首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
2.
Oocyte has been considered the major contributor for embryo thermo‐tolerance. However, it was shown that sperm factors can be transferred to the oocyte during fertilization, raising the question of whether the absence of such factors could interfere on embryo thermo‐tolerance. In this study, we used parthenogenesis to generate bovine embryos without spermatozoa in order to test whether the absence of sperm factors could influence their thermo‐sensitiveness at early stages. In vitro fertilized (IVF) and parthenogenetic (PA) embryos at 44 h post‐insemination/chemical activation were exposed to 38.5°C (control) or 41°C (heat shock) for 12 h and then developed for 48 h and up to blastocyst stage. Apoptosis index and expression of PRDX1, GLUT1, GLUT5 and IGF1r genes in blastocysts derived from heat‐shocked embryos were also evaluated. The heat shock decreased the blastocyst rate at day seven (p < 0.05) for IVF embryos and at day eight (p < 0.01) for both IVF and PA embryos. Total cell number was not affected by heat shock in IVF and PA blastocysts, but there was an increased proportion (p < 0.05) of apoptotic cells in heat‐shocked embryos when compared to controls. There was no interaction (p > 0.05) between method of activation (IVF and PA) and temperature (38.5°C or 41.5°C) for all developmental parameters evaluated. Expression of GLUT1 gene was downregulated (p < 0.05) by heat shock in both IVF and PA blastocyst whereas expression of GLUT5 and IGF1r genes was downregulated (p < 0.05) by heat shock in PA blastocysts. Those data show that the heat shock affects negatively the embryo development towards blastocysts stage, increases the apoptotic index and disturbed the expression of some genes in both IVF and PA embryos, indicating that the presence or absence of sperm factors does not influence the sensitivity of the bovine embryo to heat shock.  相似文献   

3.
Incomplete or aberrant reprogramming of nuclear genome is one of the major problems in somatic cell nuclear transfer. In this study, we studied the effect of histone deacetylase inhibitor m‐carboxycinnamic acid bishydroxamide (CBHA) on in vitro development of buffalo embryos produced by Hand‐made cloning. Cloned embryos were treated with CBHA (0, 5, 10, 20 or 50 μM) for 10 hr from the start of reconstruction till activation. At 10 μM, but not at other concentrations examined, CBHA increased (p < .05) the blastocyst rate (63.77 ± 3.97% vs 48.63 ± 3.55%) and reduced (p < .05) the apoptotic index of the cloned blastocysts (8.91 ± 1.94 vs 4.36 ± 1.08) compared to untreated controls, to levels similar to those in IVF blastocysts (4.78 ± 0.74). CBHA treatment, at all the concentrations examined, increased (p < .05) the global level of H3K9ac in cloned blastocysts than in untreated controls to that observed in IVF blastocysts. Treatment with CBHA (10 μM) decreased (p < .05) the global level of H3K27me3 in cloned blastocysts than in untreated controls but it was still higher (p < .05) than in IVF blastocysts. CBHA (10 μM) treatment increased (p < .05) the relative expression level of pluripotency‐related genes OCT‐4 and NANOG, and anti‐apoptotic gene BCL‐XL, and decreased (p < .05) that of pro‐apoptotic gene BAX than in untreated controls but did not affect the relative expression level of apoptosis‐related genes p53 and CASPASE3 and epigenetics‐related genes DNMT1, DNMT3a and HDAC1. These results suggest that treatment of cloned embryos with 10 μM CBHA improves the blastocyst rate, reduces the level of apoptosis and alters the epigenetic status and gene expression pattern.  相似文献   

