首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 484 毫秒
1.
不同生育时期冬小麦叶面积指数高光谱遥感监测模型   总被引:7,自引:2,他引:5  
贺佳  刘冰锋  李军 《农业工程学报》2014,30(24):141-150
高光谱遥感能快速无损获取植被冠层信息,是实现作物长势实时监测的重要技术。为研究不同氮磷水平下冬小麦不同生育时期叶面积指数高光谱遥感监测模型,提高叶面积指数高光谱监测精度,该研究连续5 a定位测定黄土高原旱地不同氮磷水平和不同冬小麦品种各生育时期冠层光谱反射率与叶面积指数,通过相关分析、回归分析等统计方法,构建不同生育时期冬小麦叶面积指数监测模型。结果表明:不同氮磷水平下,冬小麦叶面积指数随施肥量增加呈递增趋势,随生育时期改变呈抛物线趋势变化;随着氮磷供应量的增加,冠层光谱反射率在可见光波段显著降低2%~5%(P0.05),在近红外波段显著增加4%~10%(P0.05);不同生育时期叶面积指数与优化土壤调整植被指数、增强型植被指数Ⅱ、新型植被指数、修正归一化差异植被指数、修正简单比值植被指数均达极显著相关(P0.01);拔节期、孕穗期、抽穗期、灌浆期和成熟期叶面积指数分别与优化土壤调整植被指数、增强型植被指数Ⅱ、增强型植被指数Ⅱ、修正归一化差异植被指数和修正简单比值植被指数拟合效果较好,决定系数分别为0.952、0.979、0.989、0.960和0.993;以不同年份独立数据验证模型表明,所建预测模型均有较好的验证结果,相对误差分别为13.0%、13.5%、12.8%、12.6%和14.0%,均方根误差分别为:0.313、0.336、0.316、0.316、0.324。因此,优化土壤调整植被指数、增强型植被指数Ⅱ、增强型植被指数Ⅱ、修正归一化差异植被指数和修正简单比值植被指数能有效评价拔节期、孕穗期、抽穗期、灌浆期和成熟期冬小麦叶面积指数。同时,叶面积指数分段监测模型较统一监测模型精度有所改善。该结果为实现不同肥力水平下冬小麦不同生育时期长势精确监测提供理论依据和技术支撑。  相似文献   

2.
利用新型光谱指数改善冬小麦估产精度   总被引:21,自引:9,他引:21       下载免费PDF全文
基于冬小麦返青期至乳熟期8次采样的地面光谱数据和收割时的产量数据,首先,利用光谱反射率与产量进行了统计分析,可见光波段的光谱反射率与产量在起身后期才达到稳定的显著负相关水平;近红外波段的光谱反射率与产量在所有生育期都表现出稳定的显著正相关;短波红外波段的光谱反射率与产量在进入灌浆期后才达到稳定的显著负相关水平.其次,根据冬小麦冠层光谱的波形特征,利用近红外波段890 nm反射峰、980 nm和1 200 nm两个弱水汽吸收谷、短波红外1 650 nm和2 200 nm反射峰,设计归一化差值光谱指数,并与冬小麦产量进行相关分析,结果表明:利用上述波段组合定义的归一化差值光谱指数与产量在各个生育期都达到了显著或极显著相关水平,而归一化差值植被指数(NDVI)与产量间的相关在营养生长阶段不显著.最后,以(890 nm,1200 nm)弱水汽吸收光谱指数为例,建立了各个生育期的产量预报模型,为实现冬小麦营养生长期长势监测与更早、更可靠的产量预报提供了依据.  相似文献   

3.
不同施氮水平下的小麦冠层光谱特征及产量分析   总被引:13,自引:1,他引:13  
分析了在不同氮肥施用水平下,小麦冠层的高光谱响应在几个生育期内的变化情况,以及它们与小麦产量之间的关系。采用微分技术处理了小麦冠层反射光谱,提高了其区分小麦氮素营养水平的灵敏性;利用F-检验及方差分析与相关分析,研究小麦氮素处理水平、冠层反射光谱及其衍生信息(光谱反射率的一阶微分数据、归一化植被指数)、小麦产量三者之间的相关关系。研究结果表明,一阶微分技术能够提高小麦冠层光谱数据对氮素营养水平的响应,光谱数据的衍生形式也可与小麦产量建立很好的回归方程。  相似文献   

