首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sorghum and millets have considerable potential in foods and beverages. As they are gluten-free they are suitable for coeliacs. Sorghum is also a potentially important source of nutraceuticals such antioxidant phenolics and cholesterol-lowering waxes. Cakes, cookies, pasta, a parboiled rice-like product and snack foods have been successfully produced from sorghum and, in some cases, millets. Wheat-free sorghum or millet bread remains the main challenge. Additives such as native and pre-gelatinised starches, hydrocolloids, fat, egg and rye pentosans improve bread quality. However, specific volumes are lower than those for wheat bread or gluten-free breads based on pure starches, and in many cases, breads tend to stale faster. Lager and stout beers with sorghum are brewed commercially. Sorghum's high-starch gelatinisation temperature and low beta-amylase activity remain problems with regard to complete substitution of barley malt with sorghum malt . The role of the sorghum endosperm matrix protein and cell wall components in limiting extract is a research focus. Brewing with millets is still at an experimental stage. Sorghum could be important for bioethanol and other bio-industrial products. Bioethanol research has focused on improving the economics of the process through cultivar selection, method development for low-quality grain and pre-processing to recover valuable by-products. Potential by-products such as the kafirin prolamin proteins and the pericarp wax have potential as bioplastic films and coatings for foods, primarily due to their hydrophobicity.  相似文献   

2.
There is considerable interest in sorghum, millets and pseudocereals for their phytochemical content, their nutritional potential and their use in gluten-free products. They are generally rich in a several phenolic phytochemicals. Research has indicated that the phenolics in these grains may have several important health-promoting properties: prevention and reduction of oxidative stress, anti-cancer, anti-diabetic, anti-inflammatory, anti-hypertensive and cardiovascular disease prevention. However, increased research on the actual health-promoting properties of foods made from these grains is required. Biofortified (macro and micronutrient enhanced) sorghum and millets are being developed through conventional breeding and recombinant DNA technology to combat malnutrition in developing countries. Enhanced nutritional traits include: high amylopectin, high lysine, improved protein digestibility, provitamin A rich, high iron and zinc, and improved mineral bioavailability through phytate reduction. Some of these biofortified cereals also have good agronomic characteristics and useful commercial end-use attributes, which will be important to their adoption by farmers. Knowledge of the structure of their storage proteins is increasing. Drawing on research concerning maize zein, which shows that it can produce a visco-elastic wheat-like dough, it appears that the storage proteins of these minor grains also have this potential. Manipulation of protein β-sheet structure seems critical in this regard.  相似文献   

3.
A brief review of literature on sorghum for human foods and on the relationship among some kernel characteristics and food quality is presented. The chief foods prepared with sorghum, such as tortilla, porridge, couscous and baked goods are described. Tortillas, prepared with 75% of whole sorghum and 25% of yellow maize, are better than those prepared with whole sorghum alone. A porridge formulation with a 30:40:30 mix of sorghum, maize and cassava respectively, has been shown to be the most acceptable combination. The cooked porridge Aceda has lower protein digestibility and higher biological value than the uncooked porridge Aceda. Sorghum is not considered breadmaking flour but the addition of 30% sorghum flour to wheat flour of 72% extraction rate produces a bread, evaluated as good to excellent.  相似文献   

4.
Gluten-free bread often has low nutritive value, high glycemic index (GI) and short shelf-life. The aim of this research was to investigate the influence of sourdough addition on GI, quality parameters and firming kinetics of gluten-free bread produced by partially baked frozen technology. Sourdough was fermented with a commercial starter of Lactobacillus fermentum and added to bread batter at four levels (7.5; 15; 22.5 or 30%). We determined biochemical characteristics of the sourdough and bread chemical composition, glycemic index in vivo, physical properties and firming kinetics after final rebaking. All breads were enriched with inulin and were high in fiber (>6 g/100 g). Control bread that was prepared without sourdough had medium GI (68). Sourdough addition decreased bread GI. However, only breads with 15 and 22.5% of sourdough had low GI. Moreover, addition of 15 and 22.5% of sourdough had positively affected the quality parameters of partially baked frozen bread: specific volume increased, crumb firmness decreased and firming was delayed. In conclusion, the combined application of sourdough and partially baked frozen technology can decrease glycemic index, improve quality and shelf-life of gluten-free bread. Such breads can be recommended as a part of well balanced gluten-free diet.  相似文献   