4.
We investigated whether supplementing the medium used to transport bovine oocytes with different macromolecules [foetal calf serum (FCS) or bovine serum albumin (BSA)] or a mixture of antioxidants (cysteine, cysteamine and catalase) affects their nuclear and cytoplasmic maturation and thereby affects their subsequent embryonic development and cryotolerance. Oocytes were transported for 6 hr in a portable incubator and then subjected to standard in vitro maturation (IVM) for 18 hr. The oocytes in the control groups were cultured (standard IVM) for 24 hr in medium containing 10% FCS (Control FCS) or 10% FCS and the antioxidant mixture (Control FCS+Antiox). The intracellular concentrations of reactive oxygen species (ROS) at the end of IVM period were lower in the oocytes subjected to simulated transport in the presence of a macromolecular supplement or the antioxidant mixture than that of the control group (FCS: 0.62 and BSA: 0.66 vs. Control FCS: 1.00, p < .05; and Transp: 0.58 and Transp Antiox: 0.70 vs. Control FCS: 1.00, p < .05). After IVM, the mitochondrial membrane potentials of the transported oocytes were lower than those of the non‐transported oocytes (FCS: 0.41 and BSA: 0.57 vs. Control FCS: 1.00, p < .05; and Transp: 0.48 and Transp Antiox: 0.51 vs. Control FCS: 1.00 and Control Antiox: 0.84, p < .05). The blastocyst formation rates (36.9% average) and the re‐expansion rates of vitrified‐warmed blastocysts (53%, average) were unaffected (p > .05) by the treatments. In conclusion, supplementing the medium in which bovine oocytes are transported with antioxidants or different macromolecules did not affect their in vitro production of embryos or their cryotolerance.  相似文献   

5.
Oxidative stress inevitably occurs during oocyte maturation in vitro. α-lipoic acid (α-LA) has a strong antioxidant capacity, but the effect of α-LA on parthenogenetic activation of oocytes was rarely reported. This study aims to investigate the effect of supplementing α-LA to in vitro maturation medium on the subsequent developmental ability of goat parthenogenetic embryos during oocytes maturation. In the study, the goat cumulus-oocyte complex was divided into the experimental (with 25 μmol/L α-LA) and the control (without α-LA) groups. Oxidase expression was measured using RT-qPCR. After 18–22 hr of maturation, the oocytes were then parthenogenetic activated. The total antioxidant capacity of embryos was measured after 0, 24, 48, 72 and 96 hr of culture. Rates of oocyte maturation and the rates of development for parthenogenetic embryos in the α-LA group were significantly improved by 7.88% (p < .05) and 5.41% (p < .05) compared with those in the control group, respectively. After 24 hr, the difference in total antioxidant capacity was extremely significant in both groups. An evident decrease in the control group and a minor decrease in the α-LA group were observed (p < .01). The ratio of inner cell mass cells to the total cell number of blastocysts in the α-LA group increased compared with that in the control group (p < .05) on day 8. α-LA significantly promoted the expression of SOD and GPX4 of parthenogenetic blastocysts and maturated oocytes. α-LA (25 μmol/L) improved the maturation rate and the developmental competence of the parthenogenetic activation of oocytes, which might be mediated by maintaining the total antioxidant ability of oocytes during the culture period.  相似文献   

6.
Chlorogenic acid (CGA) is known to protect oocytes from oxidative stress. Here we investigated the effects of CGA on porcine oocyte maturation under heat stress and subsequent embryonic development after parthenogenetic activation. For in vitro maturation (IVM) at 41.0°C (hyperthermic condition), supplementation of the maturation medium with 50 μM CGA significantly improved the percentage of matured oocytes and reduced the rate of apoptosis relative to oocytes matured without CGA (p < .05). CGA treatment of oocytes during IVM under hyperthermia tended to increase (p < .1) percentage of blastocyst formation after parthenogenesis and significantly increased (p < .05) the total cell number per blastocyst relative to oocytes matured without CGA. For IVM at 38.5°C (isothermic condition), CGA significantly improved the rate of blastocyst development compared with oocytes matured without CGA (p < .05), but did not affect oocyte maturation, apoptosis rate or the number of cells per embryo. Omission of all antioxidants from the IVM medium significantly reduced the rate of oocyte maturation, but the rate was restored upon addition of CGA. These results demonstrate that CGA is a potent antioxidant that protects porcine oocytes from the negative effects of heat stress, thus reducing the frequency of apoptosis and improving the quality of embryos.  相似文献   

