首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rhizosphere reflects a sphere of high substrate input by means of rhizodeposits. Active microorganisms and extracellular enzymes are known to be responsible for substrate utilization in soil, especially in rooted soil. We tested for microbial‐ and enzyme activities in arable soil, in order to investigate the effects of continuous input of easily available organics (e.g., root‐exudates) to the microbial community. In a field experiment with maize, rooted and root‐free soil were analyzed and rhizosphere processes were linked to microbial activity indicators such as specific microbial growth rates and kinetics of six hydrolytic extracellular enzymes: β‐glucosidase, β‐cellobiohydrolase, β‐xylosidase, acid phosphatase, leucine‐ and tyrosine‐aminopeptidase. Higher potential activities of leucine‐aminopeptidase (2‐fold) for rooted vs. root‐free soil suggested increased costs of enzyme production, which retarded the specific microbial growth rates. Total microbial biomass determined by the substrate‐induced respiration technique and dsDNA extraction method was 23% and 42% higher in the rooted surface‐layer (0–10 cm) compared to the root‐free soil, respectively. For the rooted soil, potential enzyme activities of β‐glucosidase were reduced by 23% and acid phosphatase by 25%, and increased by 300% for β‐cellobiohydrolase at 10–20 cm depth compared to the surface‐layer. The actively growing microbial biomass increased by the 17‐fold in rooted soil in the 10–20 cm layer compared to the upper 10 cm. Despite the specific microbial growth rates showing no changes in the presence of roots, these rates decreased by 42% at 10–20 cm depth compared to the surface‐layer. This suggests the dominance in abundances of highly active but slower growing microbes with depth, reflecting also their slower turnover. Shifts in microbial growth strategy, upregulation of enzyme production and increased microbial respiration indicate strong root effects in maize planted soil.  相似文献   

2.
Soil microbial communities and their activities are altered by land use change; however impacts and extent of these alterations are often unclear. We investigated the functional responses of soil microbes in agricultural soil under sugarcane and corresponding native soil under Eucalyptus forest to additions of contrasting plant litter derived from soybean, sugarcane and Eucalyptus in a microcosm system, using a suite of complimentary techniques including enzyme assays and community level physiological profiles (CLPP). Initially agricultural soil had 50% less microbial biomass and lower enzyme activities than forest soil, but significantly higher nitrification rates. In response to litter addition, microbial biomass increased up to 11-fold in agricultural soil, but only 1.8-fold in forest soil, suggesting a prevalence of rapidly proliferating ‘r’ and slower growing ‘K’ strategists in the respective soils. Litter-driven change in microbial biomass and activities were short lived, largely returning to pre-litter addition levels by day 150. Decomposition rates of sugarcane and soybean litter as estimated via CO2 production were lower in agricultural than in forest soil, but decomposition of more recalcitrant Eucalyptus litter was similar in both soils, contradicting the notion that microbial communities specialise in decomposing litter of the dominant local plant species. Enzyme activities and community level physiological profiles (CLPP) were closely correlated to microbial biomass and overall CO2 production in the agricultural soil but not the forest soil, suggesting contrasting relationships between microbial population dynamics and activity in the two soils. Activities of enzymes that break down complex biopolymers, such as protease, cellulase and phenol oxidase were similar or higher in the agricultural soil, which suggests that the production of extracellular biopolymer-degrading enzymes was not a factor limiting litter decomposition. Enzyme and CLPP analyses produced contrasting profiles of microbial activity in the two soils; however the combination of both analyses offers additional insights into the changes in microbial function and community dynamics that occur after conversion of forest to agricultural land.  相似文献   

