首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparative pharmacokinetic study was conducted to determine the order and the rate of absorption of triclabendazole (TCBZ) in cattle and sheep. A commercial suspension of TCBZ (Biofasiolex, Biogénesis S.A., Argentina) was administered at a dose rate of 10 mg/kg by the oral route to six Holstein female calves and six Corriedale female sheep. The plasma concentration profiles of the metabolites triclabendazole sulfoxide (TCBZ-SO) and triclabendazole sulfone (TCBZ-SO2) were analysed by means of the non-compartmental method. The order of the absorption process of the active metabolite, TCBZ-SO, was determined by construction of curves of cumulative absorbed fraction of the drug by means of the Wagner-Nelson method. The appearance of TCBZ-SO in plasma of cattle and sheep resembles the entry of a constant quantity of drug into the organism per unit time. This is explained by the reservoir effect of the rumen, which acts as a biological slow-release system for TCBZ-SO and its precursor TCBZ to the posterior digestive tract where they are absorbed. The plasma concentration profiles of TCBZ-SO in both species were well described by a one-compartment open model with zero-order process of absorption and first-order process of elimination. The values of AUC0-∞ and C max of TCBZ-SO did not differ between species, while other kinetic parameters except for λ z had higher values in calves than in sheep. In the case of TCBZ-SO2, t max was the only parameter that did not differ between species, while other kinetic parameters except for λ z had higher values in calves than in sheep.  相似文献   

2.
The pharmacokinetics of tylosin were compared in cattle (Bos taurus) and buffaloes (Bubalus bubalis). Six animals received each a single dose of 10 mg/kg of tylosin tartrate by the intramuscular route. The serum concentration (C max) and the volume of distribution (V d) presented significant differences between the two species. C max was 0.40 ± 0.046 µg/ml for buffaloes and 0.64 ± 0.068 µg/ml for cattle. V d was 1.91 ± 0.12 L/kg and 1.33 ± 0.09 L/kg for buffaloes and cattle, respectively. However, as the present study did not show considerable differences in the pharmacokinetics of tylosin in buffaloes and cattle, similar dosage regimes of this drug can be recommended for both species.  相似文献   

3.
This study aimed to investigate the pharmacokinetic characteristics of amoxicillin (AMX) in Thai swamp buffaloes, Bubalus bubalis, following single intramuscular administration at two dosages of 10 and 20 mg/kg body weight (b.w.). Blood samples were collected at assigned times up to 48 h. The plasma concentrations of AMX were measured by liquid chromatography–tandem mass spectrometry (LC‐MS/MS). The concentrations of AMX in the plasma were determined up to 24 h after i.m. administration at both dosages. The Cmax values of AMX were 3.39 ± 0.18 μg/mL and 6.16 ± 0.18 μg/mL at doses of 10 and 20 mg/kg, respectively. The AUClast values increased in a dose‐dependent fashion. The half‐life values were 5.56 ± 0.40 h and 4.37 ± 0.23 h at doses of 10 and 20 mg/kg b.w, respectively. Based on the pharmacokinetic data and PK‐PD index (T > MIC), i.m. administration of AMX at a dose of 20 mg/kg b.w might be appropriate for the treatment of susceptible Mannheimia haemolytica infection in Thai swamp buffaloes.  相似文献   

4.
The bioavailability of three formulations of ivermectin was determined following oral administration to dogs. The average peak plasma level (C max) of ivermectin administered in the standard tablet formulation at 6 and 100 µg/kg of body weight was 2.97 and 44.31 ng/g, respectively. This suggest dose-dependent pharmacokinetics.C max and total ivermectin bioavailability, as assessed from the area under the plasma curve (AUC), were similar between two tablet formulations of ivermectin administered at 100 µg/kg. Furthermore,C max was similar following administration of radiolabelled ivermectin at 6 µg/kg in either a beef-based chewable formulation or in the standard tablet formulation.  相似文献   