5.
Addition of a gluten-free flour such as sorghum has negative impact on the quality of wheat dough for bread making. One of the methods which can be used to promote the quality of sorghum-wheat composite dough is to extrude the sorghum flour before incorporation. In this regard, to produce a dough with appropriate bakery properties sorghum flour was extruded at 110 °C and 160 °C die temperature with 10%, 14% and 18% feed moisture. The effect of extruded sorghum flour incorporation (10%) on rheological (farinography and stress relaxation behavior), morphological and temperature profile of sorghum-wheat composite dough were evaluated. Extrusion cooking altered the sorghum-wheat composite dough properties through partial gelatinization of starch granules. Addition of extruded sorghum flour increased the water absorption and dough development time but it decreased the dough stability. Native sorghum-wheat composite dough showed viscoelastic liquid-like behavior whereas addition of sorghum flour extrudate changed dough to a more viscoelastic solid-like structure. Maxwell model was more appropriate than Peleg model to describe the viscoelasticity of the sorghum-wheat composite dough. Extrusion cooking decreased composite dough elasticity and viscosity. Sorghum extrudate increased the heating rate of composite dough crumb during baking. Addition of extruded sorghum flour formed a non-uniform and less compact dough structure. As a result, dough containing extruded sorghum flour had a good potential for producing a high-yielding bread in a short time of baking.  相似文献   

6.
The in vitro starch digestibility of five gluten-free breads (from buckwheat, oat, quinoa, sorghum or teff flour) was analysed using a multi-enzyme dialysis system. Hydrolysis indexes (HI) and predicted glycaemic indexes (pGI) were calculated from the area under the curve (AUC; g RSR/100g TAC*min) of reducing sugars released (RSR), and related to that of white wheat bread. Total available carbohydrates (TAC; mg/4 g bread “as eaten”) were highest in sorghum (1634 mg) and oat bread (1384 mg). The AUC was highest for quinoa (3260 g RSR), followed by buckwheat (2377 g RSR) and teff bread (2026 g RSR). Quinoa bread showed highest predicted GI (95). GIs of buckwheat (GI 80), teff (74), sorghum (72) and oat (71) breads were significantly lower. Significantly higher gelatinization temperatures in teff (71 °C) and sorghum flour (69 °C) as determined by differential scanning calorimetry (DSC) correlated with lower pGIs (74 and 72). Larger granule diameters in oat (3–10 μm) and sorghum (6–18 μm) in comparison to quinoa (1.3 μm) and buckwheat flour (3–7 μm) as assessed with scanning electron microscopy resulted in lower specific surface area of starch granules. The data is in agreement with predictions that smaller starch granules result in a higher GI.  相似文献   

7.
The in vitro starch digestibility of five gluten-free breads (from buckwheat, oat, quinoa, sorghum or teff flour) was analysed using a multi-enzyme dialysis system. Hydrolysis indexes (HI) and predicted glycaemic indexes (pGI) were calculated from the area under the curve (AUC; g RSR/100g TAC*min) of reducing sugars released (RSR), and related to that of white wheat bread. Total available carbohydrates (TAC; mg/4 g bread “as eaten”) were highest in sorghum (1634 mg) and oat bread (1384 mg). The AUC was highest for quinoa (3260 g RSR), followed by buckwheat (2377 g RSR) and teff bread (2026 g RSR). Quinoa bread showed highest predicted GI (95). GIs of buckwheat (GI 80), teff (74), sorghum (72) and oat (71) breads were significantly lower. Significantly higher gelatinization temperatures in teff (71 °C) and sorghum flour (69 °C) as determined by differential scanning calorimetry (DSC) correlated with lower pGIs (74 and 72). Larger granule diameters in oat (3–10 μm) and sorghum (6–18 μm) in comparison to quinoa (1.3 μm) and buckwheat flour (3–7 μm) as assessed with scanning electron microscopy resulted in lower specific surface area of starch granules. The data is in agreement with predictions that smaller starch granules result in a higher GI.  相似文献   

