首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The differentiation of preadipocytes into adipose tissues is tightly regulated by various factors including microRNAs and cytokines. This article aims to study the effect of miR‐330‐5p on expression of BCAT2 in ovine preadipocytes. Ovine preadipocytes were isolated, and we found that the miR‐330‐5p expression decreased gradually during the early differentiation of ovine preadipocytes, while BCAT2 expression increased. BCAT2 was identified as a direct target of miR‐330‐5p, ectopic expression of miR‐330‐5p could change the expression of both BCAT2 mRNA and protein. Silencing BCAT2 had the same inhibition effects as overexpressing miR‐330‐5p on the preadipocyte differentiation, but overexpressing BCAT2 had the converse effects. Taken together, we demonstrated that miR‐330‐5p is a negative regulator of differentiation by targeting BCAT2, and clarified the role of BCAT2 and miR‐330‐5p during preadipocyte differentiation.  相似文献   

2.
3.
According to our previous studies, bta‐miR‐152, PRKAA1 and UCP3 are differentially expressed in mammary gland tissues of high milk fat and low milk fat cows, and the trend in bta‐miR‐152 expression is opposite from those of PRKAA1 and UCP3. To further identify the function and regulatory mechanism of bta‐miR‐152 in milk fat metabolism, we investigated the effect of bta‐miR‐152 on cellular triglyceride content in bovine mammary epithelial cells cultured in vitro, on the basis of bta‐miR‐152 overexpression and inhibition assays. The target genes of bta‐miR‐152 were identified through qPCR, Western blotting and dual luciferase reporter gene detection. Compared with that in the control group, the expression of UCP3 was significantly lower in the bta‐miR‐152 mimic group, the expression of PRKAA1 was decreased, and the intracellular TAG content was significantly increased. After transfection with bta‐miR‐152 inhibitor, the expression of UCP3 increased significantly, and the expression of PRKAA1 decreased, but the difference was not significant; in addition, the intracellular TAG content decreased significantly. Therefore, we concluded that bta‐miR‐152 affects the intracellular TAG content by targeting UCP3.  相似文献   

4.
A large number of microRNAs (miRNAs) have been detected from porcine testicular tissues thanks to the development of high‐throughput sequencing technology. However, the regulatory roles of most identified miRNAs in swine testicular development or spermatogenesis are poorly understood. In our previous study, ULK2 (uncoordinated‐51‐like kinase 2) was predicted as a target gene of miR‐26a. In this study, we aimed to investigate the role of miR‐26a in swine Sertoli cell autophagy. The relative expression of miR‐26a and ULK2 levels has a significant negative correlation (R2 = .5964,  .01) in nine developmental stages of swine testicular tissue. Dual‐luciferase reporter assay results show that miR‐26a directly targets the 3′UTR of the ULK2 gene (position 618–624). In addition, both the mRNA and protein expression of ULK2 were downregulated by miR‐26a in swine Sertoli cells. These results indicate that miR‐26a targets the ULK2 gene and downregulates its expression in swine Sertoli cells. Based on the expression of marker genes (LC3, p62 and Beclin‐1), overexpression of miR‐26a or knock‐down of ULK2 inhibits swine Sertoli cell autophagy. Taken together, these findings demonstrate that miR‐26a suppresses autophagy in swine Sertoli cells by targeting ULK2.  相似文献   

5.
Apoptosis of granulosa cells affects follicular atresia and reproduction and is regulated by miRNAs and the expression of certain genes. For the present study, we investigated the regulatory relationship between microRNA‐222 (miR‐222) and THBS1 in porcine follicular granulosa cells (pGCs) and its effects on apoptosis to provide empirical data for developing methods to improve pig fecundity. Results revealed that miR‐222 promotes the proliferation of pGCs. MiRNA mimics and luciferase reporter assays revealed that miR‐222 functions as an anti‐apoptotic factor in pGCs. MiR‐222 mimics in pGCs result in the upregulation of the anti‐apoptotic BCL‐2 gene, down‐regulation of the proapoptotic caspase‐3 gene, and inhibition of apoptosis. MiR‐222 inhibitors reduced BCL‐2 and had no significant effect on caspase‐3. MiR‐222 mimics promoted estrogen levels. Inhibition of THBS1 inhibited pGC apoptosis. Transfection of THBS1‐siRNA reduced the proapoptotic BAX gene. MiR‐222 can directly target the 3′‐untranslated region of the THBS1 gene. MiR‐222 mimics suppressed THBS1 mRNA and proteins, but these were upregulated by the miR‐222 inhibitor. Transfection of THBS1‐siRNA resulted in the inhibition of the miR‐222 inhibitor, which suggests that miR‐222 inhibits pGC apoptosis by targeting THBS1. These findings suggest that miR‐222 and THBS1 play important roles in follicular atresia, ovarian development, and female reproduction.  相似文献   