5.
The pharmacokinetics of maropitant were evaluated in beagle dogs dosed orally with Cerenia® tablets (Pfizer Animal Health) once daily for 14 consecutive days at either 2 mg/kg or 8 mg/kg bodyweight. Noncompartmental pharmacokinetic analysis was performed on the plasma concentration data to measure the AUC0–24 (after first and last doses), Ct (trough concentration—measured 24 h after each dose), Cmax (after first and last doses), tmax (after first and last doses), λz (terminal disposition rate constant; after last dose), t1/2 (after last dose), and CL/F (oral clearance; after last dose). Maropitant accumulation in plasma was substantially greater after fourteen daily 8 mg/kg doses than after fourteen daily 2 mg/kg doses as reflected in the AUC0–24 accumulation ratio of 4.81 at 8 mg/kg and 2.46 at 2 mg/kg. This is most likely due to previously identified nonlinear pharmacokinetics of maropitant in which high doses (8 mg/kg) saturate the metabolic clearance mechanisms and delay drug elimination. To determine the time to reach steady‐state maropitant plasma levels, a nonlinear model was fit to the least squares (LS) means maropitant Ct values for each treatment group. Based on this model, 90% of steady‐state was determined to occur at approximately four doses for daily 2 mg/kg oral dosing and eight doses for daily 8 mg/kg oral dosing.  相似文献   

6.
The present study aimed to characterize the pharmacokinetic profile of oxytetracycline long‐acting formulation (OTC‐LA) in Thai swamp buffaloes, Bubalus bubalis, following single intramuscular administration at two dosages of 20 and 30 mg/kg body weight (b.w.). Blood samples were collected at assigned times up to 504 h. The plasma concentrations of OTC were measured by high‐performance liquid chromatography (HPLC). The concentrations of OTC in the plasma were determined up to 264 h and 432 h after i.m. administration at doses of 20 and 30 mg/kg b.w., respectively. The Cmax values of OTC were 12.11 ± 1.87 μg/mL and 12.27 ± 1.92 μg/mL at doses of 20 and 30 mg/kg, respectively. The AUClast values increased in a dose‐dependent fashion. The half‐life values were 52.00 ± 14.26 h and 66.80 ± 10.91 h at doses of 20 and 30 mg/kg b.w, respectively. Based on the pharmacokinetic data and PK–PD index (T > MIC), i.m. administration of OTC at a dose of 30 mg/kg b.w once per week might be appropriate for the treatment of susceptible bacterial infection in Thai swamp buffaloes.  相似文献   

7.
The non-steroidal anti-inflammatory drug (NSAID) carprofen (CPF) contains single chiral centre. It was administered orally to Beagle dogs as a racemate (rac-CPF) at a dose of 4 mg per kg body weight and as individual (-)(R) and (+)(S) enantiomers at 2 mg per kg body weight. Each of the enantiomers achieved similar plasma bioavailability following administration as the race-mate as they did following their separate administration. Only the administered enantiomers were detectable when the drug was given in the (-)(R) or (+) (S) form, indicating that chiral inversion did not occur in either direction. Higher plasma concentrations of the (-)(R) (Cmax 18 μg/ml, AUC0–24 118 μg h/ml) than the (+)(S) (Cmax 14 μg/ml, AUC0–24 67 μg h/ml) enantiomer were achieved following administration of the racemate. Both enantiomers distributed into peripheral subcutaneous tissue cage fluids, but Cmax and AUC values were lower for both transudate (non-stimulated tissue cage fluid) and exudate (induced by the intracaveal administration of the irritant carrageenan) than for plasma. Drug concentrations in transudate and exudate were similar, as indicated by Cmax and AUC values, although CPF penetrated more rapidly into exudate than into transudate. Neither rac-CPF nor either enantiomer inhibited thromboxane B2 (T × B2) generation by platelets in clotting blood (serum T × B2, or prostaglandin E2, (PGE,) and 12-hydroxyeicosatetraenoic acid (1 2-HETE) synthesis in inflammatory exudate. Since other studies have shown that rac-CPF at the 4 mg/kg dose rate possesses analgesic and anti-inflammatory effects in the dog, it is concluded that the principal mode of action of the drug must be by mechanisms other than cyclooxygenase or 12-lipoxygenase inhibition.  相似文献   

8.
Basic information related to the pharmacokinetics of sildenafil in dogs is scarce. This study aimed to describe the pharmacokinetic properties of oral sildenafil and determine the effect of feeding and dose proportionality. The effect of feeding on pharmacokinetics of sildenafil (1 mg/kg) was investigated using a crossover study with six dogs. In addition, the dose proportionality of sildenafil ranging 1–4 mg/kg was evaluated using five dogs in the fasted states. The plasma concentrations of sildenafil were determined using high‐performance liquid chromatography, and pharmacokinetic parameters were calculated using a noncompartmental analysis. Sildenafil administrations were well tolerated in all studies. Feeding reduced the area under the curve extrapolated to infinity (AUCinf) and the maximum plasma concentration (Cmax) significantly. The elimination half‐life (T1/2) did not differ between the fasted and the fed states. For dose proportionality, nonproportional increases in AUCinf and Cmax at 1–4 mg/kg doses were detected by a power model analysis.  相似文献   