7.
The aim of this study was to examine whether a morphological approach is efficient for selecting high‐quality porcine embryos produced by in vitro fertilization (IVF) under high polyspermy conditions. Frozen‐thawed Meishan epididymal spermatozoa showing moderate and high polyspermy were subjected to IVF (1 × 105 sperms/ml). Under conditions of moderate polyspermy, 4‐cell embryos selected at 48 hr after IVF (single selection) and 8‐cell embryos selected at 79 hr after IVF from the collected 4‐cell embryos (double selection) showed high developmental competence. Likewise, 4‐ and 8‐cell embryos produced by IVF under high polyspermy conditions also showed high competence for development to blastocysts. However, blastocysts derived from high polyspermy conditions had significantly fewer cells than those produced under moderate polyspermy conditions. Furthermore, the frequency of nuclear and chromosomal abnormalities in 4‐ and 8‐cell embryos produced under conditions of high polyspermy was significantly (p < .05) higher in comparison to moderate polyspermy conditions. These findings suggest that although high polyspermy affects the frequency of nuclear and chromosomal anomalies in porcine IVF embryos, subsequent selection based on morphological features of 4‐ and 8‐cell embryos even under high polyspermy conditions, could be an alternative option for selecting porcine IVF embryos with high development ability.  相似文献   

8.
The objective of this study was to examine the effects of canthaxanthin (Cx) treatment during in vitro maturation (IVM) of porcine oocytes on embryonic development after parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT), on intracellular glutathione (GSH) and reactive oxygen species (ROS) levels in mature oocytes, and on gene expression in both PA‐ and SCNT‐derived blastocysts. To determine the optimal effective concentration of Cx, porcine oocytes were cultured in IVM medium supplemented with various concentrations (0, 20, 40 and 80 μM) of Cx for 22 hr. Compared to other groups, supplementation with 40 μM Cx significantly improved blastocyst formation rates after PA (< .05), but no significant differences were observed among groups in total blastocyst cell numbers. Subsequently, oocytes were cultured in IVM medium supplemented with or without 40 μM Cx. Oocytes treated with 40 μM Cx showed significantly increased cleavage and blastocyst formation rates after SCNT compared to the control group (< .05). Moreover, significantly increased intracellular GSH and reduced ROS levels were observed in the Cx‐treated group (< .05). In addition, both PA‐ and SCNT‐derived blastocysts from the 40 μM Cx‐treated group showed significantly increased mRNA expression of Bcl2 and Oct4 and decreased Caspase3 expression level (< .05), when compared with the control group. PA‐derived blastocysts from the 40 μM Cx‐treated group also exhibited significantly decreased expression of Bax (< .05). Our results demonstrated that treatment with 40 μM Cx during IVM improves the developmental competence of PA and SCNT embryos. Improvement of embryo development by Cx is most likely due to increased intracellular GSH synthesis, which reduces ROS levels in oocytes, and it may also positively regulate apoptosis‐ and development‐related genes.  相似文献   

9.
We investigated whether high‐quality in vitro matured (IVM) oocytes can be distinguished from poor ones based on the morphological changes after treatment with hyperosmotic medium containing 0.2 mol/L sucrose in pigs. We hypothesize that IVM oocytes maintaining round shape have higher quality than mis‐shapened oocytes following dehydration. Oocyte quality was verified by determining embryonic developmental competence using in vitro fertilization, nuclear transfer and parthenogenetic activation. In all cases, the round oocytes had greater (p < .05) developmental competence than that of mis‐shapened oocytes in terms of blastocyst rate and total cell number in blastocysts obtained after 6 days of in vitro culture. We also confirm that round aged oocytes are higher in quality than mis‐shapened aged oocytes. In an attempt to find out why high‐quality oocytes maintain a round shape whereas poorer oocytes become mis‐shapened following sucrose treatment, we examined the arrangement of actin microfilaments and microtubules. Abnormal organization of these cytoskeletal components was higher (< .05) in mis‐shapened oocytes compared to round oocytes after 52 hr of IVM. In conclusion, sucrose treatment helps selection of high‐quality oocytes, including aged oocytes, in pigs. Abnormal cytoskeleton arrangements partly explain for low developmental competence of mis‐shapened oocytes.  相似文献   