8.
Protease has been shown to be an effective food additive for improving the quality of gluten-free rice bread. In this study, we found that bacillolysin (Protin SD-NY10, metallo protease), papain (cysteine protease), and subtilisin (Protin SD-AY10, serine protease) increased the specific volume of gluten-free rice breads by 30–60% compared with untreated breads. These proteases also decreased crumb hardness by 10–30% compared with untreated breads. Many fine bubble cells were observed in the crumb of the protease-treated rice breads using scanning electron microscopy. Optical microscopic observation revealed fine networks of small protein aggregates stained by Coomassie Brilliant Blue (CBB) in the rice batter of the improved gluten-free rice breads. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of protein in the rice batter suggested that the amount of low molecular weight proteins (less than 10 kDa) increased with the use of Protin SD-NY10, Protin SD-AY10 and papain treatments compared with untreated rice batter. Thus, we considered that the small proteins aggregates were formed through disulfide bonds. This fine network was effective for retaining CO2 gas during the fermentation process, resulting in an increase in the specific volume and a decrease in the crumb hardness of gluten-free rice bread.  相似文献   

9.
Sorghum and millet phenols and antioxidants   总被引:5,自引:2,他引:5  
Sorghum is a good source of phenolic compounds with a variety of genetically dependent types and levels including phenolic acids, flavonoids, and condensed tannins. Most sorghums do not contain condensed tannins, but all contain phenolic acids. Pigmented sorghums contain unique anthocyanins that could be potential food colorants. Some sorghums have a prominent pigmented testa that contains condensed tannins composed of flavan-3-ols with variable length. Flavan-3-ols of up to 8–10 units have been separated and quantitatively analyzed. These tannin sorghums are excellent antioxidants, which slow hydrolysis in foods, produce naturally dark-colored products and increase the dietary fiber levels of food products. Sorghums have high concentration of 3-deoxyanthocyanins (i.e. luteolinidin and apigenidin) that give stable pigments at high pH. Pigmented and tannin sorghum varieties have high antioxidant levels that are comparable to fruits and vegetables. Finger millet has tannins in some varieties that contain a red testa. There are limited data on the phenolic compounds in millets; only phenolic acids and flavones have been identified.  相似文献   

10.
Sorghum is a good source of phenolic compounds with a variety of genetically dependent types and levels including phenolic acids, flavonoids, and condensed tannins. Most sorghums do not contain condensed tannins, but all contain phenolic acids. Pigmented sorghums contain unique anthocyanins that could be potential food colorants. Some sorghums have a prominent pigmented testa that contains condensed tannins composed of flavan-3-ols with variable length. Flavan-3-ols of up to 8–10 units have been separated and quantitatively analyzed. These tannin sorghums are excellent antioxidants, which slow hydrolysis in foods, produce naturally dark-colored products and increase the dietary fiber levels of food products. Sorghums have high concentration of 3-deoxyanthocyanins (i.e. luteolinidin and apigenidin) that give stable pigments at high pH. Pigmented and tannin sorghum varieties have high antioxidant levels that are comparable to fruits and vegetables. Finger millet has tannins in some varieties that contain a red testa. There are limited data on the phenolic compounds in millets; only phenolic acids and flavones have been identified.  相似文献   

11.
The increasing demand for gluten-free products has favoured the design of numerous gluten-free bakery products which intended to mimic the quality characteristics of wheat bakery products. The objective of this study was to evaluate the nutritional pattern of gluten-free breads representative of the Spanish market for this type of products. The protein, fat and mineral content of the gluten-free breads showed great variation, ranging from 0.90 to 15.5 g/100 g, 2.00 to 26.1 g/100 g and 1.10 to 5.43 g/100 g, respectively. Gluten-free breads had very low contribution to the recommended daily protein intake, with a high contribution to the carbohydrate dietary reference intake. Dietary fiber content also showed great variation varying from 1.30 to 7.20 g/100 g. In vitro enzymatic hydrolysis of starch showed that the most predominant fraction was the rapidly digestible starch that varied from 75.6 to 92.5 g/100 g. Overall, gluten-free breads showed great variation in the nutrient composition, being starchy based foods low in proteins and high in fat content, with high glycaemic index.  相似文献   