9.
The study was aimed at investigating the pharmacokinetics of amoxicillin trihydrate (AMOX) in olive flounder (Paralichthys olivaceus) following oral, intramuscular, and intravenous administration, using high‐performance liquid chromatography following. The maximum plasma concentration (Cmax), following oral administration of 40 and 80 mg/kg body weight (b.w.), AMOX was 1.14 (Tmax, 1.7 h) and 0.76 μg/mL (Tmax, 1.6 h), respectively. Intramuscular administration of 30 and 60 mg/kg of AMOX resulted in Cmax values of 4 and 4.3 μg/mL, respectively, with the corresponding Tmax values of 29 and 38 h. Intravenous administration of 6 mg/kg AMOX resulted in a Cmax of 9 μg/mL 2 h after administration. Following oral administration of 40 and 80 mg/kg AMOX, area under the curve (AUC) values were 52.257 and 41.219 μg/mL·h, respectively. Intramuscular 30 and 60 mg/kg doses resulted in AUC values of 370.274 and 453.655 μg/mL·h, respectively, while the AUC following intravenous administration was 86.274 μg/mL·h. AMOX bioavailability was calculated to be 9% and 3.6% following oral administration of 40 and 80 mg/kg, respectively, and the corresponding values following intramuscular administration were 86% and 53%. In conclusion, this study demonstrated high bioavailability of AMOX following oral administration in olive flounder.  相似文献   

10.
The purpose of this study was to determine the pharmacokinetics and dose‐scaling model of vitacoxib in either fed or fasted cats following either oral or intravenous administration. The concentration of the drug was quantified by UPLC‐MS/MS on plasma samples. Relevant parameters were described using noncompartmental analysis (WinNonlin 6.4 software). Vitacoxib is relatively slowly absorbed and eliminated after oral administration (2 mg/kg body weight), with a Tmax of approximately 4.7 hr. The feeding state of the cat was a statistically significant covariate for both area under the concentration versus time curve (AUC) and mean absorption time (MATfed). The absolute bioavailability (F) of vitacoxib (2 mg/kg body weight) after oral administration (fed) was 72.5%, which is higher than that in fasted cats (= 50.6%). Following intravenous administration (2 mg/kg body weight), Vd (ml/kg) was 1,264.34 ± 343.63 ml/kg and Cl (ml kg?1 hr?1) was 95.22 ± 23.53 ml kg?1 hr?1. Plasma concentrations scaled linearly with dose, with Cmax (ng/ml) of 352.30 ± 63.42, 750.26 ± 435.54, and 936.97 ± 231.27 ng/ml after doses of 1, 2, and 4 mg/kg body weight, respectively. No significant undesirable behavioral effects were noted throughout the duration of the study.  相似文献   

11.
Britzi, M., Gross, M., Lavy, E., Soback, S., Steinman, A. Bioavailability and pharmacokinetics of metronidazole in fed and fasted horses. J. vet. Pharmacol. Therap. 33 , 511–514. Metronidazole (1‐[2‐hydroxyethyl]‐2‐methyl‐5‐nitroimidazole) is a bactericidal antimicrobial agent used for treatment of infectious diseases caused by anaerobic bacteria and protozoa. Pharmacokinetics of metronidazole following its administration to horses was previously described ( Sweeney et al., 1986 ; Baggot et al., 1988 ; Specht et al., 1992 ; Steinman et al., 2000 ). The bioavailability (F) was 85% (ranging from 57% to 105%) and the time to reach maximum serum concentration (tmax) was 1–2 h after oral dose at 25 mg/kg body weight ( Sweeney et al., 1986 ). Baggot et al. (1988) found that F was 74.5% (ranging from 58.4% to 91.5%) and tmax was 1.5 h after oral dose at 20 mg/kg body weight. Specht et al. (1992) reported that F was 97% (ranging from 79% to 111%) and tmax was 40 min after oral dose at 15 mg/kg body weight. In an earlier study by our group F was 74% and tmax was 65 min after oral dose at 20 mg/kg body weight ( Steinman et al., 2000 ). These individual variations in F might be partially explained by the effect of feed, among other factors, mainly on metronidazole absorption. Interactions between food and drugs may reduce or increase the drug effect. The majority of clinically relevant food–drug interactions are caused by food‐induced changes on the bioavailability of the drug ( Schmidt & Dalhoff, 2002 ). In dogs, absorption of metronidazole is enhanced when given with food, but delayed in humans ( Plumb, 1995 ). Although, metronidazole is used commonly to treat various clinical conditions in horses with relatively little adverse effects ( Sweeney et al., 1991 ), narrow margin of safety was suggested because histological evidence of peripheral neurotoxicity and hepatotoxicity were noted in horses treated with doses as low as 30 mg/kg body weight every 12 h orally for 30 days ( White et al., 1996 ). For drugs with a narrow therapeutic index, even small changes in dose–response effects can have significant consequences ( Schmidt & Dalhoff, 2002 ).  相似文献   