10.
The objective of this study was to find out the impact of L‐carnitine (10 mM) on developmental regulation of preimplantation sheep embryos cultured in vitro when supplemented in maturation medium and post‐fertilization medium separately. Subsequent objective was to observe the L‐carnitine‐mediated alteration in expression of apoptotic genes (Bcl2, Bax, Casp3 and PCNA) in sheep oocytes and developing embryos produced in vitro. Oocytes matured with L‐carnitine showed significantly (p < .05) higher cleavage (67.23% vs 43.12%), morula (47.65% vs 28.58%) and blastocysts (32.12% vs 13.24%) percentage as compared to presumptive zygotes cultured with L‐carnitine during post‐fertilization period. So it is suggested to use L‐carnitine during maturation than post‐fertilization period. Antiapoptotic and proliferative effects of L‐carnitine were confirmed by inducing culture medium with actinomycin D (apoptotic agent) and TNFα (antiproliferative agent), respectively, with and without L‐carnitine. Oocytes and embryos cultured with actinomycin D and TNFα showed developmental arrest with significant (p < .05) decrease in morula and blastocysts percentage but s upplementation of L‐carnitine to actinomycin D and TNFα induced culture medium showed similar result as that of control . L‐carnitine supplementation during IVM significantly (p < .05) upregulated the expression of Bcl2 and PCNA genes in majority of the developmental stages. Although L‐carnitine upregulated the expression of Bax in initial developmental stages but downregulated at latter part, whereas the expression of Casp3 was upregulated upto 16‐cell stage but after that there was no difference in expression. Expression of GAPDH gene was not affected by L‐carnitine supplementation. In conclusion, L‐carnitine acted as an antiapoptotic and proliferative compound during embryo development and supplementation of L‐carnitine during IVM altered the expression of apoptotic genes in the developmental stages of embryos.  相似文献   

11.
The quality of porcine blastocysts produced in vitro is poor in comparison with those that develop in vivo. We examined the quality of in vitro‐matured and fertilized (IVM/IVF) oocytes, their abilities to develop to blastocysts under in vivo and in vitro conditions, and the potential of the embryos to develop to term after transfer. IVM/IVF oocytes were either transferred and the embryos recovered on Days 5 and 6 (100% and 87.5%, respectively) (‘ET‐vivo’ embryos), or cultured in vitro for 5 or 6 days (‘IVC’ embryos). The proportion of blastocysts differed significantly between the two groups on Day 5 (20.6% and 8.0%, respectively), but not on Day 6 (23.8% and 21.2%, respectively). The mean number of cells in ET‐vivo blastocysts on Days 5 or 6 was significantly higher (72.8 and 78.7, respectively) than that in IVC blastocysts (22.1 and 39.7, respectively). When IVM/IVF oocytes and IVC blastocysts on Day 6 were transferred, all (three and three, respectively) developed to piglets (16 and 16, respectively), without any difference in the rates of development to term (2.1% and 2.6%, respectively). These data suggest that, although blastocyst production differs between the two culture conditions, IVM/IVF oocytes possess the same ability to develop to term.  相似文献   