6.
Dairy cow mastitis is a detrimental factor in milk quality and food safety. Mastitis generally refers to inflammation caused by infection by pathogenic microorganisms. Our studies in recent years have revealed the role of miRNA regulation in Staphylococcus aureus‐induced mastitis. In the present study, we overexpressed and suppressed miR‐145 to investigate the function of miR‐145 in Mac‐T cells. Flow cytometry, ELISA and EdU staining were used to detect changes in the secretion of several Mac‐T cytokines and in cell proliferation. We found that overexpression of miR‐145 in Mac‐T cells significantly reduced the secretion of IL‐12 and TNF‐α, but increased the secretion of IFN‐γ; the proliferation of bovine mammary epithelial cells was also inhibited. Using quantitative real‐time PCR (qRT‐PCR), Western blotting and luciferase multiplex verification techniques, we found that miR‐145 targeted and regulated FSCN1. Knock‐down of FSCN1 significantly increased the secretion of IL‐12, while the secretion of TNF‐α was significantly downregulated in Mac‐T cells. Upon S. aureus infection of mammary gland tissue, the body initiated inflammatory responses; Bta‐miR‐145 expression was downregulated, which reduced the inhibitory effect on the FSCN1 gene; and upregulation of FSCN1 expression promoted mammary epithelial cell proliferation to allow the recovery of damaged tissue. The results of the present study will aid in understanding the immune mechanism opposing S. aureus infection in dairy cows and will provide a laboratory research basis for the prevention and treatment of mastitis.  相似文献   

7.
8.
9.
This study investigated the effect of repeated acute restraint stress and high‐fat diet (HFD) on intestinal expression of nutrient transporters, concomitant to intestinal inflammation. The ability of adenosine to reverse any change was examined. Six‐week‐old male Sprague Dawley rats were divided into eight groups: control or non‐stressed (C), rats exposed to restraint stress for 6 h per day for 14 days (S), control rats fed with HFD (CHF) and restraint‐stressed rats fed with HFD (SHF); four additional groups received the same treatments and were also given 50 mg/l adenosine dissolved in drinking water. Fasting blood glucose, plasma insulin, adiponectin and corticosterone were measured. Intestinal expression of SLC5A1, SLC2A2, NPC1L1 and TNF‐α was analysed. Histological evaluation was conducted to observe for morphological and anatomical changes in the intestinal tissues. Results showed that HFD feeding increased glucose and insulin levels, and repeated acute restraint stress raised the corticosterone level by 22%. Exposure to both stress and HFD caused a further increase in corticosterone to 41%, while decreasing plasma adiponectin level. Restraint stress altered intestinal expression of SLC5A1, SLC2A2 and NPC1L1. These changes were enhanced in SHF rats. Adenosine was found to alleviate HFD‐induced increase in glucose and insulin levels, suppress elevation of corticosterone in S rats and improve the altered nutrient transporters expression profiles. It also prevented upregulation of TNF‐α in the intestine of SHF rats. In summary, a combination of stress and HFD exaggerated stress‐ and HFD‐induced pathophysiological changes in the intestine, and biochemical parameters related to obesity. Adenosine attenuated the elevation of corticosterone and altered expression of SLC5A1, NPC1L1 and TNF‐α.  相似文献   