12.
Gluten is a fundamental component for the overall quality and structure of breads. The replacement of the gluten network in the development of gluten-free cereal products is a challenging task for the cereal technologist. The functionality of proteins from gluten-free flours could be modified in order to improve their baking characteristics by promoting protein networks. Transglutaminase (TGase) has been successfully used in food systems to promote protein cross-linking. In this study, TGase was investigated for network forming potential on flours from six different gluten-free cereals (brown rice, buckwheat, corn, oat, sorghum and teff) used in breadmaking. TGase was added at 0, 1 or 10 U/g of proteins present in the recipe. The effect of TGase on batters and breads was evaluated by fundamental rheological tests, Texture Profile Analysis and standard baking tests. Three-dimensional elaborations of Confocal Laser Scanning Microscopy (CLSM) images were performed on both batters and breads to evaluate the influence of TGase on microstructure. Fundamental rheological tests showed a significant increase in the pseudoplastic behaviour of buckwheat and brown rice batters when 10 U of TGase were used. The resulting buckwheat and brown rice breads showed improved baking characteristics as well as overall macroscopic appearance. Three-dimensional CLSM image elaborations confirmed the formation of protein complexes by TGase action. On the other side, TGase showed negative effects on corn flour as its application was detrimental for the elastic properties of the batters. Nevertheless, the resulting breads showed significant improvements in terms of increased specific volume and decreased crumb hardness and chewiness. Under the conditions of this study, no effects of TGase could be observed on breads from oat, sorghum or teff. Overall, the results of this study show that TGase can be successfully applied to gluten-free flours to improve their breadmaking potentials by promoting network formation. However, the protein source is a key element determining the impact of the enzyme.  相似文献   

13.
In the present study was examined the nutritive value of different sorghum and millet based baby foods. Different types of kisra, some fortified with chickpeas or peanuts, were also included in the study. Finally was compared the influence of replacing wheat bran with sorghum bran in bread. The nutritive value was assessed by chemical analyses and by rat balance studies. The addition of chickpea and peanuts improved the quality of kisra a staple food of Sudan. This type of kisra can be used as a well-balanced food for infants above the age of one year. The baby food developed from sorghum/millet malt, milk powder and processed by drum drier provides a safe level of protein for children above the age of one month. This formulation and way of processing is well suited for commercial production of sorghum/millet based baby food. Based on the results of the present investigation it is recommended that the use of brown bread for infants should not exceed ten percent wheat or sorghum bran as it affects the digestibility in a negative way.  相似文献   

14.
Gluten-free bakery foodstuffs are a challenge for technologists and nutritionists since alternative ingredients used in their formulations have poor functional and nutritional properties. Therefore, gluten-free bread and cookies using raw and popped amaranth, a grain with high quality nutrients and promising functional properties, were formulated looking for the best combinations. The best formulation for bread included 60–70% popped amaranth flour and 30–40% raw amaranth flour which produced loaves with homogeneous crumb and higher specific volume (3.5 ml/g) than with other gluten-free breads. The best cookies recipe had 20% of popped amaranth flour and 13% of whole-grain popped amaranth. The expansion factor was similar to starch-based controls and the hardness was similar (10.88 N) to other gluten-free cookies. Gluten content of the final products was around 12 ppm. The functionality of amaranth-based doughs was acceptable although hydrocolloids were not added and the final gluten-free products had a high nutritional value.  相似文献   

15.
The aroma of gluten-free bread has been considered of lower quality than that of the common wheat bread. With the aim of improving the aroma of gluten-free bread, the volatile profiles of the crumb of gluten-free breads made from rice, teff, buckwheat, amaranth and quinoa flours as well as corn starch, respectively, were evaluated. Wheat bread was used as a reference and dynamic headspace extraction together with GC/MS was employed. It was found that the whole grain breads, made with teff, quinoa and amaranth flours, presented a stronger aroma with higher number of important aroma contributors. Rice bread was characterised by the highest levels in nonanal and 2,4-decadienal and corn starch bread by 2,3-pentanedione and 2-furaldehyde. Teff presented the highest abundance of ethyl hexanoate and ethyl nonanoate, but also of alcohols and aldehydes from lipid oxidation. Quinoa and amaranth were classified by the highest content in Strecker and Ehrlich aldehydes as well as 1-propanol, 2-methyl-1-propanol, 3-methyl-1-butanol or 3-hydroxy-2-butanone from fermentation. Corn starch bread was the closest to wheat bread in the PCA due to the highest content mainly in 2,3-butanedione and furfural as well as the lowest contents in 1-propanol, 1-hexanol and pentanal.  相似文献   