12.
In this study, we examined the effects of superstimulation using follicle‐stimulating hormone (FSH) followed by gonadotropin‐releasing hormone (GnRH) on buffalo embryo production by ultrasound‐guided ovum pick‐up (OPU) and in vitro fertilization (IVF). Nine Murrah buffaloes were subjected to OPU‐IVF without superstimulation (control). The morphologies of the oocytes collected were evaluated, and oocytes were then submitted to in vitro maturation (IVM). Two days after OPU, same nine buffaloes were treated with twice‐daily injections of FSH for 3 days for superstimulation followed by a GnRH injection. Oocytes were collected by OPU 23–24 hr after the GnRH injection and submitted to IVM (the superstimulated group). The total number of follicles, number of follicles with a diameter > 8 mm, and number of oocytes surrounded by multi‐layered cumulus cells were higher in the superstimulated group than in the control group (p ≤ 0.05). After IVF, the percentages of cleavage and development to blastocysts were higher in the superstimulated group than in the control group (p < 0.05). In conclusion, superstimulation improved the quality of oocytes and the embryo productivity of OPU‐IVF in river buffaloes.  相似文献   

13.
Deoxynivalenol (DON) is a toxic secondary metabolite produced by Fusarium graminearum. It is one of the most common feed contaminants that poses a serious threat to the health and performance of dairy cows. This study investigated the in vitro cytotoxicity of DON on bovine mammary epithelial cells (MAC‐T). DON at different concentrations (0.25, 0.3, 0.5, 0.8, 1 or 2 μg/ml) inhibited the growth of MAC‐T cells after 24 hr of exposure (p < .001). DON at 0.25 μg/ml increased lactate dehydrogenase (LDH) leakage (p < .05); decreased glutathione (GSH) levels (p < .001), total superoxide dismutase (T‐SOD) activity and total antioxidant capacity (T‐AOC; p < .01); and increased malondialdehyde (MDA) concentration (p < .01) in MAC‐T cells after 24 hr of exposure. We also observed that DON increased reactive oxygen species (ROS) levels in cells incubated for 9, 15 and 24 hr (p < .001). DON at 0.25 μg/ml triggered oxidative damage in MAC‐T cells. Furthermore, it induced an inflammatory response in the cells incubated for 9, 15 and 24 hr (p < .05) by increasing the mRNA expression levels of nuclear factor kappa B, myeloid differentiation factor 88 (MyD88), tumour necrosis factor‐α (TNF‐α), interleukin‐1β (IL‐1β), IL‐6, cyclooxygenase‐2 and IL‐8. We further examined the effect of DON on apoptosis. DON prevented normal proliferation of MAC‐T cells by blocked cell cycle progression in 24 hr (p < .001). In addition, the apoptosis rate measured using annexin V‐FITC significantly increased (p < .05) with increase in the mRNA expression level of Bax (p < .01) and increase in the Bax/Bcl‐2 ratio (p < .01) in cells incubated for 24 hr. In summary, DON exerts toxic effects in MAC‐T cells by causing oxidative stress, inducing an inflammatory response, affecting cell cycle and leading to apoptosis.  相似文献   

14.
Current in vitro embryo production protocols in the Iberian red deer (Cervus elaphus hispanicus) need to be optimized; oocyte harvesting in situ followed by overnight holding could reduce the human effort and shipping costs. In our work, post‐mortem ovaries were retrieved, and the oocytes were harvested and allocated to G1 group (good quality) or G2 + G3 group (low quality). The oocytes were separately subjected to immediate in vitro maturation (IVM) or held overnight in a holding medium composed of 40% of TCM 199 with Earle's salts, 40% TCM 199 with Hanks' salts and 20% fetal bovine serum (FBS), at room temperature (16 hr). In vitro maturation was carried out in a basal medium supplemented or not with 50 ng/ml of epidermal growth factor (EGF). Our data showed that addition of EGF to the maturation medium increases the percentage of G1 oocytes reaching metaphase II (3.9% vs. 50%, basal vs. EGF; p < .001) and decreased their degeneration rate (69.9% vs. 22.2%, basal vs. EGF; p < .01) when oocytes were immediately matured. Overnight holding increased the meiotic competence of G1 oocytes (37.5% matured in basal medium) and EGF increased prophase arrest in G2 + G3 oocytes (16.1% vs. 38.8% in germinal vesicle [GV] stage in basal medium vs. EGF added medium; p < .05). Our data demonstrate that oocyte holding can be used in Iberian red deer oocytes. Interestingly, EGF addition increases the oocytes' meiotic competence in immediately matured oocytes but not after oocyte holding depending upon initial oocyte quality.  相似文献   