12.
KuKanich, B. Pharmacokinetics of acetaminophen, codeine, and the codeine metabolites morphine and codeine‐6‐glucuronide in healthy Greyhound dogs. J. vet. Pharmacol. Therap. 33 , 15–21. The purpose of this study was to determine the pharmacokinetics of codeine and the active metabolites morphine and codeine‐6‐glucuronide after i.v. codeine administration and the pharmacokinetics of acetaminophen (APAP), codeine, morphine, and codeine‐6‐glucuronide after oral administration of combination product containing acetaminophen and codeine to dogs. Six healthy Greyhound dogs were administered 0.734 mg/kg codeine i.v. and acetaminophen (10.46 mg/kg mean dose) with codeine (1.43 mg/kg mean dose) orally. Blood samples were collected at predetermined time points for the determination of codeine, morphine, and codeine‐6‐glucuronide plasma concentrations by LC/MS and acetaminophen by HPLC with UV detection. Codeine was rapidly eliminated after i.v. administration (T½ = 1.22 h; clearance = 29.94 mL/min/kg; volume of distribution = 3.17 L/kg) with negligible amounts of morphine present, but large amounts of codeine‐6‐glucuronide (Cmax = 735.75 ng/mL) were detected. The oral bioavailability of codeine was 4%, morphine concentrations were negligible, but large amounts of codeine‐6‐glucuronide (Cmax = 1952.86 ng/mL) were detected suggesting substantial first pass metabolism. Acetaminophen was rapidly absorbed (Cmax = 6.74 μg/mL; Tmax = 0.85 h) and eliminated (T½ = 0.96 h). In conclusion, the pharmacokinetics of codeine was similar to other opioids in dogs with a short half‐life, rapid clearance, large volume of distribution, and poor oral bioavailability. High concentrations of codeine‐6‐glucuronide were detected after i.v. and oral administration.  相似文献   

13.
Menge, M., Rose, M., Bohland, C., Zschiesche, E., Kilp, S., Metz, W., Allan, M., Röpke, R., Nürnberger, M. Pharmacokinetics of tildipirosin in bovine plasma, lung tissue, and bronchial fluid (from live, nonanesthetized cattle). J. vet. Pharmacol. Therap.  35 , 550–559. The pharmacokinetics of tildipirosin (Zuprevo® 180 mg/mL solution for injection for cattle), a novel 16‐membered macrolide for treatment, control, and prevention of bovine respiratory disease, were investigated in studies collecting blood plasma, lung tissue, and in vivo samples of bronchial fluid (BF) from cattle. After single subcutaneous (s.c.) injection at 4 mg/kg body weight, maximum plasma concentration (Cmax) was 0.7 μg/mL. Tmax was 23 min. Mean residence time from the time of dosing to the time of last measurable concentration (MRTlast) and terminal half‐life (T1/2) was 6 and 9 days, respectively. A strong dose–response relationship with no significant sex effect was shown for both Cmax and area under the plasma concentration–time curve from time 0 to the last sampling time with a quantifiable drug concentration (AUClast) over the range of doses up to 6 mg/kg. Absolute bioavailability was 78.9%. The volume of distribution based on the terminal phase (Vz) was 49.4 L/kg, and the plasma clearance was 144 mL/h/kg. The time–concentration profile of tildipirosin in BF and lung far exceeded those in blood plasma. In lung, tildipirosin concentrations reached 9.2 μg/g at 4 h, peaked at 14.8 μg/g at day 1, and slowly declined to 2.0 μg/g at day 28. In BF, the concentration of tildipirosin reached 1.5 and 3.0 μg/g at 4 and 10 h, maintained a plateau of about 3.5 μg/g between day 1 and 3, and slowly declined to 1.0 at day 21. T1/2 in lung and BF was approximately 10 and 11 days. Tildipirosin is rapidly and extensively distributed to the respiratory tract followed by slow elimination.  相似文献   