16.
Cereal based products intended for gluten sensitive individuals, particularly to celiac disease patients, tend to have poor organoleptic qualities and they contain low levels of healthy whole grain compounds. Adding whole grain ingredients, such as malt hydrolysates, could compensate these defects provided that the ingredients are adequately free from toxic prolamin epitopes. Here we demonstrate that the level of toxic prolamin epitopes in the malt autolysates (wheat, barley, rye) were substantially lower than in the native malts but too high to allow “very low in gluten” labelling. To further eliminate the residual levels of toxic prolamin epitopes, a proline-specific endoprotease from Aspergillus niger was added to the malt autolysates. In the resulting malt hydrolysates (of wheat and rye but not barley), the prolamins were indeed greatly reduced and were below the very low gluten limit of 100 mg/kg. Malt hydrolysates with adequately low gluten levels may potentially be used as novel ingredients within gluten-free foods.  相似文献   

17.
The supplementation effects of maize fiber arabinoxylans (MFAX, 0%–6%), laccase (0–2 U/g flour) and water absorption level (90%–100%) on gluten-free (GF) batter rheology and bread quality were analyzed. From viscoamylograph analysis, lower starch amount in GF flour due to MFAX addition decreased peak viscosity and retrogradation. Surface response plots showed that laccase did not have significant effect on GF batter rheology and bread quality, whilst water was the most important variable. Higher levels of water absorption benefited bread texture. Higher water level (>100 mL/100 g flour) was needed in the experimental design to evaluate correctly the effect of 6% MFAX replacement on GF bread quality. Further analyses were carried in order to adjust water absorption of batters according to their consistency index (K ≈ 100 Pa sn), resulting an optimal water absorptions of 95%, 100% and 105% for control flour and flours supplemented with 3% or 6% MFAX, respectively. Thus, MFAX addition enhanced water-binding capacity of flour and yielded GF breads with higher specific volume and softer crumb texture. These quality parameters were best rated with 6% MFAX addition to flours. This research demonstrated the potential of MFAX to develop GF breads with improved quality, when optimal water level is used.  相似文献   

18.
The effect of various steeping conditions (time, temperature and aeration) on the quality of sorghum malt for brewing (in terms of diastatic power, free amino nitrogen and hot water extract) was examined. Steeping time and temperature had a highly significant effect on sorghum malt quality. In general, malt quality increased with steeping time (from 16–40 h). Malt diastatic power increased with steeping temperature (up to 30°C) and free amino nitrogen and extract content peaked at a steeping temperature of 25°C. Aeration during steeping appeared to enhance the extract and free amino nitrogen content of the finished malt. Sorghum malt quality was found to be directly related to the steep-out moisture of the grain.  相似文献   

19.
Although the beneficial effect of arabinoxylan (AX) has been recognized for breadmaking, the available information about the effect of these compounds in gluten-free systems is scarce. In the present study, maize AX was tested in gluten-free breads using a yeast-leavened lean formulation based on rice flour and corn starch and two shaping models: pans and by dropping dough. The effect of the AX level (0%–5%) and hydration (70%–85%) were determined. Breads produced were analyzed in texture, morphology and crumb structure. The breads from the pan shaping model did not show significant differences in the crumb hardness. Moreover, the control breads presented better springiness, cohesiveness and resilience compared to AX breads. For the breads from the dropping dough model, those containing AX had lower hardness and chewiness and higher 2D area, height, cell density and surface area compared to control breads, especially at higher AX levels. Yet, AX caused a detrimental effect in springiness, cohesiveness and resilience. The hydration affected the hardness, 2D area, height, cell density and mean cell area in breads containing AX, finding better results in breads with 80% water absorption. This research demonstrated that even when AX are capable to improve the hardness and crumb structure of gluten-free breads, they could cause a detrimental effect in other textural characteristics.  相似文献   

20.
国内外高粱深加工研究现状与发展前景   总被引:24,自引:1,他引:24  
高粱既可直接食用、饲用,又可加工利用。近年来,国内外高粱深加工研究发展很快,除传统的用高粱作主食、酿制白酒、啤酒、做饲料等外,还对高粱的多种加工用途进行了有益的探索。如:用甜高粱茎秆造酒,用饲草高粱作青贮和青饲料,用高粱生产酒精,用高粱壳提取色素,用高粱籽粒提取淀粉,生产高粱面包、高粱甜点等等。高粱深加工发展前景看好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号