4.
通过田间模拟UV-B辐射增强,并采用FieldSpec Pro FR光谱仪进行田间观测,对UV-B辐射增强20%(U)条件下免耕(Z)和深耕(C)两种耕作方式对冬小麦冠层反射光谱和一阶导数光谱的影响进行研究,试验以无UV-B辐射增强(N)为对照,共设4个处理,分别为ZU、ZN、CN、CU.结果表明,冬小麦冠层光谱能有效监测UV-B辐射增强和两种耕作方式的复合作用.各处理间小麦冠层反射光谱的差异主要体现在近红外高台,灌浆期是最佳监测生育期.在灌浆期,U处理导致小麦冠层光谱近红外高台反射率明显降低,Z处理的近红外高台反射率明显低于C处理,且其受U处理的影响小于C处理,表明免耕具有延缓叶片衰老的作用.进一步采用一阶导数光谱分析发现,各处理在开花期和灌浆期均有显著差异.U处理导致红峰高度在灌浆期显著降低.Z处理的红峰高度明显低于C处理,红边位置比C处理偏红,并出现多峰情况.在未来UV-B辐射增强情景下,研究结果可为不同耕作方式下冬小麦采用冠层光谱进行无损检测的可行性提供理论参考.  相似文献   

5.
长期定位施肥条件下作物光谱特征及养分吸收量预测   总被引:2,自引:1,他引:1  
为了明确不同施肥条件下典型生育期冬小麦和夏玉米冠层光谱特征差异,该研究以长期定位施肥试验为研究对象,在确定典型生育期作物冠层光谱反射率与收获期作物地上部分主要养分吸收量相关性的基础上,建立收获期作物主要养分吸收量预测模型。结果表明,可见光波段相似生育期夏玉米冠层光谱反射率与冬小麦相近,但在近红外区域平均高于冬小麦8.42%。生育中期2种作物秸秆、籽粒及地上部分氮(N)、磷(P)、钾(K)吸收量与冠层光谱反射率在可见光波段普遍呈极显著负相关关系,在近红外波段呈极显著正相关关系。全生育期夏玉米冠层光谱反射率与作物吸氮量的相关系数在可见光波段基本持平,但在近红外波段平均高于冬小麦0.4152。全生育期夏玉米冠层反射率与地上部分吸磷量的相关系数在可见光波段和近红外区域较冬小麦平均分别低0.3621和0.2072。全生育期夏玉米冠层光谱反射率与地上部分吸钾量相关系数在可见光波段平均低于冬小麦0.1270,在近红外波段高于冬小麦0.0341。除夏玉米吸磷量外,基于冬小麦和夏玉米典型生育期冠层光谱反射率建立的模型均可准确预测收获期作物主要养分吸收量,且对冬小麦养分吸收量的预测精度略高于夏玉米,该结论可以为黄淮海地区冬小麦和夏玉米的长势监测和肥料管理提供科学依据。  相似文献   

6.
为了利用冠反射光谱特征监不同筋力小麦品种的生理特征差异,利用不同筋力小麦冠层反射光谱的差异,可对不同小麦品种进行遥感识别与监测。试验以低筋小麦品种扬麦13和高筋小麦品种徐麦31为材料,结合不同生育时期两品种叶面积指数(LAI)、叶绿素含量和叶片氮含量的变化,以及相应的光谱参数,分析不同筋力小麦冠层反射光谱的变化特征。结果表明,在近红外和可见光波段,从拔节期到蜡熟期,扬麦13的冠层光谱反射率均高于徐麦31,在孕穗期两品种的差异最显著;LAI、叶片叶绿素和氮含量均在开花时达最大值,扬麦13的叶绿素含量明显高于徐麦31,而LAI和叶片氮含量则低于徐麦31。比值植被指数(RVI)、归一化植被指数(NDVI)与LAI;红边位置(λr)、红边幅值(Dr)与叶绿素含量,氮素反射指数(NRI)、抗大气植被指数(VARIgreen)与叶片氮含量极显著相关,表明RVI、NDVI可以反演LAI;λr、Dr可以反演叶绿素;NRI、VARIgreen可以反演叶片氮含量的变化。以上光谱参数能反映小麦相关指标的变化情况,不同时期可运用小麦冠层反射光谱进行不同筋力小麦品种识别,孕穗期为最佳识别时期。通过本研究,以期为不同筋力小麦品种的遥感识别提供依据。  相似文献   