14.
This study aimed to investigate the effect of diet and dose on the pharmacokinetics of omeprazole in the horse. Six horses received two doses (1 and 4 mg/kg) of omeprazole orally once daily for 5 days. Each dose was evaluated during feeding either a high‐grain/low‐fibre (HG/LF) diet or an ad libitum hay (HAY) diet in a four‐way crossover design. Plasma samples were collected for pharmacokinetic analysis on days 1 and 5. Plasma omeprazole concentrations were determined by ultra‐high pressure liquid chromatography–mass spectrometry. In horses being fed the HG/LF diet, on day 1, the area under the curve (AUC) and maximal plasma concentration (Cmax) were higher on the 4 mg/kg dose than on the 1 mg/kg dose. The AUC was higher on day 5 compared to day 1 with the 4 mg/kg dose on the HG/LF diet. On days 1 and 5, the AUC and Cmax were higher in horses being fed the HG/LF diet and receiving the 4 mg/kg dose than in horses being fed the HAY diet and receiving the 1 mg/kg dose. These findings suggest that both dose and diet may affect pharmacokinetic variables of omeprazole in the horse.  相似文献   

15.
Comparative pharmacokinetics of norfloxacin nicotinate (NFXNT) was investigated in common carp (Cyprinus carpio) and crucian carp (Carassius auratus) after a single oral dose of 10 mg/kg body weight (b.w.). Analyses of plasma samples were performed using ultra‐performance liquid chromatography (UPLC) with fluorescence detection. After oral dose, plasma concentration–time curves of common carp and crucian carp were best described by a two‐compartment open model with first‐order absorption. The pharmacokinetic parameters of common carp were similar to those of crucian carp. The distribution half‐life (t1/2α), elimination half‐life (t1/2β), peak concentration (Cmax), time‐to‐peak concentration (Tmax), and area under the concentration–time curve (AUC) of common carp were 1.58 h, 26.33 h, 6069.79 μg/L, 1.08 h, and 103072.36 h·μg/L, respectively, and those corresponding to crucian carp were 1.36 h, 26.55 h, 9586.06 μg/L, 0.84 h, and 126604.4 h·μg/L, respectively. These studies demonstrated that 10 mg NFXNT/kg body weight in common carp and crucian carp following oral dose presented good pharmacokinetic characteristics.  相似文献   

16.
1. The pharmacokinetics of levofloxacin were investigated in Japanese quails after a single dose of 10?mg/kg BW, given either intravenously or orally.

2. Following intravenous administration, the mean value of distribution at steady state (Vdss), total body clearance (Cltot) and mean residence time (MRT) of levofloxacin were 1·25?l/kg, 0·39?l/h/kg and 2·72?h, respectively.

3. Following oral administration of levofloxacin, the peak plasma concentration (Cmax) was 3·31?µg/ml and was achieved at a maximum time (Tmax) of 2?h. Mean residence time (MRT), mean absorption time (MAT) and bioavailability were 4·26?h, 1·54?h and 69·01%, respectively. In vitro plasma protein binding of levofloxacin was 23·52%.

4. Based on pharmacokinetic and pharmacodynamic integration, an oral dose of 10?mg/kg levofloxacin for every 12?h is recommended for a successful clinical effect in quails.  相似文献   