3.
A silty loam soil was incubated with the leaves and stems of two transgenic Bacillus thuringiensis (Bt) cotton varieties and nontransgenic Bt cotton to study the soil persistence of the Bt toxin from the decomposing transgenic Bt cotton tissues and its effect on soil enzyme activities. The results showed that after Bt cotton tissue amendment, Bt toxin was introduced into soil upon decomposition; about 50% of the introduced Bt toxin persisted in soil for at least 56 days. No Bt toxin was detected in the nontransgenic Bt cotton-amended soil; the amount of Bt toxin was the highest in the soil treated with the residue with the higher Bt toxin content. Activities of soil urease, acid phosphomonoesterase, invertase, and cellulase were stimulated by the addition of Bt cotton tissues, whereas activity of soil arylsulfatase was inhibited. Probably cotton tissue stimulated microbial activity in soil, and as a consequence, enzyme activities of soil were generally increased. This effect can mask any negative effect of the Bt toxin on microbial activity and thus on enzyme activities.  相似文献   

4.
【目的】紫云英-水稻轮作生产体系是近年来为解决大面积冬闲田而提出的水稻生产新模式。研究紫云英-水稻轮作模式下,不同量紫云英与化肥配施对稻谷增产效果及稻田土壤生物学特性的影响,为合理施用紫云英,有效改善稻田土壤微生态环境、提高土壤质量、保证水稻高产稳产提供理论支撑。【方法】以安徽省农科院土壤肥料研究所2008年设置的紫云英-稻-稻定位试验为平台,分析了5种不同施肥模式下[不施紫云英和化肥(CK)、100%化肥不施紫云英以及70%化肥分别配施紫云英7500、15000、30000 kg/hm2])稻田耕层土壤(0—20 cm)微生物量碳、微生物量氮(SMBC、SMBN)和土壤酶活性的变化,及土壤生物学特性与土壤养分的相关性,并以水稻农艺性状和产量检验了土壤生产力。【结果】1)施用紫云英绿肥能够显著提高水稻籽粒产量,增加水稻单位面积的有效穗数和水稻结实率。尤其是70%化肥配施紫云英15000 kg/hm2处理,稻谷产量达7604.53 kg/hm2,比未施肥处理和单施化肥处理分别增产228.06%和36.29%,差异达显著水平。2)与对照相比,单施化肥处理土壤微生物量碳、氮增加,脲酶、酸性磷酸酶活性提高,过氧化氢酶活性降低;70%化肥的条件下,配施紫云英处理土壤微生物量及土壤酶活性显著高于单施化肥及对照处理,且随紫云英施用量的提高而增加。整个生育期,与对照相比,施紫云英处理土壤微生物量碳、氮分别提高21.03%~142.33%、19.97%~83.91%,土壤脲酶、酸性磷酸酶、过氧化氢酶活性分别提高10.12%~100.33%、10.22%~43.23%、0.14%~7.28%。土壤微生物量及脲酶、酸性磷酸酶与土壤有机质、全氮、碱解氮呈显著或极显著正相关;过氧化氢酶与土壤养分之间无明显相关性。【结论】紫云英绿肥与化肥长期配合施用可显著提高水稻产量、土壤微生物量及土壤酶活性,改善稻田土壤的微生态环境。本试验条件下,在70%化肥施用量的前提下,紫云英施用量以15000~30000 kg/hm2的综合效果较好。故适量紫云英与化肥配施有利于提高土壤生产能力,是安徽沿江双季稻区稻田增产和培肥地力的有效途径。  相似文献   

5.
褚洪龙  李莎  唐明 《土壤学报》2015,52(1):154-161
为了解黄土高原油松林根际土壤酶活性和真菌群落多样性,本研究分析了陕西黄龙县不同样区油松根际土壤脲酶、碱性磷酸酶、多酚氧化酶和过氧化氢酶活性,并采用巢式PCR-变性梯度凝胶电泳(PCR-DGGE)技术研究了油松根际土壤中真菌群落多样性。结果表明,该地区油松根际真菌群落相似性较高,但受坡向、海拔、土壤水分及人类扰动等诸多因素的影响,不同样区的真菌群落多样性和土壤酶活性存在差异。油松根际各土壤酶活性均表现出坡顶样地高于坡底样地,阴面样地高于阳面样地,林区路旁样地由于采样环境不同于林中样地,酶活性介于其他样地之间;丰富度(S)、Shannon-Wiener指数(H)、Simpson指数(D)、均匀度指数(EH)分析表明,该区域油松根际土壤真菌群落多样性分布特征与酶活性分布特征相一致。相关性分析表明,除过氧化氢酶外,其余酶活性之间、以及与真菌多样性均呈显著正相关(p0.05);土壤含水量与真菌多样性和土壤酶活性除多酚氧化酶外均呈显著正相关(p0.05);而土壤p H与各种酶活性之间均未达显著相关水平(p0.05)。土壤含水量是影响该地区真菌群落多样性与土壤酶活性主要因素之一。  相似文献   

