首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
神经介素B(neuromedin B,NMB)及受体(NMB receptor, NMBR)通过NF-κB信号通路参与抑制甲型流感病毒(influenza A virus, IAV)H1N1亚型(IAV/H1N1)的感染。但关于NMB和NMBR对NF-κB信号通路相关泛素蛋白酶的调控如何,尚未见报道。为探究NMB和NMBR调控IAV诱导的NF-κB信号通路相关的泛素蛋白酶表达的影响,本研究基于IAV/H9N2感染sh-NMBR细胞与NMB刺激的A549细胞,采用RT-PCR、qRT-PCR及Western blot(WB)分析NMB和NMBR对H9N2感染引起的NF-κB信号通路相关的E3泛素连接酶Mind bomb-2(MIB2)和Ring Finger Protein 8(RNF8)及去泛素蛋白酶Cylindromatosis(CYLD)的表达变化。结果显示:H9N2感染sh-NMBR细胞中,RNF8和CYLD表达增加,MIB2表达和P65磷酸化水平降低;NMB激活A549细胞中NMBR的表达后,诱导细胞中RNF8和CYLD的表达水平下降,MIB2表达和P65磷酸化水平增加。结果表...  相似文献   

2.
冷诱导RNA结合蛋白(CIRP)是哺乳动物间高度保守的多功能蛋白,但其在病毒感染中的作用尚不清楚,本研究旨在探讨CIRP对甲型流感病毒感染的应答。用H1N1甲型流感病毒PR-8株滴鼻接种成年BALB/c小鼠,分别于感染后24、48、72、96、120h随机处死3只,用荧光定量RT-PCR和免疫组化法分别检测小鼠心、肝、脾和肺中CIRP基因和蛋白质的表达水平。基因定量检测结果显示,感染小鼠各被检器官中Cirp mRNA的转录量显著升高;免疫组化试验结果显示,CIRP在感染小鼠心肌细胞、肺泡上皮细胞、肺支气管上皮细胞和脾淋巴细胞的细胞质中表达量均有不同程度的升高。综上可见,CIRP参与机体对H1N1甲型流感病毒感染的应答,由于CIRP对炎性因子产生过程具有显著的调节作用,其在流感病毒感染过程中的作用值得深入研究。  相似文献   

3.
为了阐明ERK(extracellular signal-regulated protein kinases)1/2通路在传染性支气管炎病毒(Infectious bronchitis virus,IBV)复制过程中的作用以及双特异性磷酸酶6(dual specificity phosphatase 6,DUSP6)对ERK的反馈性负向调控在IBV复制过程中的作用。本研究通过Western blot、Northern blot检测发现:IBV感染Vero和H1299细胞可导致ERK1/2的磷酸化水平和DUSP6表达均上调;利用MEK1/2特异性抑制剂U0126处理病毒感染的细胞后,可明显下调ERK1/2的磷酸化,同时抑制病毒的增殖;利用DUSP6的特异性抑制剂BCI抑制DUSP6的活性或者用siRNA阻断DUSP6的表达后,再感染IBV,发现ERK1/2的磷酸化水平增高,病毒蛋白的表达上调。综上,推测IBV感染细胞激活ERK1/2信号通路,有助于病毒的复制,同时,细胞通过诱导表达DUSP6,负向调控ERK1/2的磷酸化水平,抑制病毒增殖。  相似文献   

4.
Wnt/β-Catenin信号通路是广泛存在于多种真核生物中的一条高度保守的信号通路,但对于该信号通路是否参与流感病毒的复制及其对流感病毒致病性的影响目前还缺乏深入研究,为研究其对流感病毒复制的影响,本研究通过转染Wnt/β-Catenin信号通路荧光素酶报告质粒Topflash试验,表明甲型H1N1流感病毒感染后可以抑制Wnt/β-Catenin信号通路的激活。而当先转染β-Catenin蛋白真核表达重组质粒激活Wnt/β-Catenin信号通路后,再感染甲型H1N1流感病毒时,结果显示病毒复制受到了抑制,并且这种抑制作用不依赖于病毒NS1蛋白C端的PBM结构域。此外,将不同亚型流感病毒NS1蛋白真核表达重组质粒与Topflash质粒共转染,以检测其对Wnt/β-Catenin信号通路的激活能力时,结果表明H1N1的NS1可以更显著地激活Wnt/β-Catenin信号通路。本研究为进一步深入研究流感病毒感染与Wnt/β-Catenin信号通路的相互关系奠定了基础。  相似文献   

