首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract – Investigating the influence of evolutionary forces on the genetic structure and genetic diversity remains a major challenge. Yet, it is of considerable interest for conservation and management of a species. This study investigates the influence of life‐history and landscape features, such as altitude, connectivity and habitat size, on genetic diversity and genetic structure of brown trout (Salmo trutta L.) with stream‐resident, lake‐dwelling and sea‐migrating life‐history in two river systems in northern Sweden. Using regression tree analysis including ecological and landscape characteristics, we show that life history is the most important variable explaining genetic diversity and population differentiation. Sea‐migrating populations show high diversity and low differentiation, and lake‐ and stream‐resident populations show low diversity and high population differentiation, among all samples. No overall genetic correlation with geographical distance was noted; however, among sea‐migrating populations within the River Vindelälven drainage, this pattern was observed. This study illustrates that life‐history and landscape features help to explain genetic structure and genetic variation. The information is important for conservation and management actions, such as fisheries regulations, habitat restorations, stocking of hatchery fish, defining management units and introducing genetic monitoring programmes.  相似文献   

2.
3.
Sex change and the genetic structure of marine fish populations   总被引:1,自引:0,他引:1  
The interaction between environmental forces and dispersal characteristics is largely responsible for the patterns of population structure in marine fish. Yet, crucial gaps in knowledge on life-histories and the relative contributions of numerous environmental factors still hinder a thorough understanding of marine population connectivity. One life-history trait so far overlooked by most fish population geneticists is sequential hermaphroditism, whereby individuals first mature as one sex and later in life reverse into the other sex. Population genetic theory predicts that sex-changing fish will present a higher potential for more spatially structured populations than gonochoristic species, as a result of their naturally skewed sex ratio, which is expected to reduce effective population size and hence increase genetic drift. We gathered published data on genetic population structure in marine fish, as summarized by the popular F ST index, and – after controlling for several potentially confounding factors – we tested the hypothesis that sex-changing species are more genetically structured than gonochoristic ones. Although we found no evidence to support the theoretical expectations, our results suggest new working hypotheses that can stimulate new research avenues at the intersection between physiology, genetics and fisheries science.  相似文献   

4.
  1. India plays a significant role in dugong conservation by having the largest population within South Asia. The status of dugongs in India is largely unknown due to a paucity of reliable ecological data. This study generated mitochondrial control region sequences from ~10% of dugong individuals from existing populations within India. Furthermore, data generated in this study were compared with the global data to assess genetic lineages, population structure, and genetic diversity of Indian populations.
  2. Multiple analyses suggest that the Indian dugong populations are part of a single genetic cluster, comprising South Asia, North-west Indian Ocean, and South-west Indian Ocean populations. Despite small population size, they retain high genetic diversity with unique mitochondrial DNA haplotypes within South Asia. Within India, novel haplotypes are observed from all dugong habitats sampled, with overall high haplotype diversity (0.85 ± 0.04) but low nucleotide diversity (0.005 ± 0.001). Indian populations exhibit genetic differentiation with higher within-population variance (63.41%) than among populations (36.59%). Two of the haplotypes observed in India are shared with Sri Lanka, implying genetic connectivity between these populations.
  3. The genetic data from Indian dugong populations provide critical insights into the identification of dugong corridors and important dugong conservation zones in India. We suggest site-specific interventions, including the creation of new marine protected areas and boundary reorganization and expansion of other existing protected areas, to ensure population connectivity. In addition, simultaneous efforts towards seagrass meadow restoration, reduction of dugong mortalities, and community participation in dugong conservation are recommended for population recovery of this threatened marine herbivore.
  相似文献   

