首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 952 毫秒
1.
Quantifying fish movements in river networks helps identify critical habitat needs and how they change with environmental conditions. Some of the challenges in tracking fish movements can be overcome with the use of passive integrated transponder (PIT) tagging and antennas. We used PIT technology to test predictions of movement behaviour for four fish species at a mainstem–tributary confluence zone in an arid‐land river system. Specifically, we focused on the McElmo Creek tributary confluence with the San Juan River in south‐western Utah, USA. We quantified variation in species occurrences at this confluence zone from May 2012 to December 2015 relative to temporal and environmental conditions. We considered occurrences among species relative to tagging origins (tributary versus mainstem), season and time of day. Generally, fishes tagged in the focal tributary were more likely to be detected compared to fish tagged in the mainstem river or other tributaries. Additionally, adults were most likely to be detected across multiple years compared to subadults. Based on a Random Forests model, the best performing environmental variables for predicting seasonal detections included mainstem discharge during run‐off season (razorback sucker Xyrauchen texanus), tributary discharge during monsoon season (Colorado pikeminnow Ptychocheilus lucius) and mainstem water temperature (flannelmouth sucker Catostomus latipinnis and channel catfish Ictalurus punctatus). The variable responses by endemic and introduced fishes indicate tributary habitats provide several key functions within a fish community including spawning, rearing, foraging and refuge.  相似文献   

2.
There is concern that expanding beaver (Castor fiber) populations will negatively impact the important economic, recreational and ecological resources of Atlantic salmon (Salmo salar) and sea trout (Salmo trutta) populations in Europe. We studied how beaver dams influenced habitat, food resources, growth and movement of juvenile Atlantic salmon and trout on three paired beaver-dammed and beaver-free (control) tributaries of important salmon rivers in central Norway. Lotic reaches of beaver-dammed and control sites were similar in habitat and benthic prey abundance, and ponds were small (<3,000 m2). Though few juvenile salmonids were detected in ponds, trout and salmon were present in habitats below and above ponds (comprising 9%–31% and 0%–57% of the fish collected respectively). Trout dominated control sites (79%–99%), but the greatest proportion of Atlantic salmon were upstream of beaver ponds (0%–57%). Growth rates were highly variable, with no differences in growth between lotic reaches of beaver-dammed and control sites. The condition and densities of juvenile salmon and trout were similar in lotic reaches of beaver-dammed and control sites, though one beaver-dammed site with fine sediment had very few juvenile salmonids. Beaver dams did not block the movement of juvenile salmonids or their ability to use upstream habitats. However, the degree of repeated movements and the overall proportion of fish moving varied between beaver-dammed and control sites. The small scale of habitat alteration and the fact that fish were able to move past dams makes it unlikely that beaver dams negatively impact the juvenile stage of salmon or trout populations.  相似文献   

3.
  1. Freshwater communities and especially pond‐breeding amphibians are extremely vulnerable to land‐use change, alien species introductions and the use of pesticides or other toxic chemicals, as reflected in their worldwide decline. Effective conservation and management of ponds requires a better understanding of the biotic and abiotic factors that shape diversity patterns and species distribution, especially in cases of habitat loss
  2. The present study aimed to reveal and classify which pond and landscape characteristics are the most important determinants for the occurrence patterns of amphibian species as well as for the overall amphibian species richness in an urban pond network. To achieve this aim, 17 biotic and abiotic variables were measured for 61 ponds and the dataset was analysed by means of a machine‐learning approach, suitability indices and co‐occurrence modelling
  3. The highest probability of Triturus macedonicus occurrence was found at fishless artificial and semi‐natural ponds. The persistence of Lissotriton graecus in ponds was predicted by high pond connectivity and the absence of fish reflecting the species dispersive potential. Pelophylax kurtmuelleri showed a higher probability of occurrence with increased pond connectivity and macrophyte cover.
  4. Amphibian species richness was higher in fishless ponds with well‐oxygenated waters located in sites with a low to intermediate road density network. Ponds categorized as ‘average’ in terms of newt suitability were more frequently inhabited by fish than Triturus macedonicus. Alien fish species showed negative associations with both newt species, while both newt species showed a positive association between them.
  5. The results support the view that conserving a greater number of water bodies with increased landscape connectivity and without any fish presence could provide amphibian species with alternative habitat choices, especially in sites with human pressure where pond stability is at stake owing to continuous landscape changes.
  相似文献   