5.
作者拟研究rfaE基因在副猪嗜血杆菌(Haemophilus parasuis,HPS)脂寡糖(LOS)刺激猪肺泡巨噬细胞(PAMs)信号通路分子的转录表达和MAPKs/NF-κB信号通路中的作用。提取HPS SC096株及其rfaE基因缺失株(ΔrfaE)和互补株(cΔrfaE)的LOS,分别用5和10μg HPS-LOS、ΔrfaE-LOS和cΔrfaE-LOS刺激PAMs,分别在不同时间点收集细胞,提取RNA和蛋白质。将提取的RNA反转录成cDNA,运用RT-PCR检测TLR4、MD2、NF-κB、MAP2 K2、ERK、P38和JNK的mRNA转录水平。测定提取蛋白质的浓度,利用Western blot方法检测NF-κB p65/phospho-NF-κB p65、IκBα、ERK1/2、JNK和p38/phospho-p38蛋白的表达量。结果表明用5和10μg HPS-LOS刺激细胞6、12和24h后,TLR4、MD2、MAP2K2、ERK、P38和JNK的mRNA转录水平均显著高于ΔrfaE-LOS刺激细胞后的以上转录因子的mRNA水平(P0.05),但NF-κB的mRNA转录水平无显著差异。另外,用5和10μg HPS-LOS刺激细胞6和12h后,IκBα蛋白的表达量显著低于ΔrfaE-LOS刺激细胞后的IκBα蛋白的表达量(P0.05),NF-κB p65和p38的磷酸化水平及ERK1/2和JNK蛋白的表达量显著高于ΔrfaE-LOS刺激细胞后NF-κB p65和p38的磷酸化水平及ERK1/2和JNK蛋白的表达量(P0.05)。同时cΔrfaE-LOS刺激PAMs后TLR4、MD2、MAP2 K2、ERK、P38和JNK的mRNA转录水平以及NF-κB p65和p38的磷酸化水平和IκBα、ERK1/2和JNK蛋白水平能够恢复到HPS-LOS水平。以上试验结果证实在HPS-LOS诱导的炎症反应中,缺失rfaE基因后通过阻断MAPKs/NF-κB信号通路以减轻炎症反应。  相似文献   

6.
本试验旨在探索乳酸杆菌诱导绵羊瘤胃上皮细胞SBD-1表达的可能途径。采用实时荧光定量PCR(RTqPCR)的方法,对已建立的诱导SBD-1表达模型中Toll样受体2(Toll like receptor 2,TLR2)及其相关因子的基因表达变化进行检测;然后选用3种信号通路抑制剂,即NF-κB信号通路抑制剂PDTC、ERK 1/2信号通路抑制剂PD98059和JNK信号通路抑制剂SP600125,将细胞分为8组:细胞组:不作处理;阳性对照组:只添加植物乳杆菌P-8(L.plantarum P-8)诱导;PDTC组:只添加PDTC预处理细胞(PDTC);PDTC+L.plantarum P-8组:PDTC+L.plantarum P-8诱导;PD98059组:PD98059;SP600125组:SP600125;PD98059+L.plantarum P-8组:PD98059+L.plantarum P-8;SP600125+L.plantarum P-8组:SP600125+L.plantarum P-8。采用RT-qPCR的方法检测各组SBD-1mRNA表达水平。结果表明,绵羊瘤胃上皮细胞被L.plantarum P-8诱导后,TLR2及其转接蛋白MyD88、NF-κB和ERK1/2、JNK各基因的mRNA水平都较空白组细胞内的表达极显著增加(P0.01);添加抑制剂后再诱导,发现抑制剂PD98059和SP600125均能极显著(P0.01)抑制细胞内SBD-1 mRNA的表达,而PDTC仅能显著抑制(P0.05)SBD-1的表达。结果表明,L.plantarum P-8可促进绵羊瘤胃上皮细胞TLR2、MyD88、NF-κB、JNK和ERK1/2基因的mRNA表达;添加NF-κB信号通路抑制剂PDTC、ERK 1/2信号通路抑制剂PD98059和JNK信号通路抑制剂SP600125,可抑制L.plantarum P-8对SBD-1mRNA的诱导作用。综上表明,L.plantarum P-8有可能通过激活绵羊瘤胃上皮细胞内NF-κB、JNK、ERK1/2等信号通路促进SBD-1的表达。  相似文献   