5.
Abstract –  We performed a tagging study on one of the spawning populations of northern pike ( Esox lucius L.) of the River Kajaaninjoki in Finland. Northern pike is the main predator in many lakes and rivers in the northern hemisphere. Previous tagging studies have shown a general tendency to sedentary behaviour by pike. Whether individuals in a fish population adapt a sedentary or moving strategy may affect population persistence. To study if the spawning population consists of sedentary or moving individuals and the pattern of movements, we tagged 40 pike with radio transmitters and followed them from May 2002 to June 2003. Pike were caught and tagged during the spawning season in the mouth of the River Kajaaninjoki which flows into one of the largest lakes in Finland, Lake Oulujärvi. Our results suggest that the pike spawning population consisted of sedentary pike ( N  = 16) dwelling the whole year in the river, and moving pike ( N  = 24) which moved to Lake Oulujärvi after the spawning period. Pike exhibited homing behaviour, as most of the migrating pike returned to the same spawning area in the following year. Large pike had a higher movement rate than small pike during the summer and seasonally the movement rate was lowest during the spring and highest during the summer.  相似文献   

6.
Many studies have identified the importance of local adaptation in Atlantic salmon (Salmo salar) and the strong genetic differences that exist between allopatric or parapatric resident and anadromous populations. However, as truly sympatric migratory phenotypes of Atlantic salmon have not been studied, it remains unclear whether distinct genotypes previously associated with life history differences are maintained through reproductive isolation and subsequent genetic drift or through natural selection induced by different life history requirements. In this study, sympatric anadromous and resident Atlantic salmon were sampled from three Newfoundland (Canada) watersheds to evaluate the genetic divergence of these life history forms. Eight microsatellite loci were used to quantify genetic variation within and among populations. Metrics of genetic differentiation (exact tests for population differentiation, pairwise θ values) provide no evidence of genetic differentiation between some sympatric anadromous and resident phenotypes within a system with no history of segregation. In the remaining two watersheds, the observed differentiation appears to be a consequence of historical segregation rather than life history form. Nonetheless, these differences have been maintained in contemporary times for several generations. At broader spatial scales, resident salmon were more genetically divergent from one another than anadromous life history forms and were more closely related to anadromous salmon from within their watershed than to resident salmon from other watersheds. The study indicates that both life history forms can be maintained within a single population, but that sympatric populations of different life histories can maintain genetic differences for at least several generations after being reconnected.  相似文献   

7.
Marine and fisheries scientists are increasingly using metapopulation concepts to better understand and model their focal systems. Consequently, they are considering what defines a metapopulation. One perspective on this question emphasizes the importance of extinction probability in local populations. This view probably stems from the focus on extinction in Levins' original metapopulation model, but places unnecessary emphasis on extinction–recolonization dynamics. Metapopulation models with more complex structure than Levins' patch‐occupancy model and its variants allow a broader range of population phenomena to be examined, such as changes in population size, age structure and genetic structure. Analyses along these lines are critical in fisheries science, where presence–absence resolution is far too coarse to understand stock dynamics in a meaningful way. These more detailed investigations can, but need not, aim to assess extinction risk or deal with extinction‐prone local populations. Therefore, we emphasize the coupling of spatial scales as the defining feature of metapopulations. It is the degree of demographic connectivity that characterizes metapopulations, with the dynamics of local populations strongly dependent upon local demographic processes, but also influenced by a nontrivial element of external replenishment. Therefore, estimating rates of interpopulation exchange must be a research priority. We contrast metapopulations with other spatially structured populations that differ in the degree of local closure of their component populations. We conclude with consideration of the implications of metapopulation structure for spatially explicit management, particularly the design of marine protected area networks.  相似文献   