4.
To assess the likelihood of enhancing native fish populations by means of floodplain restoration projects, habitat characteristics and fish assemblages of seven perennial floodplain ponds in Yolo Bypass, the primary floodplain of the Sacramento River, California (USA), were examined during summer 2001. Although all ponds were eutrophic, based upon high chlorophyll a or dissolved nutrient concentrations, relatively large shallow ponds generally exhibited higher specific conductivity and dissolved phosphorus concentrations than small deep ponds, which exhibited greater water transparency and total dissolved nitrogen concentrations. Using multiple gear types, 13 688 fishes comprising 23 species were collected. All ponds were dominated by alien fishes; only three native species contributing <1% of the total number of individuals and <3% of overall biomass were captured. Fish assemblage structure varied among ponds, notably between engineered vs. natural ponds, and was related to specific conductance, total dissolved solids and water transparency.  相似文献   

5.
Freshwater fishes are threatened globally, and often too little is known about threatened species to effectively guide their conservation. Habitat complexity is linked to fish species diversity and persistence, and degraded streams often lack habitat complexity. Beaver Castor spp., in turn, have been used to restore streams and increase habitat complexity. The northern leatherside chub Lepidomeda copei is a rare, small‐bodied, drift‐feeding minnow that has anecdotally been observed to use complex habitats associated with beaver dams in the western United States. To investigate this anecdote, we conducted fish and habitat surveys, the latter focusing on quantifying habitat complexity, in a sub‐basin of the Upper Snake River Basin in the USA. Complementary generalised linear model and path analyses revealed that northern leatherside chub occurred more often at sites with complex streamflows, and streamflows were more complex when beaver dams were present and pools were deeper. Northern leatherside chubs were also more likely to occur when temperatures were warmer, aquatic macrophytes were abundant and stream channels were narrow and deep. The linkage between chubs, complex streamflows and beaver dams needs to be evaluated more broadly to completely understand its role in the rangewide status of the species. However, it does suggests that increased use of beaver reintroductions and dam analogues for stream restoration could be a boon for the northern leatherside chub, but such efforts should be monitored to determine their effectiveness to help adapt beaver‐based restoration approaches to best benefit the species.  相似文献   

6.
Reintroduction of beaver (Castor spp) may facilitate rehabilitation of freshwater habitats providing a cost‐effective sustainable means of improving ecological conditions. Despite extensive research, debate and consultation, a general consensus on the impact of beaver on fishes has proven elusive because of variability in biological response. This paper provides a systematic review of the impacts of beaver dams on fishes and fish habitat based on a meta‐analysis of the literature and expert opinion. Research is regionally biased to North America (88%). The most frequently cited benefits of beaver dams were increased habitat heterogeneity, rearing and overwintering habitat and flow refuge, and invertebrate production. Impeded fish movement because of dams, siltation of spawning habitat and low oxygen levels in ponds were the most often cited negative impacts. Benefits (184) were cited more frequently than costs (119). Impacts were spatially and temporally variable and differed with species. The majority of 49 North American and European experts considered beaver to have an overall positive impact on fish populations, through their influence on abundance and productivity. Perceived negative effects related to the movement of aquatic organisms in tributary streams, including upstream and downstream migrating salmonids, and the availability of suitable spawning habitat.  相似文献   

7.
Tributaries of the Colorado River Basin, historically home to a complex of endemic omnivores collectively referred to as the ‘three species’; flannelmouth sucker (Catostomus latipinnis), bluehead sucker (C. discobolus) and roundtail chub (Gila robusta), have experienced the establishment of numerous non‐native fish species. In this study, we examine the impacts of the trophic ecology of non‐native fishes on the ‘three species’ in the San Rafael River, Utah, USA. We employ a suite of abundance comparisons, stable isotope techniques and size‐at‐age back‐calculation analyses to compare food web structure and growth rates of the ‘three species’ in study areas with and without established populations of non‐native species. We found that the ‘three species’ are more abundant in areas with few non‐native fishes present, regardless of habitat complexity. Stable isotope analyses indicate non‐native fishes lengthen the food chain by 0.5 trophic positions. Further, the trophic niche spaces of the native fishes shift and are narrower in the presence of non‐native fishes, as several non‐native species’ trophic niche spaces overlap almost entirely with each of the ‘three species’ (bluehead sucker and flannelmouth sucker 100%, roundtail chub 98.5%) indicating strong potential for competition. However, the ‘three species’ demonstrated no evidence of reduced growth in the presence of these non‐native fishes. Collectively, these results suggest that while non‐native fishes alter the food web structure presenting novel sources of predation and competition, mechanisms other than competition are controlling the size‐structure of ‘three species’ populations in the San Rafael River.  相似文献   