7.
张俊华 《土壤》2008,40(4):540-547
本文首先分析不同施 N 水平条件下夏玉米冠层在6个典型生育期的光谱特征曲线,然后计算了可见光和近红外波段光谱反射率组成的归一化植被指数(NDvI)及相应时期叶片叶绿素含量和地上部分全N含量2个重要指标以及孕穗期冠层NDVI和几个N肥吸收利用效率的相关性.结果表明,孕穗期冠层光谱反射率在近红外区域反射率最大,且其可见光和近红外区域反射率差异最大:从苗期到孕穗期,NDVI和叶绿素、全N含量的相关性逐渐增强,到抽雄期减弱,灌浆期又有所增强;整体来讲绿色归一化植被指数 GNDNI(560,760)在各生育期与不同农学参量的相关性比其他波段组合的指数好,其次为NDVI(660,760)波段组合.随着施N量的增加,N肥利用效率、收获指数和N肥收获指数、N素农艺效率以及N肥回收效率均逐渐降低,对各N肥吸收利用指数的预测以NDVI(660,760)、NDVI(660,1100)和GNDVI(560,760)较理想.  相似文献   

8.
冬小麦生物量高光谱遥感监测模型研究   总被引:7,自引:2,他引:5  
【目的】高光谱遥感能快速、实时、无损监测作物长势。研究不同氮磷水平下冬小麦不同生育时期地上部生物量高光谱遥感监测模型,可提高地上部生物量高光谱监测精度。【方法】在西北农林科技大学连续进行了 5 年田间定位试验,设置 5 个施氮水平 (N, 0, 75, 150, 225 和 300 kg/hm2) 和 4 个磷施用水平 (P2O5, 0, 60, 120 和 180 kg/hm2),选用不同抗旱类型冬小麦品种,测定了从拔节期至成熟期生物量与冠层光谱反射率,通过相关分析、回归分析等统计方法,建立并筛选基于不同植被指数的冬小麦不同生育时期生物量分段遥感监测模型。【结果】冬小麦生物量与光谱反射率在 670 nm 和 930 nm 附近具有较高相关性,在可见光和近红外波段处均有敏感波段;在拔节期、孕穗期、抽穗期、灌浆期、成熟期,生物量与归一化绿波段差值植被指数 (GNDVI)、比值植被指数 (RVI)、修正土壤调节植被指数 (MSAVI)、红边三角植被指数 (RTVI) 和修正三角植被指数Ⅱ (MTVIⅡ) 均达极显著相关性 (P < 0.01),相关系数 (r) 范围为 0.923~0.979;在不同生育时期,分别基于 GNDVI、RVI、MSAVI、RTVI 和 MTVIⅡ 能建立较好的生物量分段监测模型,决定系数 (R2) 分别为 0.987、0.982、0.981、0.985、0.976;估计标准误差 SE 分别为 0.157、0.153、0.163、0.133、0.132;预测值与实测值间相对误差 (RE) 分别为 8.47%、7.12%、7.56%、8.21%、8.65%;均方根误差 (RMSE), 分别为 0.141 kg/m2、0.113 kg/m2、0.137 kg/m2、0.176 kg/m2、0.187 kg/m2。【结论】在拔节期、孕穗期、抽穗期、灌浆期、成熟期可以用 GNDVI、RVI、MSAVI、RTVI 和 MTVIⅡ 监测冬小麦生物量,具有较好的年度间重演性和品种间适用性。同时,分段监测模型较统一监测模型具有较好的监测效果及验证效果,能有效改善高光谱遥感监测模型精度。  相似文献   

9.
干旱胁迫下冬小麦产量结构与生长、生理、光谱指标的关系   总被引:13,自引:1,他引:12  
通过控制生育期水分条件形成不同程度的干旱胁迫,对冬小麦生长、产量及生理指标和冠层高光谱反射率对干旱胁迫的反应进行监测,建立冬小麦减产率与生长、生理及冠层光谱反射率的相关模型。研究结果表明:不同生育期冬小麦干物质积累速度随水分胁迫程度的增大而减小;叶绿素含量与水分条件的关系不同于其他参数,表现为中等水分条件下叶绿素含量最大,严重水分胁迫下叶绿素含量最低;不同水分条件下光合速率呈两种不同日变化特征,且正常供水处理的光合速率明显高于严重干旱处理。光合速率和增强植被指数(EVI)同冬小麦减产率相关性较强,能够建立较好的关系模型用于小麦产量预测。  相似文献   