8.
Abstract–  Comparing genetic and demographic estimates of dispersal in freshwater fish can improve understanding of movement distributions and population connectivity. Here we examined genetic variation among mottled sculpin (Cottus bairdi) in the Nantahala River (North Carolina, USA) to compare genetic estimates of dispersal with estimates derived from mark–recapture studies of individual movement. Microsatellite‐based analysis of gene flow revealed evidence of strong isolation by distance among locations spanning only 5.6 km and limited dispersal among clusters of sites separated by swift cascades. Estimates of between‐cluster contemporary dispersal rates derived from Bayesian assignment tests ranged from 1% to 6%, with most movement occurring among adjacent clusters in a downstream direction. Evidence of a long‐term net immigration asymmetry and decreasing genetic diversity from downstream to upstream locations indicates that historical patterns of stream colonisation contrast with contemporary dispersal patterns. Our findings are largely consistent with predictions from individual movement patterns but suggest that long moves (>500 m) are more frequent, and maximum dispersal distances are greater than what has been reported from mark–recapture studies. The discrepancy may reflect spatial limitations of mark–recapture methods or temporal variation in dispersal in individuals and populations.  相似文献   

9.
Northern pike (Esox lucius) is not considered an endangered species in Italy, but since recent studies indicate the decline of this population, conservation and management strategies based on the genetic differentiation of natural northern pike populations are needed. In this paper, genetic diversity was analysed in 10 Italian and 2 East European northern pike populations by means of seven microsatellite loci. Data indicated an appreciable genetic differentiation, in spite of a low genetic variation, and agreed with the low level of genetic polymorphism already observed for this species in North America and North Europe. Results of statistical tests revealed genetic peculiarities of the Italian populations, even though signals of recent contact between populations were found and discussed in relation to anthropic impacts, particularly to the stocking practice. This investigation represents the first approach to the knowledge of the genetic variability of Italian pike populations using microsatellite markers, and reported results could be of interest for future management and conservation programmes of this species in Italy.  相似文献   

10.
Population genetics has been recognized as a key component of policy development for fisheries and conservation management and aquaculture development. This study aims to evaluate the genetic diversity and population structure of native cobia (Rachycentron canadum) in the Gulf of Thailand and Andaman Sea, establishing the existing population distributions and contributing information to aid in the development of policy, prior to extensive aquaculture development. Microsatellite analysis of natural cobia populations in these two ocean basins shows similar levels of gene diversity at 0.844 and 0.837, respectively. All populations and almost all microsatellite loci studied show significant heterozygote deficiency. Genetic differentiation between local populations is low and mostly not significant (R ST = ?0.0109 to 0.0066). The population shows no marked structure over the long geographic barrier of the Thai–Malay peninsula, either when analyzed using pairwise genetic differences or evaluated without predefined populations using STRUCTURE. Additionally, a Mantel test shows no evidence of isolation by distance between the population samples. The significant heterozygote deficiency at most of the loci studied could be explained by the possibility of null alleles. Alternatively, given the behavior of forming small spawning aggregations, seasonal migration, and hitchhiking on large marine animals, the population genetics could be complex. The population of cobia at each location in Thai waters may be inbred, as a result of breeding between relatives, which would reduce heterozygosity relative to Hardy–Weinberg frequencies, while some of these populations could be making long distance migrations followed by admixture between resident and transient groups. This migration would cause population homogeneity in allele frequencies on a larger geographic scale. The results suggest that fisheries management for this species should be considered at both national and international levels, and until the possibility of local adaptation is fully investigated, policy development should apply the precautionary principle to ensure the preservation of genetic diversity and the sustainability of local and regional fisheries.  相似文献   

11.
The Korean rockfish, Sebastes schlegeli, is a valuable and intensively exploited species in Korea. We discuss the genetic diversity and genetic structure of four Korean rockfish populations using eight microsatellite loci. In total, 161 different alleles from 138 individuals were observed. Average allele number per locus ranged from 2.5 to 23 and allelic richness varied from 13.38 to 14.63 within a population. Despite a long history of stocking practices, we found very high levels of polymorphism (mean heterozygosity = 0.810), which is comparable to other congeneric species. No significant difference in genetic diversity and molecular genetic variance (FST and RST) was observed among four local samples (P > 0.1). Little indication of contemporary inbreeding (FIS= 0.051) or population structure (K = 1) was detected. This absence of differentiation may reflect high levels of gene flow along the coast of Korea. Our study demonstrates that rockfish in Korea should be managed as a single unit. Currently, the species does not appear to be genetically threatened, but the potential for a rapid loss of genetic diversity remains. This information on the genetic characteristics of Korean rockfish populations has important implications for fisheries management and conservation efforts, and will aid in the sustainable exploitation of the fishing resources and the preservation of biodiversity.  相似文献   