7.
用常规细胞培养法连续传代培养Cirp过表达BHK-21细胞至第8代标记为BHK-21-Cirp△,通过HE染色和扫描电镜对细胞形态观察,用BHK-21-Cirp△和BHK-21-ShCirp分别与BHK-21-GFP进行细胞增殖速度的比较,并绘制96 h增殖曲线计算比生长速率,用流式细胞仪检测各试验细胞周期。HE染色和电镜观察均显示BHK-21-Cirp△与正常BHK-21细胞形态差异较大,在相同条件下24 h~96 h BHK-21-Cirp△活细胞数比BHK-21-GFP活细胞数高(P0.01),BHK-21-Cirp△平均比生长速率高于BHK-21-GFP,48 h~96 h内BHK-21-GFP和BHK-21-ShCirp的活细胞个数差异显著(P0.05),BHK-21-GFP的平均比生长速率高于BHK-21-ShCirp的平均比生长速率;BHK-21-Cirp△、BHK-21-GFP、BHK-21-ShCirp处于G0-1期的DNA含量(细胞数量比)依次为52.4%、55.3%和66.7%,处于S期的DNA含量依次为26.1%、24.7%和19.7%。CIRP对BHK-21细胞增殖起正向调节作用,CIRP的过表达可促进BHK-21细胞增殖,导致BHK-21细胞可能突变为肿瘤细胞,其敲低也能抑制BHK-21细胞的增殖。在其他试验条件相同情况下,CIRP能够促进BHK-21细胞提前进入S期,加快细胞周期进程,增加了BHK-21细胞增殖。  相似文献   

8.
探讨猪瘟病毒(CSFV)感染猪睾丸上皮细胞系(ST)对核因子-κB(NF-κB)信号通路相关炎性因子的表达。分别收集CSFV感染4、8、12、16、24、48 h的ST细胞,建立正常对照组和CSFV感染各试验组。荧光定量PCR(qPCR)法检测NF-кB通路相关炎性因子CHUK、IKBKB、NFKBIA、RelA基因mRNA表达量的变化,Western blot检测p65蛋白在核中的表达。NFKBIA、IKBKB基因的转录水平差异显著(P0.05);RelA基因的表达差异不显著(P0.05);CHUK基因在ST细胞感染CSFV后,转录水平差异显著(P0.05),Western blot试验显示,p65入核。CSFV感染ST细胞后,NF-κB的经典信号通路和非经典信号通路的均被激活,初步探索了机体感染CSFV对NF-κB通路上、下游的影响,为猪瘟的有效防控提供理论依据。  相似文献   

9.
为了探讨奶牛子宫内膜炎发生对于子宫平滑肌收缩的影响,以及炎症对于子宫平滑肌收缩相关调控分子的影响,试验选取健康及子宫内膜炎患病荷斯坦奶牛各10头,分别作为健康组和患病组,对核因子κB(NF-κB)信号通路分子NF-κB抑制蛋白α(IκBα)、NF-κB p65蛋白(NF-κB p65)和丝裂原活化蛋白激酶(mitogen-activated protein kinases,MAPKs)信号通路分子p38、细胞外调节蛋白激酶(ERK)和应激活化蛋白激酶(JNK)及蛋白磷酸化进行检测,对炎症因子[肿瘤坏死因子α(TNF-α)、白细胞介素(IL)-1β和IL-6]分泌情况及平滑肌收缩关键调节分子[RhoA、Rho激酶(ROCK)、肌球蛋白轻链激酶(MLCK)、肌球蛋白轻链(MLC)、钙离子]进行检测并分析。结果表明:与健康组奶牛比,患病组奶牛子宫内膜组织IκBα、NF-κB p65、p38、ERK、JNK磷酸化蛋白水平显著升高(P0.05);TNF-α、IL-1β、IL-6促炎因子分泌量显著增加(P0.05);子宫平滑肌组织细胞内钙离子浓度显著下降(P0.05),RhoA,ROCK、MLCK表达量下降,MLC磷酸化水平降低。说明奶牛子宫组织炎症不仅损伤黏膜组织,而且还会对子宫平滑肌造成破坏,显著抑制子宫平滑肌收缩。  相似文献   