6.
The use of plasmolytic agents and antiseptics permits the assay of soil enzymes in situ without interference from microbial growth or active transport. The effectiveness of toluene, dimethyl sulfoxide (DMSO), ethanol and Triton X-100 were evaluated in relation to their: (i) inhibition of specific enzyme reactions; (ii) plasmolytic character; and (iii) biostatic qualities, to assess the intracellular and extracellular contribution of soil enzyme activities. Toluene, ethanol and Triton X-100 each effectively prevented microbial proliferation during the assay of soil amidase. Although ethanol inhibited several purified enzymes, it was better suited than toluene for the assay of acid and alkaline phosphatases and catalase in soil since this agent had little effect on these purified enzyme reactions and prevented microbial interferences. DMSO is an effective plasmolytic agent used for the assay of yeast enzymes, but was of little value in soil enzyme, assays because it severely inhibited many of the purified enzyme reactions. Triton X-100 had essentially no effect on the activities of purified enzymes and showed antiseptic qualities, but gave low activities when soils were assayed. Toluene is a plasmolytic agent as well as an antiseptic and had little effect or only slightly inhibited purified preparations of acid and alkaline phosphatases, α-glucosidase and invertase. Toluene severely inhibited catalase and dehydrogenase activities. The soil enzymes, arylsulfatase and urease, were enhanced (1.30- to 1.34-fold) in the presence of toluene suggesting that its plasmolytic character was affecting the intracellular enzyme contribution of the measured activities in soil.  相似文献   

7.
Understanding in situ enzyme activities could help clarify the fate of soil organic carbon (SOC), one of the largest uncertainties in predicting future climate. Here, we explored the role of soil temperature and moisture on SOM decomposition by using, for the first time, modelled in situ enzyme activities as a proxy to explain seasonal variation in soil respiration. We measured temperature sensitivities (Q10) of three enzymes (β-glucosidase, xylanase and phenoloxidase) and moisture sensitivity of β-glucosidase from agricultural soils in southwest Germany. Significant seasonal variation was found in potential activities of β-glucosidase, xylanase and phenoloxidase and in Q10 for β-glucosidase and phenoloxidase activities but not for xylanase. We measured moisture sensitivity of β-glucosidase activity at four moisture levels (12%–32%), and fitted a saturation function reflecting increasing substrate limitation due to limited substrate diffusion at low water contents. The moisture response function of β-glucosidase activity remained stable throughout the year. Sensitivity of enzymes to temperature and moisture remains one of the greatest uncertainties in C models. We therefore used the response functions to model temperature-based and temperature and moisture-based in situ enzyme activities to characterize seasonal variation in SOC decomposition. We found temperature to be the main factor controlling in situ enzyme activities. To prove the relevance of our modelling approach, we compared the modelled in situ enzyme activities with soil respiration data measured weekly. Temperature-based in situ enzyme activities explained seasonal variability in soil respiration well, with model efficiencies between 0.35 and 0.78. Fitting an exponential response function to in situ soil temperature explained soil respiration to a lesser extent than our enzyme-based approach. Adding soil moisture as a co-factor improved model efficiencies only partly. Our results demonstrate the potential of this new approach to explain seasonal variation of enzyme related processes.  相似文献   