17.
Holmes, K., Bedenice, D., Papich, M. G. Florfenicol pharmacokinetics in healthy adult alpacas after subcutaneous and intramuscular injection. J. vet. Pharmacol. Therap.  35 , 382–388. A single dose of florfenicol (Nuflor®) was administered to eight healthy adult alpacas at 20 mg/kg intramuscular (i.m.) and 40 mg/kg subcutaneous (s.c.) using a randomized, cross‐over design, and 28‐day washout period. Subsequently, 40 mg/kg florfenicol was injected s.c. every other day for 10 doses to evaluate long‐term effects. Maximum plasma florfenicol concentrations (Cmax, measured via high‐performance liquid chromatography) were achieved rapidly, leading to a higher Cmax of 4.31 ± 3.03 μg/mL following administration of 20 mg/kg i.m. than 40 mg/kg s.c. (Cmax: 1.95 ± 0.94 μg/mL). Multiple s.c. dosing at 48 h intervals achieved a Cmax of 4.48 ± 1.28 μg/mL at steady state. The area under the curve and terminal elimination half‐lives were 51.83 ± 11.72 μg/mL·h and 17.59 ± 11.69 h after single 20 mg/kg i.m. dose, as well as 99.78 ± 23.58 μg/mL·h and 99.67 ± 59.89 h following 40 mg/kg injection of florfenicol s.c., respectively. Florfenicol decreased the following hematological parameters after repeated administration between weeks 0 and 3: total protein (6.38 vs. 5.61 g/dL, P < 0.0001), globulin (2.76 vs. 2.16 g/dL, P < 0.0003), albumin (3.61 vs. 3.48 g/dL, P = 0.0038), white blood cell count (11.89 vs. 9.66 × 103/μL, P < 0.044), and hematocrit (27.25 vs. 24.88%, P < 0.0349). Significant clinical illness was observed in one alpaca. The lowest effective dose of florfenicol should thus be used in alpacas and limited to treatment of highly susceptible pathogens.  相似文献   

18.
The pharmacokinetic profiles of florfenicol in the spotted halibut (Verasper variegatus) were investigated at 15 and 20°C water temperatures, respectively. Florfenicol content in plasma samples was analyzed using an HPLC method. Drug concentration versus time data were best fitted to a three‐compartment model after a single intravenous administration (15 mg/kg BW), and fitted to a two‐compartment model after an oral administration (30 mg/kg BW) at 15 and 20°C. The florfenicol concentration in the blood increased slowly during the 12 hr following an oral administration at 15°C, with a peak concentration (Cmax) of 9.1 mg/L, and then declined gradually. The half‐lives of absorption, distribution, and elimination phase were 2.18, 5.66 and 14.25 hr, respectively. The bioavailability (F) was calculated to be 24.14%. After an oral administration at 20°C, shorter half‐lives of absorption (1.33 hr), distribution (2.51 hr) and elimination (9.71 hr), a higher Cmax (12.2 mg/L), and a similar F (23.98%) were found. Based on the pharmacokinetics and pharmacodynamics, an oral dose of 30 mg/kg BW was suggested to be efficacious for bacterial disease control in spotted halibut farming.  相似文献   

19.
1. The pharmacokinetics of gatifloxacin were investigated following intravenous and oral administration of a single dose at a rate of 10?mg/kg body weight in broiler chicks.

2. Drug concentration in plasma was determined using High Performance Liquid Chromatography with ultraviolet detection on samples collected at frequent intervals after drug administration.

3. Following intravenous administration, the drug was rapidly distributed (t1/2α: 0·33?±?0·008?h) and eliminated (t1/2β: 3·62?±?0·03?h; ClB: 0·48?±?0·002?l/h/kg) from the body.

4. After oral administration, the drug was rapidly absorbed (C max: 1·74?±?0·024?µg/mL; T max: 2?h) and slowly eliminated (t1/2β: 3·81?±?0·07?h) from the body. The apparent volume of distribution (Vd(area)), total body clearance (ClB) and mean residence time (MRT) were 3·61?±?0·04?l/kg, 0·66?±?0·01?l/h/kg and 7·16?±?0·08?h, respectively. The oral bioavailability of gatifloxacin was 72·96?±?1·10 %.

5. Oral administration of gatifloxacin at 10?mg/kg is likely to be highly efficacious against susceptible bacteria in broiler chickens.  相似文献   

20.
The pharmacokinetics and bioavailability of butafosfan in piglets were investigated following intravenous and intramuscular administration at a single dose of 10 mg/kg body weight. Plasma concentration–time data and relevant parameters were best described by noncompartmental analysis after intravenous and intramuscular injection. The data were analyzed through WinNolin 6.3 software. After intravenous administration, the mean pharmacokinetic parameters were determined as T1/2λz of 3.30 h, Cl of 0.16 L kg/h, AUC of 64.49 ± 15.07 μg h/mL, Vss of 0.81 ± 0.44/kg, and MRT of 1.51 ± 0.27 h. Following intramuscular administration, the Cmax (28.11 μg/mL) was achieved at Tmax (0.31 h) with an absolute availability of 74.69%. Other major parameters including AUC and MRT were 48.29 ± 21.67 μg h/mL and 1.74 ± 0.29 h, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号