10.
11.
Mastitis, the most common and expensive disease in dairy cows, implies significant losses in the dairy industry worldwide. Many efforts have been made to improve genetic mastitis resistance in dairy populations, but low heritability of this trait made this process not as effective as desired. The purpose of this study was to identify genomic regions explaining genetic variation of somatic cell count using copy number variations (CNVs) as markers in the Holstein population, genotyped with the Illumina BovineHD BeadChip. We found 24 and 47 copy number variation regions significantly associated with estimated breeding values for somatic cell score (SCS_EBVs) using SVS 8.3.1 and PennCNV‐CNVRuler software, respectively. The association analysis performed with these two software allowed the identification of 18 candidate genes (TERT, NOTCH1, SLC6A3, CLPTM1L, PPARα, BCL‐2, ABO, VAV2, CACNA1S, TRAF2, RELA, ELF3, DBH, CDK5, NF2, FASN, EWSR1 and MAP3K11) that result classified in the same functional cluster. These genes are also part of two gene networks, whose genes share the ‘stress’, ‘cell death’, ‘inflammation’ and ‘immune response’ GO terms. Combining CNV detection/association analysis based on two different algorithms helps towards a more complete identification of genes linked to phenotypic variation of the somatic cell count.  相似文献   

12.
The aim of this study was to explore the expression difference of miRNAs and mRNAs between the follicular phase (FP) and luteal phase (LP) in porcine ovaries and provide a theoretical basis for the research on mammalian reproductive regulation. RNA‐Seq and miRNA‐Seq were used to identify differentially expressed genes (DEGs) and miRNAs (DEMs) between the FP and LP in ovaries of six sows (3‐year‐old Yorkshire pigs with similar weights and same parities). Bioinformatic analysis was used to screen potential genes and miRNAs related to porcine ovarian function. Real‐time qualitative PCR was used to validate the sequencing results. RNA‐Seq results showed that 3,078 genes were up‐regulated, and 1,444 genes were down‐regulated in the LP compared with the FP, and DEGs were significantly enriched in 242 Gene Ontology (GO) terms and 33 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. miRNA‐Seq identified 112 DEMs, of which 25 were up‐regulated and 87 were down‐regulated in the LP compared with the FP. We obtained 186 intersection genes (IGs) between the 4,522 DEGs and 2,444 target genes predicted from the 112 DEMs. After constructing a miRNA‐gene‐pathway network, we identified key miRNAs and genes including miR‐17‐3p, miR‐214, miR‐221‐5p, miR‐125b, FGF1, YWHAG, YWHAZ, FDFT1 and DHCR24, which are enriched in Hippo and PI3K‐Akt signalling pathways, and various metabolic pathways. These results indicate that these key genes and miRNAs may play important roles in the developmental transition from FP to LP in porcine ovaries and represent candidate targets for further study.  相似文献   

13.
Sulphur‐induced polioencephalomalacia (sPEM), a neurological disorder affecting ruminants, is frequently associated with the consumption of high‐sulphur (S) water and subsequent poor performance. Currently, there is no economical method for S removal from surface water sources, and alternative water sources are typically neither readily available nor cost‐effective. Determination of genes differentially expressed in response to high‐S water consumption may provide a better understanding of the physiology corresponding to high dietary S and ultimately lead to the development of treatment and prevention strategies. The objective of this study was to determine changes in gene expression in the liver, an organ important for S metabolism, of fibre‐fed steers consuming high‐S water. For this study, liver tissues were collected on the final day of a trial from yearling steers randomly assigned to low‐S water control (566 mg/kg SO4; n = 24), high‐S water (3651 mg/kg SO4; n = 24) or high‐S water plus clinoptilolite supplemented at either 2.5% (n = 24) or 5.0% (n = 24) of diet dry matter (DM). Microarray analyses on randomly selected healthy low‐S control (n = 4) and high‐S (n = 4; no clinoptilolite) steers using the Affymetrix GeneChip Bovine Genome Array revealed 488 genes upregulated (p < 0.05) and 154 genes downregulated (p < 0.05) in response to the high‐ vs. low‐S water consumption. Real‐time RT‐PCR confirmed the upregulation (p < 0.10) of seven genes involved in inflammatory response and immune functions. Changes in such genes suggest that ruminant animals administered high‐S water may be undergoing an inflammation or immune response, even if signs of sPEM or compromised health are not readily observed. Further study of these, and other affected genes, may deliver new insights into the physiology underlying the response to high dietary S, ultimately leading to the development of treatments for high S–affected ruminant livestock.  相似文献   