8.
Summary In an incubation experiment, soil was amended to induce changes in microbial growth and enzyme production. The soluble fraction of newly produced protease (extracellular enzyme) was separated from the soil by a sterilized millipore filter. The activity of total and soluble protease, ATP content, number of acridine orange-stained bacteria, and CO2 evolution in soils were measured during the incubation. Increases in soluble and total protease activities in soils amended with agar and glucose coincided with increases in ATP content, total counts of bacteria, growth of fungi, and CO2 evolution. In amended soils, the activity of soluble extracellular protease was about 30% of the total protease activity. Soluble extracellular protease activity was highly correlated with total protease activity (r=0.78, P<0.01), ATP content (r=0.74, P<0.01), and total counts of bacteria (r=0.94, P<0.01) during the first 6 days of incubation. Hence measurement of microbial biomass appeared to be an index for the level of extracellular enzymes in soil.  相似文献   

9.
A root window-based, enzyme-imprinted, membrane system has been modified to enable visualization of the activities of hydrolytic enzymes (acid phosphatase, aminopeptidase, chitinase, and β-glucosidase) in situ in forest soils. The approach can be used to correlate the distribution of enzyme activity with visible features such as roots, mycorrhizas, or mycelial mats. In addition, it enables accurate spatial soil sampling for analysis of microbial communities associated with enzyme activities. The substrates are colorimetric conjugates of napthol, where color develops instantly in the field, or fluorimetric conjugates of 4-methylumbelliferone, whose fluorescent products are detected by a gel-documenting system. The method will allow important questions about the relationship between taxonomic and functional diversity of soil microorganisms to be addressed and identification of enzyme activity hot-spots in soil.  相似文献   

10.
A three-year field experiment was carried out to study the effects of green manure application on the soil microbial biomass carbon, nitrogen and soil enzyme activities in order to provide a theoretical basis on low-carbon agriculture, environment-friendly agriculture and promote the sustainable development of tobacco production. Six treatments were set and were: check (CK) (contrast, no application of green manure), T1 (application of ryegrass only 1 year), T2 (application of ryegrass 2 years), T3 (application of oats 2 years), T4 (application of ryegrass 3 years), and T5 (application of oats 3 years), which was based on continuous planting oats and ryegrass (Lolium multiflorum L.) in our experiment. The results showed that soil microbial biomass carbon, nitrogen, and the activity of soil urease, acid phosphatase (ACP), sucrase, and catalase increased with each year and with the application of green manure. Compared with the control, after the application of green manure the content of soil microbial biomass carbon and nitrogen increased 1.94%–93.07% and 2.30%–145.07%, respectively, and the activity of soil urease, ACP, sucrase, and catalase increased 1.45%–56.52%, 2.34%–33.17%, 0.96%–172.66%, and 3.33%–85.71%, respectively. Correlation analysis indicated that soil microbial biomass carbon and soil enzymes activity had certain relevance that showed the dynamic process of soil microbial biomass and enzyme activity were coordinate with the decomposition process of green manure and the absorption of mine nutritional to tobacco plant. The results demonstrate that continuous application of green manure could increase soil biological fertility level.  相似文献   

11.
The number of studies on priming effects (PE) in soil has strongly increased during the last years. The information regarding real versus apparent PE as well as their mechanisms remains controversial. Based on a meta-analysis of studies published since 1980, we evaluated the intensity, direction, and the reality of PE in dependence on the amount and quality of added primers, the microbial biomass and community structure, enzyme activities, soil pH, and aggregate size. The meta-analysis allowed revealing quantitative relationships between the amounts of added substrates as related to microbial biomass C and induced PE. Additions of easily available organic C up to 15% of microbial biomass C induce a linear increase of extra CO2. When the added amount of easily available organic C is higher than 50% of the microbial biomass C, an exponential decrease of the PE or even a switch to negative values is often observed. A new approach based on the assessment of changes in the production of extracellular enzymes is suggested to distinguish real and apparent PE. To distinguish real and apparent PE, we discuss approaches based on the C budget. The importance of fungi for long-term changes of SOM decomposition is underlined. Priming effects can be linked with microbial community structure only considering changes in functional diversity. We conclude that the PE involves not only one mechanism but a succession of processes partly connected with succession of microbial community and functions. An overview of the dynamics and intensity of these processes as related to microbial biomass changes and C and N availability is presented.  相似文献   

