.
阿尔泰山位于中国、蒙古和苏联的交界处,分布着较完整的垂直地带性土壤。有关阿尔泰山山地土壤的垂直分布规律,已有报道。本试验研究土壤中铁、锰的形态分布特征及垂直地带性,其结果有助于了解阿尔泰山山地土壤的发生发展过程,为合理开发利用阿尔泰山山地土壤资源的途径提供科学依据。  相似文献   

10.
亚洲中部干旱区降水异常的大气环流特征   总被引:4,自引:1,他引:3  
亚洲中部干旱区(中亚五国和新疆)是地中海气候与东亚季风气候的过渡带,区域天气气候与欧洲和东亚季风区迥异,具有世界独特的干旱区生态气候模式,即山地森林草原—盆地平原绿洲寓于荒漠,并与荒漠共存的生态气候地理格局。天气气候受高、中、低纬环流的共同影响,区域内部差异很大,形成多背景、多因子、多尺度影响下的极具代表性的气象灾害孕育和成灾环境。亚洲中部干旱区光热资源丰富、蒸发量大、气温变化剧烈,而降水稀少,且分布极不均匀,天山山脉的中西段是降水高值区,近百年来整体表现为增暖、增湿趋势。高、中、低纬系统和中亚低值系统的活跃,共同造就了中亚东部(新疆)降水年代际和年际异常增多。西亚西风急流是联系高、中、低纬环流系统相互作用的纽带。目前,该区域气象综合观测网建设不能满足应对气候变化的需求,同时对区域特有的环流系统、灾害性天气气候发生规律和形成机理、高分辨率区域数值模式、地—气相互作用对区域天气气候的影响、气候变化预估等方面的研究也较薄弱,开展上述研究对"丝绸之路经济带"可持续发展具有重要科学意义和战略价值。  相似文献   

11.
提取蓼科木蓼属(Atraphaxis)、沙拐枣属(Calligonum)、翅果蓼属(Parapteropyrum)和双翅果蓼属(Pteropy-rum)蓼科4属植物的总DNA,通过聚合酶链式反应(PCR),扩增其叶绿体基因片段atpB-rbcL。atpB-rbcL基因间区长约900 bp,已被广泛应用于属间系统发育关系...  相似文献   

12.
The Aral Sea Basin in Central Asia is an important geographical environment unit in the center of Eurasia.It is of great significance to the ecological protection and sustainable development of Central Asia to carry out dynamic monitoring and effective evaluation of the eco-environmental quality of the Aral Sea Basin.In this study,the arid remote sensing ecological index(ARSEI)for large-scale arid areas was developed,which coupled the information of the greenness index,the salinity index,the humidity index,the heat index,and the land degradation index of arid areas.The ARSEI was used to monitor and evaluate the eco-environmental quality of the Aral Sea Basin from 2000 to 2019.The results show that the greenness index,the humidity index and the land degradation index had a positive impact on the quality of the ecological environment in the Aral Sea Basin,while the salinity index and the heat index exerted a negative impact on the quality of the ecological environment.The eco-environmental quality of the Aral Sea Basin demonstrated a trend of initial improvement,followed by deterioration,and finally further improvement.The spatial variation of these changes was significant.From 2000 to 2019,grassland and wasteland(saline alkali land and sandy land)in the central and western parts of the basin had the worst ecological environment quality.The areas with poor ecological environment quality are mainly distributed in rivers,wetlands,and cultivated land around lakes.During the period from 2000 to 2019,except for the surrounding areas of the Aral Sea,the ecological environment quality in other areas of the Aral Sea Basin has been improved in general.The correlation coefficients between the change in the eco-environmental quality and the heat index and between the change in the eco-environmental quality and the humidity index were–0.593 and 0.524,respectively.Climate conditions and human activities have led to different combinations of heat and humidity changes in the eco-environmental quality of the Aral Sea Basin.However,human activities had a greater impact.The ARSEI can quantitatively and intuitively reflect the scale and causes of large-scale and long-time period changes of the eco-environmental quality in arid areas;it is very suitable for the study of the eco-environmental quality in arid areas.  相似文献   