10.
基于高光谱的中国干旱区棉花遥感估产(英)   总被引:2,自引:1,他引:1  
该文测定了棉花盛蕾期至吐絮后期各时期冠层的高光谱反射率以及产量,并对棉花产量与冠层光谱植被指数进行相关分析。结果表明:棉花各生育期可见光波段、近红外波段及短波红外波段光谱反射率与产量间分别呈显著负相关、显著正相关与显著负相关。根据棉花冠层光谱波形特征,利用植被红边波段560 nm反射峰、670 nm吸收谷、近红外波段890 nm反射峰、980和1?210 nm两个弱水汽吸收谷、短波红外1?650和2 200 nm反射峰,设计归一化差值光谱指数,并与棉花产量进行相关分析,上述波段组合定义的归一化差值光谱指数与产量在各生育期均达显著或极显著相关。VARI_700抗大气植被指数在各生育期均达极显著相关。  相似文献   

11.
为研究不同氮磷水平下冬小麦籽粒蛋白质含量高光谱遥感监测模型,提高模型精度,本文通过连续5年定位试验研究不同氮磷耦合水平下,不同生育时期冬小麦冠层光谱反射率、植株氮含量以及成熟期籽粒蛋白质含量,以相关、回归等统计分析方法,建立基于不同生育时期植株氮含量的籽粒蛋白质含量监测模型;然后通过灰色关联度分析,筛选植株氮含量的最佳植被指数,以偏最小二乘回归法,建立基于植被指数的植株氮含量监测模型;最后以植株氮含量为链接点,按照"植被指数—植株氮含量—籽粒蛋白质含量"之间的联系,建立融合植被指数与植株氮含量的冬小麦成熟期籽粒蛋白质含量监测模型。结果表明:在拔节期、孕穗期、抽穗期、灌浆期、成熟期基于植株氮含量建立的成熟期籽粒蛋白质含量监测模型,具有较好的监测精度;拔节期、孕穗期、抽穗期、灌浆期、成熟期分别基于修正叶绿素吸收反射率指数(MCARI_1)、归一化差值叶绿素指数(NDCI)、修正归一化差异指数(mNDVI)、MCARI_1、NDCI植被指数建立植株氮含量监测模型,监测精度(R~2)分别为0.826、0.854、0.867、0.859和0.819;以植株氮含量为链接点,通过"植被指数—植株氮含量—籽粒蛋白质含量"的间接联系,建立基于拔节期、孕穗期、抽穗期、灌浆期、成熟期植被指数且融合植株氮含量的籽粒蛋白质含量监测模型,R~2分别为0.935、0.972、0.990、0.979和0.936;以独立数据对模型进行验证,模型预测值与实测值间相对误差(RE)分别为11.26%、10.74%、8.41%、10.25%和11.36%,均方根误差(RMSE)分别为2.221 g×kg~(-1)、1.825 g×kg~(-1)、1.214 g×kg~(-1)、1.767 g×kg~(-1)和2.137 g×kg~(-1)。说明基于不同生育时期植被指数链接植株氮含量可以对成熟期籽粒蛋白质含量进行有效监测,且模型具有较好的年度间重演性和品种间适应性。  相似文献   

12.
基于卫星光谱尺度反射率的冬小麦生物量估算   总被引:1,自引:1,他引:0  
为探索基于光学卫星遥感数据的冬小麦地上生物量估算方法,本研究通过3年田间试验,获取冬小麦4个关键生育期(拔节期、抽穗期、开花期和灌浆期)和3种施氮水平下的地上生物量以及对应的近地冠层高光谱反射率数据。通过将高光谱数据重采样为具有红边波段的RapidEye、Sentinel-2和WorldView-2卫星波段反射率数据,构建任意两波段归一化植被指数。同时,将卫星波段反射率数据与6种机器学习和深度学习算法相结合,构建冬小麦生物量估算模型。研究结果表明:任意两波段构建的最佳植被指数在冬小麦开花期对生物量的敏感性最强(决定系数R2为0.50~0.56)。在不同施氮水平条件下,高施氮水平增强了植被指数对生物量的敏感性。Sentinel-2波段数据所构建的植被指数优于其他两颗卫星波段数据。对6种机器学习和深度学习算法,总的来说,基于深度神经网络(Deep Neural Networks,DNN)算法所构建的模型要优于其他算法。在单一生育期中,在拔节期(R2为0.69~0.78,归一化均方根误差为26%~31%)和开花期(R2为0.69~0.70,归一化均方根误差为24%~25%)的估算精度最高。Sentinel-2波段数据与DNN算法结合的估算精度最高,在全生育期中预测精度R2为0.70。施氮水平的提高同样增强了DNN模型的估算精度,3颗卫星波段数据在300 kg/hm2施氮条件下的预测精度R2都在0.71以上,均方根误差小于219 g/m2。研究结果揭示了光学卫星遥感数据在不同生育期和施氮条件下估算冬小麦生物量的潜力。  相似文献   