12.
Clay is generally considered an important stabiliser that reduces the rate of decomposition of organic matter (OM) in soils. However, several recent studies have shown trends contradicting this widely held view, emphasising our poor understanding of the mechanisms underlying the clay effects on OM decomposition. Here, an incubation experiment was conducted using artificial soils differing in clay content (0, 5, and 50%) at different temperatures (5, 15, and 25 °C) to determine the effects of clay content, temperature and their interaction on fresh OM decomposition. CO2 efflux was measured throughout the experiment. Phospholipid fatty acids (PLFAs), enzyme activities, microbial biomass carbon (MBC), and dissolved organic carbon (DOC) were also measured at the end of the pre-incubation and incubation periods in order to follow changes in microbial community structure, functioning, and substrate availability. The results showed that higher clay contents promoted OM decomposition probably by increasing substrate availability and by sustaining a greater microbial biomass, albeit with a different community structure and with higher activities of most of the extracellular enzymes assayed. Higher clay content induced increases in the PLFA contents of all bacterial functional groups relative to fungal PLFA content. However, clay content did not change the temperature sensitivity (Q10) of OM decomposition. The higher substrate availability in the high clay artificial soils sustained more soil microbial biomass, resulting in a different community structure and different functioning. The higher microbial biomass, as well as the changed community structure and functions, accelerated OM decomposition. From these observations, an alternative pathway to understanding the effects of clay on OM decomposition is proposed, in which clay may not only accelerate the decomposition of organic materials in soils but also facilitate the SOM accumulation as microbial products in the long term. Our results highlight the importance of clay content as a control over OM decomposition and greater attention is required to elucidate the underlying mechanisms.  相似文献   

13.
Abstract. Gross N mineralization and nitrification rates were measured in soils treated with dairy shed effluent (DSE) (i.e. effluent from the dairy milking shed, comprising dung, urine and water) or ammonium fertilizer (NH4Cl) under field conditions, by injecting 15N-solution into intact soil cores. The relationships between gross mineralization rate, microbial biomass C and N and extracellular enzyme activities (protease, deaminase and urease) as affected by the application of DSE and NH4Cl were also determined. During the first 16 days, gross mineralization rate in the DSE treated soil (4.3–6.1 μg N g?1 soil day?1) were significantly (P 14;< 14;0.05) higher than those in the NH4Cl treated soil (2.6–3.4 μg N g?1 soil day?1). The higher mineralization rate was probably due to the presence of readily mineralizable organic substrates in the DSE, accompanied by stimulated microbial and extracellular enzyme activities. The stable organic N compounds in the DSE were slow to mineralize and contributed little to the mineral N pool during the period of the experiment. Nitrification rates during the first 16 days were higher in the NH4Cl treated soil (1.7–1.2 μg N g?1 soil day?1) compared to the DSE treated soil (0.97–1.5 μg N g?1 soil day?1). Soil microbial biomass C and N and extracellular enzyme activities (protease, deaminase and urease) increased after the application of the DSE due to the organic substrates and nutrients applied, but declined with time, probably because of the exhaustion of the readily available substrates. The NH4Cl application did not result in any significant increases in microbial biomass C, protease or urease activities due to the lack of carbonaceous materials in the ammonium fertilizer. However, it did increase microbial biomass N and deaminase activity. Significant positive correlations were found between gross N mineralization rate and soil microbial biomass, protease, deaminase and urease activities. Nitrification rate was significantly correlated to biomass N but not to the microbial biomass C or the enzyme activities. Stepwise regression analysis showed that the variations of gross N mineralization rate was best described by the microbial biomass C and N.  相似文献   

14.
沙柳沙障腐烂过程对土壤微生物生物量及酶活性的影响   总被引:1,自引:0,他引:1  
为探究沙柳沙障腐烂过程土壤微生物生物量及酶活性的变化规律,以铺设10年的沙柳沙障为研究对象,采用野外原位取样和室内指标测定法,结合RDA多元数据排序分析,揭示影响土壤微生物生物量及酶活性的主要环境因子.结果表明:(1)随铺设年限的增加,土壤中的C∶ N与C∶ P呈上升趋势,10年后的C∶ N是1年的16.14倍,而N ...  相似文献   