14.
15.
The objective of the present study was to compare hepatic fatty acid deposition, plasma lipid level and expression of cholesterol homeostasis controlling genes in the liver of rats (Wistar Albino; n = 32) and pigs (Large White × Landrace; n = 32) randomly assigned into two groups of 16 animals each and fed 10 weeks the diet with either 2.5% of fish oil (F; source of eicosapentaenoic and docosahexaenoic acid, EPA+DHA) or 2.5% of palm oil (P; high content of saturated fatty acids; control). F‐rats deposited in the liver three times less EPA, but 1.3 times more DHA than F‐pigs (p < 0.05). Dietary fish oil relative to palm oil increased PPARα and SREBP‐2 gene expression much strongly (p < 0.01) in the pig liver in comparison with the rat liver, but expression of Insig‐1 and Hmgcr genes in the liver of the F‐pigs relative to the expression of these genes in the liver of the P‐pigs was substantially lower (p < 0.01 and p < 0.05 respectively) as compared to rats. When plasma lipid concentration in the F‐animals was expressed as a ratio of the plasma concentration in the P‐counterparts, dietary fish oil decreased HDL cholesterol less (p < 0.01), but LDL cholesterol and triacylglycerols more (p < 0.05 and p < 0.001 respectively) in rats than in pigs: more favourable effect of fish oil on rat plasma lipids in comparison with pigs can therefore be concluded. Concentration of total cholesterol and both its fractions in the rat plasma was negatively correlated (p < 0.01) with hepatic DHA, but also with unsaturated myristic and palmitic acid respectively. It has been concluded that regarding the similarity of the plasma lipid levels to humans, porcine model can be considered superior; however, using this model, dietary fish oil at the tested amount (2.5%) was not able to improve plasma lipid markers in comparison with saturated palm oil.  相似文献   

16.
Since companion dogs have the same living environment as humans, they are a good animal model for the study of human diseases; this is especially true of canine spontaneous mammary tumours models. A better understanding of the natural history and molecular mechanisms of canine mammary tumour is of great significance in comparative medicine. Here, we collected canine mammary tumour cases and then assayed the clinical cases by pathological examination and classification by HE staining and IHC. miRNA‐497 family members (miR‐497, miR‐16, miR‐195 and miR‐15) were positively correlated with the breast cancer marker genes p63 and PTEN. Modulation of the expression of miR‐497 in the canine mammary tumour cell lines CMT1211 and CMT 7364 induced apoptosis and inhibited cell proliferation. Mechanistically, IRAK2 was shown to be a functional target of miR‐497 that affects the characteristics of cancer cells by inhibiting the activity of the NF‐κB pathway. Overall, our work reveals the miR‐497/IRAK2/NF‐κB axis as a vital mechanism of canine mammary tumour progression and suggests this axis as a target in breast cancer.  相似文献   

17.
Pre‐implantation embryo metabolism demonstrates distinctive characteristics associated with the development potential of embryos. We aim to determine if metabolic differences correlate with embryo morphology. In this study, gas chromatography – mass spectroscopy (GC‐MS)‐based metabolomics was used to assess the culture media of goat cloned embryos collected from high‐quality (HQ) and low‐quality (LQ) groups based on morphology. Expression levels of amino acid transport genes were further examined by quantitative real‐time PCR. Results showed that the HQ group presented higher percentages of blastocysts compared with the LQ counterparts (< 0.05). Metabolic differences were also present between HQ and LQ groups. The culture media of the HQ group showed lower levels of valin, lysine, glutamine, mannose and acetol, and higher levels of glucose, phytosphingosine and phosphate than those of the LQ group. Additionally, expression levels of amino acid transport genes SLC1A5 and SLC3A2 were significantly lower in the HQ group than the LQ group (< 0.05, respectively). To our knowledge, this is the first report which uses GC‐MS to detect metabolic differences in goat cloned embryo culture media. The biochemical profiles may help to select the most in vitro viable embryos.  相似文献   