13.
通过光谱分析技术,研究了模拟酸雨(SO-42:NO-31=5:1)对小麦产量和生理特性的影响。结果表明,模拟酸雨伤害了小麦叶片的结构和功能,降低了叶绿素含量和光合速率,从而显著降低了小麦的产量,经过pH为2的酸雨处理后的小麦产量降幅达19.1%。通过对植被指数的分析可以看出,小麦冠层叶绿素含量在开花期以后逐渐降低,而旗叶的叶绿素含量则在灌浆期以后开始下降,两者的下降幅度都随着酸雨pH的下降而增大。光合速率表现出与叶绿素含量相同的变化。另外,对小麦产量与不同生育期冠层和叶片水平的植被指数的相关分析表明,灌浆期的小麦冠层水平的NDVI、mND705和WI与酸雨处理后小麦的产量显著相关。总之,利用光谱分析技术可以快速、无损伤地监测不同酸雨处理对小麦的生长和营养状况的影响。  相似文献   

14.
为利用高光谱遥感监测小麦条锈病,并对条锈病胁迫下的产量进行估测,通过4个对小麦条锈病具有不同抗病性的品种进行混合种植,从中找出产量最高的品种组合,利用高光谱遥感研究不同发病程度的混合种植小麦的冠层光谱,并用光谱数据提取植被指数,研究病情指数和产量与植被指数之间的关系,建立反演模型。结果表明:A(农大195)︰C(0045)︰D(农大211)=1︰1︰1组合的产量最高。在乳熟期时,归一化植被指数与产量相关性高。利用NDVI对各个生育时期的产量及产量构成因素进行模拟,产量在灌浆期时的模拟效果最好。条锈病发生后利用多时相组合的植被指数NDVI对产量进行模拟精度高。  相似文献   

15.
基于遥感和AquaCrop作物模型的多同化算法比较   总被引:1,自引:0,他引:1  
为了研究不同数据同化方法在AquaCrop(FAO Crop model to simulate yield response to water)模型模拟作物地上生物量(above ground biomass,AGB)、冠层覆盖度(canopy cover,CC)和产量过程的效率,以冬小麦为研究对象,利用2012-2013、2013-2014和2014-2015年冬小麦田间试验数据,将标定的Aqua Crop生长模型与遥感光谱信息相结合开展同化技术分析,应用粒子群优化(particle swarm optimization,PSO)、模拟退火(simulated annealing,SA)和复合型混合演化(shuffled complex evolution,SCE-UA)3种数据同化算法,以不同生育期、不同水分处理和不同氮肥水平的AGB和CC为双变量开展多同化算法的模拟分析,对3种数据同化算法的运算效率和同化结果进行对比分析。结果表明:1)3种数据同化算法达到的应度值0.26时,SCE-UA同化算法用时最少(833 s),SA数据同化算法用时最多(1433 s),表明SCE-UA同化算法效率最优,SA数据同化算法效率最低;2)不同生育期的同化结果,AGB的同化精度随着生育期的推进而降低,AGB的模拟值在拔节期和挑旗期高于实测值,被高估,在开花期和灌浆期被低估,总的AGB被低估;CC在拔节期和挑旗期被低估,在开花期和灌浆期被高估,总的CC被低估;3)不同水分处理的同化结果,AGB普遍被低估,CC在雨养(W0)条件下被高估,在正常灌溉(W1)和过量灌溉(W2)条件下被低估;产量均被低估;4)不同氮肥水平,AGB的模拟精度随着施N量的增加而降低,并且普遍被低估,CC普遍被高估,产量均被低估。以上结果表明,PSO、SA和SCE-UA 3种数据同化算法均能有效模拟冬小麦的AGB、CC和产量,其中SCE-UA数据同化算法无论在运算效率还是同化结果的精度上均优于PSO和SA数据同化算法。  相似文献   