15.
The functional potential of single soil macroaggregates may provide insights into the localized distribution of microbial activities better than traditional assays conducted on bulk quantities of soil. Thus, we scaled down enzyme assays for β-glucosidase, N-acetyl-β-d-glucosaminidase, lipase, and leucine aminopeptidase to measure of the enzyme potential of individual macroaggregates (250–1000 μm diameter). Across all enzymes, the smallest macroaggregates had the greatest activity and the range of enzyme activities observed in all macroaggregates supports the hypothesis that functional potential in soil may be distributed in a patchy fashion. Paired analyses of ATP as a surrogate for active microbial biomass and β-glucosidase on the same macroaggregates suggest the presence of both extracellular β-glucosidase functioning in macroaggregates with no detectable ATP and also of relatively active microbial communities (high ATP) that have low β-glucosidase potentials. Studying function at a scale more consistent with microbial habitat presents greater opportunity to link microbial community structure to microbial community function.  相似文献   

16.
[目的]探究不同果草套种模式下0—10cm土层土壤微生物量碳、氮及酶活性的差异,为改善土壤肥力条件、促进桂林旅游城市生态循环农业经济的发展提供理论依据。[方法]在桂林潮田河流域大山口农业综合示范区内设置样地,采集表层(0—10cm)土壤样品,测定与分析不同果草套种模式下表层土壤微生物量碳、氮及酶活性的差异。[结果]0—10cm土层土壤氮磷钾、土壤微生物量碳氮和土壤酶活性大小基本表现为:阳朔金桔+牧草桂橙1号+牧草翠冠梨+牧草对照样地。其中,阳朔金桔+牧草模式对0—10cm土层土壤微生物量碳、氮含量和土壤酶活性的影响最为明显(p0.05)。相关性分析表明,土壤微生物量碳氮和3种土壤酶活性存在极显著正相关关系。[结论]果草套种模式特别是阳朔金桔+牧草模式对南方丘陵山地表层土壤肥力条件的改善作用较为明显。  相似文献   

17.
湿地松林土壤生化特性和酶活性对模拟硫沉降的响应   总被引:1,自引:0,他引:1  
以亚热带湿地松人工林为研究对象,通过3种水平(对照CK:pH 6.5;低硫LS:pH 4.5;高硫HS:pH 2.5)的模拟硫沉降控制试验,分析土壤生化特性及酶活性对硫添加的响应。结果表明:(1)硫输入促进了土壤酸化,0—5 cm土层土壤pH在HS处理下显著降低,5—10 cm土层土壤pH在LS和HS处理下显著降低(P0.05);(2)硫输入对土壤有机碳库存在一定影响,土壤总有机碳(TOC)对硫输入无显著响应,但土层间的差异性显著增加(P0.05),土壤可溶性有机碳(DOC)受影响有限,5—10 cm土层微生物量碳(MBC)LS显著降低(P0.05);(3)硫输入对土壤有效氮库影响存在差异,土壤可溶性有机氮(DON)、铵态氮(NH_4~+—N)尚未表现出显著变化,土壤硝态氮(NO_3~-—N)、土壤微生物量氮(MBN)均在HS处理下显著降低,且硫输入加剧土层间的差异性(P0.05);(4)硫输入抑制了酶活性,土壤脲酶活性在HS处理下显著降低(P0.05),土壤蔗糖酶活性无显著变化,但硫输入均弱化了土层间酶活性的差异性。综合分析所有处理下的土壤生化性质和酶活性等指标发现,对硫添加响应敏感的是土壤pH和酶,土层是另外一个主要影响因子,硫添加和土层的交互作用则影响有限。采用Pearson分析得出,硫输入改变了土壤生化特性、酶活性等指标间的相关性程度。可见,酸雨对土壤酸化的影响是一个逐渐累积的过程,外源性硫添加对土壤碳氮及酶活性的影响存在一定差异,这可为硫沉降环境胁迫下森林管理提供科学依据。  相似文献   