10.
《养猪》2021,(3)
NF-κB是一种对免疫系统调节起关键性作用的核转录因子,且NF-κB信号通路是痘病毒家族抑制和逃避宿主免疫应答的主要靶点。目前已证实,痘病毒具有独特的调节宿主免疫应答过程的能力,特别是痘病毒科编码的蛋白通过影响与宿主天然免疫密切相关的NF-κB信号通路,有利于病毒在宿主细胞内的复制,导致病毒不断地逃逸免疫保护而出现病毒的反复感染。因此探索痘病毒科编码的蛋白调节NF-κB信号通路的机制已成为目前研究的热点。文章主要综述了近些年痘病毒编码的蛋白通过不同的途径调节NF-κB信号通路的调控作用,为进一步对宿主细胞早期抗病毒的免疫应答方面的研究奠定基础。  相似文献   

11.
采用重组RTB蛋白刺激RAW264.7细胞,对iNOS、IL-6和TNF-αmRNA表达及IκB-α和NF-κBp65磷酸化蛋白表达进行分析,探讨重组RTB蛋白对巨噬细胞活化及对NF-κB信号通路的影响。结果显示,重组RTB蛋白组RAW264.7细胞iNOS、IL-6和TNF-αmRNA的表达显著高于对照组(P<0.01),并呈现时间和计量依赖性;加入NF-κB抑制剂BAY后,iNOS、IL-6和TNF-αmRNA表达降低(P<0.05或P<0.01)。随RTB刺激RAW264.7时间的延长,IκB-α蛋白的磷酸化程度增强,NF-κBp65磷酸化蛋白表达逐渐增高,表明重组RTB蛋白具有促进巨噬细胞活化及活化NF-κB信号通路的功能。  相似文献   

12.
NMB/NMBR通过调节A型流感病毒(IAV/H1N1/PR8)感染诱导的细胞因子表达而参与抗IAV的先天性免疫反应。为探究其发挥抗IAV/H1N1感染的信号通路,本文用PR8和WSN毒株分别感染MLE-12细胞和小鼠,用NF-κB抑制剂BAY11-7028单独或联合NMB处理MLE-12细胞,小鼠后腿肌内注射NMB和NMBRA,采用RT-PCR和qRT-PCR分析NMBNMBRIL-6、IFN-α和NP基因表达变化,采用Western blot分析NMB、NMBR、P65/p-P65、IκBα和NP蛋白表达的变化。结果显示,BAY11-7028可促使PR8和WSN感染的MLE-12细胞中NMB、NMBRIL-6和IFN-α基因表达水平均下降和NP基因表达水平上升,并降低NMB、NMBR和p-P65蛋白表达水平和提升IκBα和NP蛋白表达水平。然而,NMB联合BAY 11-7028诱导PR8或WSN感染后的细胞中IL-6和NP表达出现极显著下降和IFN-α显著上升。此外,NMB抑制PR8和WSN感染的小鼠肺组织内p-P65和NP蛋白表达水平和促进IκBα蛋白表达水平;NMBRA联合NMB抵消NMB对PR8或WSN感染后的这些蛋白表达水平的调节作用。综上表明,NMB/NMBR通过调节PR8和WSN感染的MLE-12细胞和小鼠体内的NF-κB信号通路上P65蛋白磷酸化和IκBα的表达,进而影响下游细胞因子IL-6和IFN-α基因的表达,从而发挥抗IAV/H1N1感染的先天性免疫应答反应。  相似文献   