12.
水电开发造成的栖息地片段化可能导致鱼类群体间出现生殖隔离,对流域内重要经济和特有鱼类的群体遗传结构产生不利影响。为探究长江流域梯级水电开发可能对泉水鱼(Pseudogyrincheilus procheilus)群体产生的遗传影响,利用线粒体控制区对泉水鱼长江流域的乌江、金沙江、大渡河3个地理群体的遗传结构进行了分析。结果表明,乌江群体的遗传多样性最高,平均核苷酸差异(k)和核苷酸多样性指数(Pi)分别为4.893和0.00668;金沙江群体遗传多样性最小,k和Pi值分别为0.561和0.00077,大渡河群体遗传多样性与乌江群体相近。泉水鱼3个地理群体之间有显著的遗传分化。乌江群体和大渡河群体间的基因流大于金沙江群体和其他2个群体间的基因流,金沙江群体和其他2个群体间有着较远的遗传距离。Fu's Fs检验结果显示,3个地理群体的Fs值均为负值,核苷酸不配对分布均呈现明显的单峰型,揭示了各个泉水鱼群体均经历了明显的群体扩张。研究结果反映出泉水鱼遗传多样性较为丰富,金沙江群体和其他群体间显著的遗传差异可能是由于历史扩张而非自然选择造成的,泉水鱼存在区域化适应的地理群体,可预见梯级水电开发对其遗传结构的影响将十分有限。  相似文献   

13.
Abstract –  The effect of pike Esox lucius predation on the mortality of newly stocked Atlantic salmon Salmo salar smolts was investigated in the Pyhäjoki River, Finland. The number of smolts eaten by pike was assessed by estimating the size of the pike population (mark–recapture experiment) and studying the stomach contents of pike. Before recapturing the pike, approximately 39,700 smolts were stocked upstream of the 2.5-km-long (89-ha) research area. The estimated size of the >40-cm pike population was 1507 (95% CL 1012–4731) individuals (17 pike and 29.8 kg·ha−1). Pike were estimated to eat 29% of the released smolts during 1 week. The diet of the pike in the research area consisted almost entirely of smolts, whereas in the reference area with no stocked smolts, the meal sizes were significantly smaller and the importance of smolts as prey was substantially lower. Pike <40 cm had not eaten any smolts, probably indicating a size refuge for the smolts, or alternatively fear of intraspecific interactions or cannibalism of pike.  相似文献   

14.
  1. Genetic information is crucial for the conservation of Dipturus oxyrinchus (Linnaeus, 1758), a threatened large skate with declining populations over most of its geographical range. The main aim of the present study was to investigate the genetic structure, connectivity and demographic history of the longnosed skate in Sardinia (western Mediterranean Sea).
  2. Patterns of population structure were assessed in 175 specimens from six sampling sites. Variation in two mitochondrial genes (cytochrome c oxidase subunit I (COI) and control region) highlighted high genetic diversity and low but significant genetic differentiation among sites, which clustered into three groups corresponding to the north‐west, north‐east and south Sardinian coasts.
  3. The observed genetic structuring could presumably depend on a combination of past geological events, contemporary restrictions to dispersal and biological characteristics of the species (e.g. site‐fidelity, no pelagic larval stage, limited dispersal of juveniles and/or adults).
  4. Demographic analyses showed signs of past population expansion, but substantial current stability of Sardinian populations. From a conservation perspective, these results are encouraging, and indicate that Sardinian populations are still large and stable, and seem not to have suffered negative side‐effects from the ever‐growing fishing pressure in the region.
  5. The occurrence of genetic structuring strongly supported the close monitoring of populations to identify any erosion of their gene pool, and high genetic variability of the Sardinian D. oxyrinchus populations could thus represent priority populations for conservation purposes, providing potential sources for recolonization in cases of local extinctions in other areas of the distribution range of the species.
  6. When the sequences from Sardinia were compared with those available from other areas, the data seem to exclude the possibility that the Atlantic and Mediterranean host totally isolated populations or even different species, as recently suggested. However, additional markers and a larger sampling sites are needed to confirm these findings.
  相似文献   