18.
Soil extracellular enzymes regulate the rate at which complex organic forms of nitrogen (N) become bio-available. Much research has focused on the limitations to heterotrophic enzyme production via lab incubations, but little has been done to understand the limitations to enzyme production in situ. We created root and symbiotic mycelia exclusion treatments using mesh in-growth bags in the field to isolate the effect of roots and other portions of the microbial community on enzyme production. When fertilized with complex protein N we found increases in N-degrading enzyme concentrations only when root in-growth was allowed. No response was observed when complex N was added to root-free treatments. Expanding on economic rules of microbial element limitation theory developed from lab incubation data, we suggest this is due to active transport of labile carbon (C) from roots to associated microbial communities in root bags. Roots alleviate C limitation of microbial enzyme synthesis, representing a tradeoff between plants and microbes–plant C for microbially-derived N.  相似文献   

19.
为进一步明确苔藓结皮对下层土壤养分的影响及微生物对养分的利用特征,以黄土丘陵区典型退耕地上发育的苔藓结皮及其下层土壤(0—2 cm,2—5 cm,10—20 cm)为研究对象,分析在剖面尺度下土壤碳(C)、氮(N)、磷(P)养分状况、胞外酶活性以及微生物CUE特征。结果表明:苔藓结皮显著提高了表层土壤养分含量,结皮层的SOC,TN,TP,DOC,DON和Olsen-P含量分别是10—20 cm土壤养分的2.58,2.34,1.13,2.30,4.30,7.36倍。与养分含量特征一致,微生物生物量随土层深度的增加逐渐降低。在整个剖面尺度上,微生物群落存在较为稳定的元素内稳态以保持自身C,N,P的计量平衡。参与C,N,P循环的相关胞外酶活性在剖面尺度上表现出差异,β-1,4-葡萄糖苷酶(BG)随深度增加逐渐降低,而β-1,4-N-乙酰氨基葡萄糖苷酶(NAG)和碱性磷酸酶(AP)则表现为先降低后增加的趋势,底层土壤较高的NAG和AP酶活性反映出N,P养分的匮乏。微生物CUE在剖面尺度上表现为先降低后增加的趋势,平均水平为0.25,表明表层与深层土壤更有助于C的固存。此外,方差分解(VPA)和线性模型结果均指出养分状况和土壤酶是影响微生物CUE的关键因素。总的来说,苔藓结皮对表层土壤的养分和微生物代谢产生积极作用,尽管底层土壤养分匮乏,但仍保持较高的微生物C利用效率。  相似文献   

20.
Soil functional microbial taxa and extracellular enzymes are involved in a variety of biogeochemical cycling processes. Although many studies have revealed the vertical change patterns of microbial communities along soil profile, the general understanding of the coupling changes in the functional gene abundances (FGAs) and extracellular enzyme activities (EEAs) in soil profiles is still limited, which hinders us from revealing soil ecosystem processes. Herein, we comparatively investigated the FGAs and EEAs in the diagnostic A, B, and C horizons of soil profiles obtained from two suborders of Isohumosols (Mollisols), Ustic and Udic Isohumosols, in Northeast China based on quantitative real-time polymerase chain reaction and standard fluorometric techniques, respectively. The distribution patterns of both FGAs and EEAs significantly distinguished by the two soil suborders and were also separated from A to C horizon. Additionally, the variations of EEAs and FGAs were greater in Udic Isohumosols compared to Ustic Isohumosols along soil profiles, and greater changes were observed in C horizon than in A horizon. Both FGAs and EEAs correspondently decreased along the soil profiles. However, when normalized by soil organic carbon, the specific EEAs significantly increased in deep soil horizons, suggesting that microorganisms will input more resources to the production of enzymes to ensure microbial nutrient requirements under resource scarcity. More importantly, we revealed that soil microbial nutrient demands were limited by carbon (C) and phosphorus (P), and the C and P limitations significantly increased along soil profiles with a greater C limitation observed in Ustic Isohumosols than in Udic Isohumosols. Overall, our findings provided solid evidence showing the links between FGAs, EEAs, and microbial nutrient limitations, which would be helpful for a better understanding of the ecosystem processes in soil profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号