15.
16.
Pig transportation is associated with intestinal oxidative stress and results in destruction of intestinal integrity. Autophagy has been contributed to maintain cell homeostasis under stresses. The purpose of this study was to evaluate the effects of transport stress on morphology, intestinal mucosal barrier and autophagy/mitophagy levels in pig jejunum. A total of 16 finishing pigs were randomly divided into two groups. The control group was directly transported to the slaughterhouse and rested for 24 hr. The experimental groups were transported for 5 hr and slaughtered immediately. The results showed that transportation induced obvious stress responses with morphological and histological damage in jejunum accompanying with an elevated level of malondialdehyde (MDA; p < .05), endotoxin (LPS; p < .05), lactic dehydrogenase (LDH; p < .05) and a decreased level of serum superoxide dismutase (SOD; p < .05). Also, hemeoxy genase 1 (HO‐1; p < .01) as well as tight junction protein (claudin‐1 [p < .001], occludin [p < .05] and zonula occludens 1 [ZO‐1; p < 0.05]) levels were attenuated in jejunum tissue, and NADPH oxidase 1 (NOX1; p < .01) mRNA expression was up‐regulated. Further research indicated that transport stress could induce autophagy through increasing microtubule‐associated protein light chain 3 (LC3; p < .05) and autophagy‐related gene 5 (ATG5; p < .01) levels and suppressing p62 expression. Additionally, transport stress increased the protein levels of PTEN‐induced putative kinase 1 (PINK1; p < .05) and Parkin (p < .05) which was associated with mitophagy. In conclusions, transport stress could induce the destruction of intestinal integrity and involve in the intestinal mucosal barrier oxidative damage, and also contribute to activation of autophagy/mitophagy.  相似文献   

17.
High‐density lipoprotein (HDL) is the main lipoprotein in the follicular fluid, and it has anti‐inflammatory, antioxidant and cryoprotectant properties. The anti‐inflammatory potential and antioxidant potential are derived from its lipid composition, especially the apolipoprotein AI (ApoAI) and paraoxonase 1 (PON1). The aim of this study was to evaluate the effect of HDL during in vitro maturation (IVM) on oocyte maturation and early bovine embryo development. For this, cumulus–oocyte complexes (COCs) were obtained from bovine ovaries collected at a local slaughterhouse. COCs (n = 2,250) were allocated into three groups (n = 50 COCs/group) according to the addition of HDL protein (HDL‐P) during IVM for 22 hr: 0 (control), 50 and 150 mg/dl. After IVM, COCs were inseminated (in vitro fertilization) and cultivated for 7 days. Total cholesterol concentration, total protein, triglycerides and ApoAI concentrations on IVM medium increased proportionally to HDL‐P addition. However, PON1 activity was not detected in any treatment. The addition of HDL‐P did not affect nuclear maturation rate, endogenous reactive oxygen species and glutathione levels in COCs (p > 0.05). The highest HDL‐P concentration (150 mg/dl) decreased cleavage and blastocyst rate (p < 0.05). Moreover, the HDL‐P 150 mg/dl group had lower cellular count/blastocyst than the 50 mg/dl group (p < 0.05). However, the addition of HDL‐P did not affect relative gene expression of evaluated genes. In conclusion, the complex HDL/ApoAI obtained from human plasma, in the absence of PON1 activity during in vitro oocyte maturation, decreased initial embryo development.  相似文献   