15.
为研究山东沿海三疣梭子蟹增殖放流亲蟹群体的遗传多样性状况,实验采用536 bp的线粒体DNA控制区片段作为分子标记,对4个亲蟹群体的遗传多样性和遗传结构进行了分析。结果显示,301个三疣梭子蟹个体共检测到155个单倍型,4个群体的单倍型多样度为0.972 3~0.993 0,核苷酸多样度为0.021 2~0.023 6,表现出丰富的遗传多样性。AMOVA分析和Fst分析结果均显示,4个三疣梭子蟹亲蟹群体间遗传分化微弱,未形成明显的遗传结构,NJ系统树中未出现与各群体相对应的的谱系分支。研究表明,4个增殖放流亲蟹群体的遗传多样性丰富,且其遗传结构与放流海域的野生群体间没有明显分化,种质资源质量较好。此外,群体历史动态分析显示,渤海南部和黄海北部的三疣梭子蟹历史上曾经历过群体扩张事件。  相似文献   

16.
Extinction vulnerability in marine populations   总被引:16,自引:0,他引:16  
Human impacts on the world's oceans have been substantial, leading to concerns about the extinction of marine taxa. We have compiled 133 local, regional and global extinctions of marine populations. There is typically a 53‐year lag between the last sighting of an organism and the reported date of the extinction at whatever scale this has occurred. Most disappearances (80%) were detected using indirect historical comparative methods, which suggests that marine extinctions may have been underestimated because of low‐detection power. Exploitation caused most marine losses at various scales (55%), followed closely by habitat loss (37%), while the remainder were linked to invasive species, climate change, pollution and disease. Several perceptions concerning the vulnerability of marine organisms appear to be too general and insufficiently conservative. Marine species cannot be considered less vulnerable on the basis of biological attributes such as high fecundity or large‐scale dispersal characteristics. For commercially exploited species, it is often argued that economic extinction of exploited populations will occur before biological extinction, but this is not the case for non‐target species caught in multispecies fisheries or species with high commercial value, especially if this value increases as species become rare. The perceived high potential for recovery, high variability and low extinction vulnerability of fish populations have been invoked to avoid listing commercial species of fishes under international threat criteria. However, we need to learn more about recovery, which may be hampered by negative population growth at small population sizes (Allee effect or depensation) or ecosystem shifts, as well as about spatial dynamics and connectivity of subpopulations before we can truly understand the nature of responses to severe depletions. The evidence suggests that fish populations do not fluctuate more than those of mammals, birds and butterflies, and that fishes may exhibit vulnerability similar to mammals, birds and butterflies. There is an urgent need for improved methods of detecting marine extinctions at various spatial scales, and for predicting the vulnerability of species.  相似文献   