13.
文章旨在探索核因子-κB(NF-κB)和丝裂原活化蛋白激酶(MAPKs)通路是否介导益生性酿酒酵母菌(Saccharomyces cerevisiae)诱导绵羊瘤胃上皮细胞(RECs)β-防御素-1(SBD-1)基因的转录。首先建立绵羊RECs培养体系作为体外试验模型,选用诱导SBD-1转录最高的菌液浓度和诱导培养时间进行信号通路初步研究,采用实时荧光定量逆转录PCR(RT-qPCR)对已建立的诱导SBD-1转录模型中的细胞膜受体——Toll样受体2(TLR2)、信号衔接蛋白——髓样分化因子(MyD88)以及NF-κB和MAPKs通路中的相关因子基因转录变化进行检测;然后选用NF-κB和MAPKs通路中的4种特异性抑制剂(即NF-κB通路特异性抑制剂PDTC、P38通路特异性抑制剂SB202190、ERK 1/2通路特异性抑制剂PD98059、JNK通路特异性抑制剂SP600125)通过单独或相互组合处理细胞后再进行诱导培养,同时采用RT-qPCR的方法检测用抑制剂处理绵羊RECs后SBD-1mRNA的转录水平。结果表明:酿酒酵母菌刺激RECs后,NF-κB和MAPKs通路中各因子NF-κB、P38、JNK、ERK1/2、细胞膜受体TLR2与信号衔接蛋白MyD88的mRNA水平与未刺激组相比均有所升高,且呈显著性差异(P0.01或P0.05);通过单独或组合添加抑制剂后再诱导,均发现特异性抑制剂PDTC、SB202190、SP600125、PD98059可极显著抑制酿酒酵母菌对RECs SBD-1的上调作用(P0.01),且P38通路特异性抑制剂SB202190的抑制效果最明显。结果提示,酿酒酵母菌诱导绵羊RECs SBD-1的转录可能与TLR2-MyD88-NF-κB/MAPKs通路有关,但以TLR2-MyD88-MAPKs中的TLR2-MyD88-P38通路为主要的信号通路。  相似文献   

14.
甲型H1N1流感的特点及其防控   总被引:1,自引:0,他引:1  
王锋  高岚 《动物医学进展》2010,31(3):107-111
甲型H1N1流感病毒是2009年3月墨西哥出现的一种新型流感病毒。此后不久,这种病毒造成世界范围内的蔓延。论文分析总结了甲型H1N1流感病毒与1918年流感病毒的相似性以及表现出的新特点,归纳了这种病毒的潜在危害性。此外,介绍了甲型H1N1流感的防控策略,主要包括加强猪群监控,流感疫苗和抗流感病毒药物治疗。  相似文献   

15.
A型流感病毒NS1蛋白的结构与功能   总被引:2,自引:1,他引:1  
A型流感病毒片段8编码的NS1蛋白是病毒复制和传播的重要调节蛋白。它含有3个功能区,即RNA结合区,eIF4GI结合区和效应区。NS1蛋白在A型流感病毒感染细胞中高水平表达,它的主要功能是抑制NF-κB(nuclear factor-κB)活化和IFN(inter-feron)-α/β介导的抗病毒作用,抑制Jun N末端激酶(jun N-terminal kinase,JNK)和AP-1(activating posttranslation)转录因子活化;下调病毒感染细胞凋亡;促进病毒基因表达,抑制宿主mRNA加工和转运。NS1蛋白的深入研究,为今后预防和治疗A型流感病毒寻找突破口。  相似文献   

16.
鸡毒支原体(MG)脂质相关膜蛋白(LAMPs)在刺激宿主细胞天然免疫中起重要作用,GroEL蛋白是本实验室前期利用质谱鉴定筛选出的LAMPS中的关键组分。为研究GroEL蛋白诱导宿主细胞炎性反应的信号通路,本研究通过原核表达系统表达出MG的GroEL蛋白,利用激光共聚焦试验、荧光定量PCR和western blot方法分别检测GroEL蛋白的粘附特性、p65入核、磷酸化水平及IL-1β分泌情况。激光共聚焦试验结果显示,GroEL蛋白能够黏附于DF-1细胞表面并刺激DF-1细胞中p65从胞浆转入细胞核;western blot检测显示GroEL蛋白能够激活NF-κB信号通路促进p65磷酸化水平提高;荧光定量PCR检测显示GroEL蛋白能够促进IL-1β释放,当NF-κB信号通路被抑制后,IL-1β的释放显著下降(p0.01)。本研究结果表明MG GroEL蛋白能够粘附于宿主细胞表面并通过激活NF-κB信号通路诱导宿主细胞IL-1β的释放,从而在炎症反应中发挥作用。本研究为深入研究MG致病机制提供了实验依据。  相似文献   