13.
The countries of Central Asia are collectively known as the five "-stans": Uzbekistan, Kyrgyzstan, Turkmenistan, Tajikistan and Kazakhstan. In recent times, the Central Asian region has been affected by the shrinkage of the Aral Sea, widespread desertification, soil salinization, biodiversity loss, frequent sand storms, and many other ecological disasters. This paper is a review article based upon the collection, identification and collation of previous studies of environmental changes and regional developments in Central Asia in the past 30 years. Most recent studies have reached a consensus that the temperature rise in Central Asia is occurring faster than the global average. This warming trend will not only result in a higher evaporation in the basin oases, but also to a significant retreat of glaciers in the mountainous areas. Water is the key to sustainable development in the arid and semi-arid regions in Central Asia. The uneven distribution, over consumption, and pollution of water resources in Central Asia have caused severe water supply problems, which have been affecting regional harmony and development for the past 30 years. The widespread and significant land use changes in the 1990 s could be used to improve our understanding of natural variability and human interaction in the region. There has been a positive trend of trans-border cooperation among the Central Asian countries in recent years. International attention has grown and research projects have been initiated to provide water and ecosystem protection in Central Asia. However, the agreements that have been reached might not be able to deliver practical action in time to prevent severe ecological disasters. Water management should be based on hydrographic borders and ministries should be able to make timely decisions without political intervention. Fully integrated management of water resources, land use and industrial development is essential in Central Asia. The ecological crisis should provide sufficient motivation to reach a consensus on unified water management throughout the region.  相似文献   

14.
阿尔泰山西北部垂直带谱中的土壤有机氮素,同土壤腐殖质一样表现为非连续性的特征转化系列。在干旱气候带,土壤的全氮量随海拔升高到黑钙土增加至10倍。土壤中酸不溶态氮相对含量也持续增加,而氨基酸和氨基糖态氮含量下降。胡敏酸中酸不溶态氮和氨基酸态氮也表现出类似的变化趋势。冷一湿气候带中土壤胡敏酸的未鉴定态氮相对含量明显地多于干旱气候带,而干旱气候带中土壤胡敏酸的酸不溶态氮量显著地高于冷—湿气候带。土壤和其胡敏酸中氮素形态分布,与垂直带谱中土壤的腐殖质化过程紧密相关,随腐殖质化度的增加,酸不溶态氮相对含量提高,而氨基酸态氮和氨基糖态氮量下降。胡敏酸中氨基糖态氮含量甚微。  相似文献   

15.
亚洲中部干旱区的湖泊   总被引:20,自引:8,他引:12  
采用系统论的观点,对亚洲中部的干旱区湖泊(包括咸海、巴尔喀什湖、博斯腾湖、艾比湖、玛纳斯湖、艾丁湖与罗布泊等)的水分循环与其他物质循环进行综合研究,其结果不仅丰富了生态循环的理论,而且深刻地揭示了干旱区湖泊与湿润区湖泊截然不同的特征;表现出水分循环的独特性、形态测量学的复杂性、风生湖流的奇特性与泥沙运行的规律性以及内陆湖水化学特征和别具一格的水生态循环系统等。干旱区湖泊作为陆地水圈的组成部分,他是一个完整的生态系统。他由湖泊中的生物和水两大亚系统组成,相互作用而又相互联系。尽管大陆性气候严酷和强烈,风生湖流强劲(有时还多亏他的作用),蒸发量大,但内陆湖能生存数千年,即在现代时间尺度上是无IL尽的。  相似文献   

16.
YU Yang 《干旱区科学》2021,13(9):881-890
Central Asia is located in the hinterland of Eurasia, comprising Kazakhstan, Uzbekistan, Kyrgyzstan, Turkmenistan, and Tajikistan; over 93.00% of the total area is dryland. Temperature rise and human activities have severe impacts on the fragile ecosystems. Since the 1970s, nearly half the great lakes in Central Asia have shrunk and rivers are drying rapidly owing to climate changes and human activities. Water shortage and ecological crisis have attracted extensive international attention. In general, ecosystem services in Central Asia are declining, particularly with respect to biodiversity, water, and soil conservation. Furthermore, the annual average temperature and annual precipitation in Central Asia increased by 0.30°C/decade and 6.9 mm/decade in recent decades, respectively. Temperature rise significantly affected glacier retreat in the Tianshan Mountains and Pamir Mountains, which may intensify water shortage in the 21st century. The increase in precipitation cannot counterbalance the aggravation of water shortage caused by the temperature rise and human activities in Central Asia. The population of Central Asia is growing gradually, and its economy is increasing steadily. Moreover, the agricultural land has not been expended in the last two decades. Thus, water and ecological crises, such as the Aral Sea shrinkage in the 21st century, cannot be attributed to agriculture extension any longer. Unbalanced regional development and water interception/transfer have led to the irrational exploitation of water resources in some watersheds, inducing downstream water shortage and ecological degradation. In addition, accelerated industrialization and urbanization have intensified this process. Therefore, all Central Asian countries must urgently reach a consensus and adopt common measures for water and ecological protection.  相似文献   