17.
18.
During the past century, the field of fisheries oceanography has dominated the study of population connectivity in marine environments. The influence of physical and biological processes and their relationship to transport and retention of early life history stages has been central in providing insight into population structuring and connectivity. However, the focus on dispersive early life history stages has meant that the role of adults has received less attention and is not fully understood or appreciated. We argue that adults play a vital role in population connectivity for a wide range of marine taxa and hypothesize that adult‐mediated population connectivity commonly results in a diverse array of population structuring. Two case‐studies on winter skate, Leucoraja ocellata, and winter flounder, Pseudopleuronectes americanus, are presented to illustrate the role adults play in marine connectivity at both broad and fine scales, respectively. Indeed, if adults are important for population connectivity, we argue that the role of larval processes is conditional on adult choice and only management and research pursuits that integrate the full life cycle of species will capture the full dynamics of metapopulation connectivity. Failure to include the roles of adults can lead to misinterpretation of the causes and consequences of changes in ecosystem structure and fisheries productivity.  相似文献   

19.
为揭示麦穗鱼入侵云南后群体的遗传多样性和遗传分化差异现状,实验采集了云南澜沧江、怒江、红河、伊洛瓦底江水系13个样点,及黄河、长江、珠江原产地水系6个样点的麦穗鱼群体共计220尾样本,利用线粒体细胞色素b基因(Cyt b)全序列作为分子标记,初步分析了麦穗鱼群体的遗传多样性、遗传结构和遗传分化情况。结果显示,共检测到72个变异位点,定义25个Cyt b单倍型。云南四大水系麦穗鱼单倍型多样性和核苷酸多样性分别为0.828±0.014和0.005 44±0.001 18。云南四大水系和黄河、长江、珠江水系相比,具有较高的遗传多样性。单倍型系统发育树与单倍型网络图显示,黄河群体单倍型独立,云南各水系单倍型与珠江、长江单倍型混杂,推测云南麦穗鱼主要来源于珠江和长江,这与云南省引种经济鱼类历史一致。分子变异分析(AMOVA)显示,云南四大水系麦穗鱼群体间具有程度较高的遗传分化,其中大多数遗传变异存在于群体内(72.60%),群体间的遗传变异为28.62%,水系间为1.22%。结果发现麦穗鱼遗传分化与当前水系的分布格局不吻合。Fu’s Fs中性检验结果和核苷酸不配对分析结果均表明,云南四大水系麦穗鱼群体未发生扩张。麦穗鱼进入云南各水系后,单倍型多样性较高,可能来源于多个地区。在后续对麦穗鱼的管理过程中,需要注意避免单倍型特殊的群体与其他地区群体的交流,减少水系间相互引种。此外,通过开发麦穗鱼资源利用方式来提高麦穗鱼利用率,以控制其群体数量,从而减小其对当地土著物种和渔业养殖的危害。  相似文献   

20.
  1. Understanding the factors driving population structure in marine mammals is needed to evaluate the impacts of previous exploitation, current anthropogenic threats, conservation status, and success of population recovery efforts.
  2. Sperm whales are characterized by a worldwide distribution, low genetic diversity, complex patterns of social and genetic structure that differ significantly within and between ocean basins, and a long history of being commercially whaled. In Australia, sperm whales from the (International Whaling Commission assigned) southern hemisphere ‘Division 5’ stock were very heavily exploited by whaling.
  3. The present study assessed the potential effects of whaling on the genetic diversity of sperm whales in Australia and the population genetic structure of these whales within a global context. A combination of historical and contemporary sperm whale samples (n = 157) were analysed across six regions, from south-eastern Australia (‘Division 6’ stock in the Pacific Ocean) to south-western Australia (‘Division 5’ stock in the Indian Ocean).
  4. Sperm whales sampled from the ‘Division 5’ and ‘Division 6’ stocks belong to the same population based on nuclear and mitochondrial DNA (mtDNA) analyses. Four novel sperm whale mtDNA haplotypes were identified in animals from Australian waters. Levels of genetic diversity were low in Australian sperm whales but were similar to those previously reported for populations in the Indian and Pacific Oceans.
  5. Given the genetic distinctiveness of sperm whales in Australian waters from other regions in the Pacific and Indian Oceans, and the lack of recovery in population numbers, further scientific studies are needed to increase our understanding of population dynamics and the effectiveness of threat management strategies in this species.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号