16.
冬小麦变量施肥机控制系统的设计与试验   总被引:2,自引:2,他引:0  
为了实现冬小麦生长过程中的实时变量精准追肥,使用近地光谱探测技术,结合模糊PID(proportion integration differentiation,比例-积分-微分)控制技术,研究设计了适合中国大田作业的实时变量追肥机控制系统。追肥机采用轴分段式设计,开度和转速双变量调节,通过光谱传感器获取作物冠层归一化植被指数,结合追肥算法计算出当前的目标施肥量,采用测速和测距法反馈肥料流量信息,并根据追肥机实际行进速度,实时调整追肥量,实现精准变量追肥。试验结果表明,模糊PID控制具有良好的动态稳定性和跟踪性能,大田试验的结果表明,追肥机控制精度均达到90%以上,测速系统的检测绝对误差小于0.25 km/h,可以实现精准施肥的目标。该研究为变量施肥机的在线变量施肥控制提供了参考。  相似文献   

17.
冬小麦叶片氮含量与叶片光合作用和营养状况密切相关,直接影响植株生长发育,而茎秆中的氮含量与茎秆中纤维素、半纤维素和木质素的比例和含量密切相关,直接影响茎秆质量及植株的抗倒伏能力。然而,有关对冬小麦茎秆氮含量估算研究较为有限,限制了从氮含量角度判断茎秆质量及对倒伏的预测能力。为精准估算冬小麦不同器官(叶片、茎秆)氮含量,该研究通过2年田间试验,获取冬小麦4个关键生育期(拔节期、抽穗期、开花期、灌浆期)和3种施氮水平条件下(N1、N2和N3)的冠层光谱反射率、叶片、茎秆氮含量及叶片SPAD (soil and plant analyzer development, SPAD)值。分析了不同生育期和施氮水平条件下高光谱植被指数对叶片和茎秆氮含量的敏感性,并结合5种常用的机器学习算法:随机森林回归(random forest regression,RFR)、支持向量回归(support vector regression,SVR)、偏最小二乘回归(partial least squares regression,PLSR)、高斯过程回归(gaussian process regression,GPR)、深度神经网络回归(deep neural networks,DNN)构建冬小麦叶片和茎秆氮含量估算模型。结果表明:高光谱植被指数对叶片和茎秆氮含量的敏感性受到生育期和施氮水平的影响。在灌浆期,最佳植被指数双峰冠层植被指数 DCNI(double-peak canopy nitrogen index)对叶片氮含量的敏感性最高,R2为0.866。对茎秆氮含量,在抽穗期的敏感性最高,最佳植被指数归一化叶绿素比值指数 NPQI(normalized phaeophytinization index)与氮含量相关系数R2=0.677。施氮水平的提升增加了光谱植被指数对茎秆氮含量的敏感性。结合SPAD值的机器学习算法提升了氮含量的估算精度,对叶片氮含量,在不同生育期和施氮水平条件下估算精度提升了1%~7%,其中在全生育期的归一化均方根误差NRMSE从0.254提升到0.214,抽穗期的NRMSE提升最大,从0.201提升到0.128。对茎秆氮含量,全生育期的NRMSE从0.443提升到0.400,抽穗期的NRMSE提升最大,从0.323提升到0.268。在全生育期,结合SPAD值的DNN模型对叶片(R2=0.782、NRMSE=0.214)和茎秆(R2=0.802、NRMSE=0.400)氮含量的估算精度最佳。研究说明,SPAD值与光谱植被指数结合有利于提升冬小麦不同生育期和施氮水平条件下叶片和茎秆氮含量的估算精度。  相似文献   

18.
作物产量准确估算在农业生产中具有重要意义。该文利用无人机获取冬小麦挑旗期、开花期和灌浆期数码影像和高光谱数据,并实测产量。首先利用无人机数码影像和高光谱数据分别提取数码影像指数和光谱参数,然后将数码影像指数和光谱参数与冬小麦产量作相关性分析,挑选出相关性较好的9个指数和参数,最后以选取的数码影像指数和光谱参数为建模因子,通过MLR(multiple linear regression,MLR)和RF(random forest,RF)对产量进行估算。结果表明:数码影像指数和光谱参数与实测产量均有很强的相关性。利用数码影像指数和光谱参数通过MLR和RF构建的产量估算模型均在灌浆期表现精度最高,在灌浆期,数码影像指数和光谱参数构建的MLR模型R~2和NRMSE分别为0.71、12.79%,0.77、10.32%。对模型对比分析可知,以光谱参数为因子的MLR模型精度较高,更适合用于估算冬小麦产量。利用无人机遥感数据,通过光谱参数建立的MLR模型能够快速、方便地对作物进行产量预测,并可以根据不同生育期的产量估算模型有效地对作物进行监测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号