17.
《中国兽医学报》2016,(3):464-468
单核细胞诱导蛋白1(monocyte chemotactic induced protein1,MCPIP1)是近年来发现的一种重要的免疫应答负向调控蛋白。为了研究MCPIP1对A型流感病毒(influenza A virus,IAV)感染诱导的宿主抗病毒免疫应答的调控作用,我们首先证实了IAV感染A549细胞内MCPIP1的表达量显著上调。随后,在A549细胞中进行MCPIP1的过表达和表达抑制后利用Western blot方法检测了其对IAV感染诱导的细胞内NF-κB信号通路活化的影响。结果表明,过表达MCPIP1抑制了病毒诱导的NF-κB的活化,反之,抑制内源性MCPIP1的表达时则明显促进了NF-κB的激活。进一步研究发现MCPIP1可抑制NF-κB信号通路下游宿主抗病毒和促炎因子的表达,如TNF-α、IFN-β、IL-1β、IL-6等。由此推测,IAV可以通过诱导宿主MCPIP1的表达以抑制机体的抗病毒免疫应答。  相似文献   

18.
为了研究白藜芦醇对脂多糖(LPS)刺激的牛乳腺上皮细胞(bMEC)的抗炎作用及其机制,试验通过MTT法分析不同浓度白藜芦醇对LPS刺激的bMEC细胞活力的影响。将bMEC细胞分为4组,即空白对照组、LPS组、白藜芦醇组和白藜芦醇+LPS组。采用ELISA方法检测各组细胞上清液中肿瘤坏死因子(TNF-α)、白细胞介素-1β(IL-1β)和白细胞介素-6(IL-6)的含量,通过试剂盒检测细胞中IKKβ活性,用Western-blot方法检测细胞中IκBα和磷酸化IκBα(p-IκBα)及核转录因子κB(NF-κB)和磷酸化核转录因子κB(p-NF-κB)蛋白表达量。结果表明:白藜芦醇不影响b MEC细胞活力,能降低LPS刺激的bMEC上清液中TNF-α,IL-6和IL-1β含量,可抑制IKKβ活性,抑制IκBα和NF-κB的酸化。说明白藜芦醇可通过调控NF-κB信号通路抑制bMEC细胞炎性因子的分泌。  相似文献   

19.
正在全球范围内发生蔓延的甲型H1N1流感疫情,是由一株新型流感病毒引起的具有公共卫生意义的重大疫病.已证实该病毒的核酸包含人流感病毒、北美禽流感病毒和北美、欧洲、亚洲三类猪流感病毒的多个基因.显然,甲型H1N1流感的发生,是人与动物流感病毒在某种特定条件下交互作用、重组变异的结果.该病自公布和报道以来,引起了世界范围内空前而广泛关注,截止2009年5月12日,世界上已有30个国家和地区确诊人感染该病,目前该病在传播方面的显著特征是人际间传播,且人感染甲型H1N1流感病毒后可以传染给猪,从而导致甲型H1N1流感的发生和流行.我国内地和香港已确诊2例人感染甲型H1N1流感的输入病例.  相似文献   

20.
为了研究副猪嗜血杆菌(Haemophilus parasuis,HPS)弱毒株11型H465株OmpP2刺激猪肺泡巨噬细胞(PAMs)炎性因子mRNA的转录和对NF-κB和MAPKs信号通路的影响,提取并纯化HPS血清11型H465株的OmpP2,分别用5、10μg·mL-1 OmpP2刺激PAMs 6、12h后收集细胞,提取总RNA和蛋白质。将提取的RNA反转录成cDNA,运用RT-PCR检测炎性因子(IL-1α、IL-1β、IL-6、IL-8和TNF-α)mRNA转录水平。利用Western blot方法检测ERK1/2、JNK、P38、P65和IκBα蛋白表达量的变化。结果表明:HPS H465株的OmpP2能够显著地诱导IL-1α、IL-1β、IL-6、IL-8和TNF-α的mRNA转录水平上调(P0.05),同时能够引起JNK、P65蛋白表达水平显著升高和IκBα蛋白表达水平显著降低(P0.05)。上述结果证实了HPS血清11型H465株的OmpP2能够通过调节MAPKs信号通路中JNK蛋白以及NF-κB信号通路中P65蛋白和IκBα蛋白降解促进炎性因子IL-1α、IL-1β、IL-6、IL-8和TNF-α的转录。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号