18.
This study examined the effects of O2 concentration (5% vs 20%) during in vitro maturation (IVM), fertilization (IVF) and culture (IVC) or supplementation of IVM and IVC media with cysteamine (50 and 100 μm , respectively; IVM, IVF and IVC carried out in 20% O2), on blastocyst rate and relative mRNA abundance of some apoptosis‐related genes measured by real‐time qPCR in immature and in vitro‐matured buffalo oocytes and in embryos at 2‐, 4‐, 8‐ to 16‐cell, morula and blastocyst stages. The blastocyst rate was significantly higher (p < 0.05) while the percentage of TUNEL‐positive cells was significantly lower (p < 0.05) under 5% O2 than that under 20% O2. The mRNA expression of anti‐apoptotic genes BCL‐2 and MCL‐1 was significantly higher (p < 0.05) and that of pro‐apoptotic genes BAX and BID was lower (p < 0.05) under 5% O2 than that under 20% O2 concentration at many embryonic stages. Following cysteamine supplementation, the blastocyst rate and the relative mRNA abundance of BCL‐XL and MCL‐1 was significantly higher (p < 0.05) and that of BAX but not BID was lower (p < 0.05) at many stages of embryonic development, although it did not affect the percentage of TUNEL positive cells in the blastocysts significantly. The mRNA expression pattern of these genes during embryonic development was different in 5% vs 20% O2 groups and in cysteamine supplemented vs controls. At the 8‐ to 16‐cell stage, where developmental block occurs in buffalo, the relative mRNA abundance of BCL‐2 and MCL‐1 was highest under 5% O2 concentration and that of BAX and BID was highest (p < 0.05) under 20% O2 concentration. These results suggest that one of the mechanisms through which beneficial effects of low O2 concentration and cysteamine supplementation are mediated during in vitro embryo production is through an increase in the expression of anti‐apoptotic and a decrease in the expression of pro‐apoptotic genes.  相似文献   

19.
Progesterone (P4) plays a key role in the establishment and maintenance of pregnancy in most mammals. Unravelling the expression of progesterone‐regulated genes can expand the understanding of the embryonic mortality. Accordingly, we studied the relative mRNA expression of the P4‐regulated genes in the buffalo. Uteri were collected from the abattoir and categorized into nonpregnant late luteal phase, stage I (28–38th days of gestation) and stage II (48–56th days of gestation) of pregnancy (n = 6/group). After extraction of total RNA from the endometrial tissues, we carried out qRT‐PCR for determining the relative mRNA expression of the P4‐regulated genes using nonpregnant late luteal phase as calibrator group. The expression of LGALS3BP (essential for maternal recognition of pregnancy) gene was found to be significantly upregulated (p < 0.05), while MUC1 (important for embryo attachment) gene was downregulated in stage I and II of pregnancy. We observed no significant change in the expression of LGALS1, LGALS9 and CTSL genes. The SLC5A11 and SLC2A1 genes (involved in the transport of glucose to endometrium) in early pregnancy were upregulated in the pregnancy stage I (p < 0.05) relative to nonpregnant late luteal phase. The CST3 gene was significantly upregulated in pregnancy stage II (p < 0.01). These results provide molecular insights into the specific pathways involved in foeto‐maternal communication during early pregnancy in buffaloes.  相似文献   

20.
为了探究miR-425-5p对小鼠3T3-L1前体脂肪细胞增殖、分化的影响效应,本试验采用实时荧光定量PCR检测miR-425-5p组织和细胞表达水平;运用CCK8、EdU、油红染色、甘油三酯含量分析等分别检测miR-425-5p对前体脂肪细胞增殖、分化的影响;利用生物信息学软件和双荧光素酶报告试验分别预测、验证miR-425-5p调控前体脂肪细胞分化的靶基因。结果表明,miR-425-5p在肥胖小鼠脂肪组织中低表达,在前体脂肪细胞增殖、分化过程中动态表达;与阴性对照相比,过表达miR-425-5p可促进前体脂肪细胞增殖,抑制脂肪细胞分化标志基因(PPARγ、C/EBPα、FAS等)表达,减少脂滴和甘油三酯积累;抑制miR-425-5p表达可抑制前体脂肪细胞增殖,阻止前体脂肪细胞诱导分化。在前体脂肪细胞分化过程中,过表达或抑制miR-425-5p可分别抑制或促进IGF1基因表达;与阴性对照相比,过表达miR-425-5p可抑制IGF1基因3′-UTR荧光活性,而突变miR-425-5p种子序列与IGF1基因3′-UTR的绑定位点可解除该抑制效果。综上所述,miR-425-5p可促进3T3-L1前体脂肪细胞增殖,并可直接靶向IGF1负向调控其分化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号