17.
WANG Wanrui 《干旱区科学》2021,13(10):977-994
Intense human activities in arid areas have great impacts on groundwater hydrochemical cycling by causing groundwater salinization. The spatiotemporal distributions of groundwater hydrochemistry are crucial for studying groundwater salt migration, and also vital to understand hydrological and hydrogeochemical processes of groundwater in arid inland oasis areas. However, due to constraints posed by the paucity of observation data and intense human activities, these processes are not well known in the dried-up river oases of arid areas. Here, we examined spatiotemporal variations and evolution of groundwater hydrochemistry using data from 199 water samples collected in the Wei-Ku Oasis, a typical arid inland oasis in Tarim Basin of Central Asia. As findings, groundwater hydrochemistry showed a spatiotemporal dynamic, while its spatial distribution was complex. TDS and δ18O of river water in the upstream increased from west to east, whereas ion concentrations of shallow groundwater increased from northwest to southeast. Higher TDS was detected in spring for shallow groundwater and in summer for middle groundwater. Pronounced spatiotemporal heterogeneity demonstrated the impacts of geogenic, climatic, and anthropogenic conditions. For that, hydrochemical evolution of phreatic groundwater was primarily controlled by rock dominance and evaporation-crystallization process. Agricultural irrigation and drainage, land cover change, and groundwater extraction reshaped the spatiotemporal patterns of groundwater hydrochemistry. Groundwater overexploitation altered the leaking direction between the aquifers, causing the interaction between saltwater and freshwater and the deterioration of groundwater environment. These findings could provide an insight into groundwater salt migration under human activities, and hence be significant in groundwater quality management in arid inland oasis areas.  相似文献   

18.
在综述阿尔泰山北部过去2 000 a气候变化研究成果的基础上,归纳了文献中所包含气候信息的地理一致性。就气温而言,基于阿尔泰山北部湖芯、树轮和冰芯重建的气温序列真实记录了北半球的重要气候事件,包括罗马最适宜期(0-400年)、黑暗时代冷期(400-600年)、中世纪暖期(800-1200年)、小冰期(1400-1860年)和现代暖期(自1860年以来)。由太阳活动主控的太阳辐射变化是过去2 000 a来阿尔泰山北部气温变化的主导因素,过去150 a来大气CO2的增加是现代暖期(自1860年以来)升温的主导因素。就降水而言,阿尔泰山北部过去2 000 a的降水变化趋势显示,高降水时段出现在0-450年、600-800年、1050-1300年、1650-1860年,低降水时段出现在450-600年、800-1050年、1300-1650年、1860-2000年。此外,阿尔泰山北部过去2 000 a来气温和降水的组合并不支持所谓的"暖干-冷湿"水热配置模式。  相似文献   

19.
亚洲中部干旱区湖泊的地域分异性研究   总被引:2,自引:0,他引:2  
湖泊是干旱区气候与环境变化的敏感指示器,了解干旱区湖泊的空间分布和变化特征,有利于正确分析和评估气候变化和人类活动对干旱区水资源的影响。采用2010年的Landsat 遥感数据资料,对新疆、中亚五国及其毗邻高山地区的湖泊制图,并分析该区域内湖泊的数量、面积的时空分布特征。研究表明:① 2010年研究区域内大于0.01 km2以上的湖泊总数为30 952个,总面积为496 674.35 km2,其中哈萨克斯坦北部、阿尔泰山地区和昆仑山南麓是湖泊富集的地区。② 湖泊数量与湖泊面积呈幂指数关系,湖泊面积每升高一个10的量级,该量级内的湖泊数量下降4~6倍,湖泊面积增加1~2倍,与全球的湖泊分布相比,属于湖泊分布相对稀少的地区。③ 湖泊数量在纬度带的空间分布相对均一,大型湖泊集中分布在41°~44°、46°和48°~50°的纬度带上;低海拔地区的湖泊数量多,面积大,高海拔地区湖泊数量多,面积小;山区、河谷湿地和哈萨克斯坦北部草原湖泊数量多;荒漠区湖泊分布稀少。④近20 a来,高山地区湖泊与平原地区湖泊呈相反的变化模式,高山地区湖泊处于稳定或快速扩张态势,而平原地区的湖泊剧烈萎缩。  相似文献   

20.
This study examines the hypothesis that soil respiration can always be interpreted purely in terms of biotic processes, neglecting the contribution of abiotic exchange to CO2 fluxes in alkaline soils of arid areas that characterize 5% of the Earth’s total land surface. Analyses on flux data collected from previous studies suggested reconciling soil respiration as organic(root/microbial respiration) and inorganic(abiotic CO2 exchange) respiration, whose contributions in the total CO2 flux were determined by soil alkaline content. On the basis of utilizing meteorological and soil data collected from the Xinjiang and Central Asia Scientific Data Sharing Platform, an incorporated model indicated that inorganic respiration represents almost half of the total CO2 flux. Neglecting the abiotic module may result in overestimates of soil respiration in arid alkaline lands, which partly explains the long-sought "missing carbon sink".  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号