18.
Granulosa cells play important roles in the regulation of ovarian functions. Phospholipase C is crucial in several signalling pathways and could participate in the molecular mechanisms of cell proliferation, differentiation and ageing. The objective of this study was to identify the effects of phospholipase C on the steroidogenesis of oestradiol and progesterone in porcine granulosa cells cultured in vitro. Inhibitor U73122 or activator m‐3M3FBS of phospholipase C was added to the in vitro medium of porcine granulosa cells, respectively. The secretion of oestradiol decreased after 2 hr, 8 hr, 12 hr, 24 hr and 48 hr of treatment with 500 nM U73122 (p < .05) and decreased after 2 hr of treatment in the 500 nM m‐3M3FBS addition group (p < .05). The secretion of progesterone increased after 4 hr of treatment with 500 nM U73122 (p < .05) and increased after 2 hr and 8 hr of treatment in the 500 nM m‐3M3FBS addition group (p < .05). The ratio of oestradiol to progesterone decreased at each time point, except 8 hr after the addition of 500 nM U73122 (p < .05). The ratio of oestradiol to progesterone decreased after 2 hr (p < .05) of treatment with 500 nM m‐3M3FBS. In genes that regulate the synthesis of oestradiol or progesterone, the mRNA expression of CYP11A1 was markedly increased (p < .05), and the mRNA expression of other genes did not change significantly in the U73122 treatment group, while the addition of m‐3M3FBS did not change those genes significantly despite the contrary trend. Our results demonstrated that phospholipase C can be a potential target to stimulate the secretion of oestradiol and suppress progesterone secretion in porcine granulosa cells cultured in vitro, which shed light on a novel biological function of phospholipase C in porcine granulosa cells.  相似文献   

19.
The purpose of this study was to investigate the effect of the E1 activating enzyme UBA2 on the expression of the SUMO-1 protein during in vitro maturation (IVM) of pig oocytes and embryonic development. In the 5 μg/ml UBA2 treatment group, the expression of the anti-apoptotic gene Bcl-2 and the embryo cleavage rate was significantly increased, while the proapoptotic gene Bax was significantly reduced. When 10 μg/ml UBA2 was added, the in vitro maturation rate, blastocyst rate, and SUMO-1 protein content of oocytes increased significantly (p < .05), and the expression of proapoptotic gene Caspase3 was significantly decreased (p < .05), while the viability of cumulus cells was extremely significantly reduced (p < .01). In summary, UBA2 can regulate the content of the SUMO-1 protein in mature pig oocytes in vitro, which in turn affects the maturation rate of oocytes, expression of apoptosis genes, cumulus cell viability, and the development of embryos after fertilization.  相似文献   

20.
Ascorbic acid (AC) used as antioxidant in embryo culture is very sensitive and degrades unavoidably in aqueous solution. Methyl‐β‐cyclodextrin (CD) improved the stability of AC in solution to elevated temperature, light, humidity and oxidation. The aim of this study was to evaluate the effect of the complex AC‐CD during in vitro maturation (IVM) or in vitro culture (IVC) on oocyte developmental competence and subsequent embryo development and quality. AC‐CD (100 µM) was added to IVM media, and maturation level and embryo development were examined. Matured oocytes, their cumulus cells and produced blastocysts were snap‐frozen for gene expression analysis by RT‐qPCR. Besides, in vitro‐produced zygotes were cultured with 100 µM of AC‐CD and blastocysts were as well snap‐frozen for gene expression analysis. A group without AC‐CD (control?) and other with CD (control+) were included. No differences were found on maturation, cleavage or blastocyst rates. However, in matured oocytes, AC‐CD downregulated BAX, GPX1 and BMP15. In cumulus cells, AC‐CD downregulated BAX/BCL2 and GSTA4 while upregulated BCL2 and CYP51A1. The expression of SL2A1, FADS1, PNPLA and MTORC1 was downregulated in blastocysts derived from oocytes matured with AC‐CD, while in blastocysts derived from zygote cultured with AC‐CD, CYP51A1 and IGF2R were downregulated and PNPLA2 was upregulated. In conclusion, AC‐CD in both IVM and IVC media may reduce accumulated fat by increasing lipolysis and suppressing lipogenesis in blastocysts derived from both oocytes and zygotes cultured with AC‐CD, suggesting that CD improves the quality of embryos and bioavailability of AC during IVM and IVC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号