8.
Abstract  Low-head dams in arid regions restrict fish movement and create novel habitats that have complex effects on fish assemblages. The influence of low-head dams and artificial wetlands on fishes in Muddy Creek, a tributary of the Colorado River system in the USA was examined. Upstream, fish assemblages were dominated by native species including two species of conservation concern, bluehead sucker, Catostomus discobolus Cope, and roundtail chub, Gila robusta Baird and Girard. The artificial wetlands contained almost exclusively non-native fathead minnow, Pimephales promelas Rafinesque, and white sucker, Catostomus commersonii (Lacepède). Downstream, fish assemblages were dominated by non-native species. Upstream spawning migrations by non-native white suckers were blocked by dams associated with the wetlands. However, the wetlands do not provide habitat for native fishes and likely inhibit fish movement. The wetlands appear to be a source habitat for non-native fishes and a sink habitat for native fishes. Two non-native species, sand shiner, Notropis stramineus (Cope), and redside shiner, Richardsonius balteatus (Richardson), were present only downstream of the wetlands, suggesting a beneficial role of the wetlands in preventing upstream colonisation by non-native fishes.  相似文献   

9.
10.
11.
  • 1. The change in fish fauna was monitored in ponds within irrigation systems in Iwate prefecture, north‐eastern Japan to evaluate the effectiveness of eradicating the invasive piscivorous largemouth bass, Micropterus salmoides.
  • 2. Eleven study ponds were categorized into three pond groups: bass‐dwelling (n=3), bass‐eradicated (n=3) and non‐invaded ponds (n=5).
  • 3. Species richness and diversity, which temporally decreased in bass‐dwelling ponds, increased in bass‐eradicated ponds. Furthermore, in bass‐eradicated ponds, the mean numbers of topmouth minnow and freshwater goby were gradually restored, but in bass‐dwelling ponds the numbers decreased and both species eventually disappeared.
  • 4. Although the eradication of piscivorous invaders is helpful for restoring fish species diversity in ponds, its effectiveness varies among species, and other alien fish such as the rose bitterling (Rhodeus ocellatus ocellatus) often invade and proliferate in the bass‐eradicated ponds.
  • 5. To ensure successful restoration of native biota and avoid undesirable results, it is necessary to plan and implement continuous monitoring and adaptive management after eradication of alien predators. Copyright © 2010 John Wiley & Sons, Ltd.
  相似文献   

12.
We conducted underwater surveys using SCUBA gear to examine habitat and microhabitat competition between the Ponto‐Caspian racer goby Babka gymnotrachelus and native European bullhead Cottus gobio to assess the potential for competitive displacement of the native species by the invading species. In summer, 88 surveys were made in a tributary of the River Vistula within defined benthic areas across the entire width of the river bed. The occurrence of fish by total length class (small: <6 cm; large: >6 cm) and environmental conditions (depth, water velocity, substratum type, plant cover, shelter type) was recorded. We found a substantial separation between the species and size classes in relation to substratum, shelter type and water velocity. European bullheads were limited to lotic areas with stony bottoms, whereas racer gobies also occupied lentic areas over sand or mud. European bullheads usually took refuge under stones in contrast to a wider range of shelters used by racer goby, including tree roots and rubbish. In general, the breadth of habitat used by the racer goby was wider than that of the European bullhead, although habitat overlap between the species was not statistically significant except for the type of shelter occupied by small fish, selecting smaller stones. An inverse relationship was observed between small European bullheads and all racer gobies in areas where they co‐occurred, suggesting that invader may be having an adverse effect on the distribution and habitat use of small native bullheads, particularly in areas of moderate water velocities over small stones and gravel.  相似文献   

13.
14.
Pilger TJ, Gido KB, Propst DL. Diet and trophic niche overlap of native and nonnative fishes in the Gila River, USA: implications for native fish conservation. Ecology of Freshwater Fish 2010: 19: 300–321. © 2010 John Wiley & Sons A/S Abstract –  The upper Gila River basin is one of the few unimpounded drainage basins west of the Continental Divide, and as such is a stronghold for endemic fishes in the region. Nevertheless, multiple nonindigenous fishes potentially threaten the persistence of native fishes, and little is known of the trophic ecology of either native or nonnative fishes in this system. Gut contents and stable isotopes (13C and 15N) were used to identify trophic relationships, trophic niche overlap and evaluate potential interactions among native and nonnative fishes. Both native and nonnative fishes fed across multiple trophic levels. In general, adult native suckers had lower 15N signatures and consumed more algae and detritus than smaller native fish, including juvenile suckers. Adult nonnative smallmouth bass (Micropterus dolomieu), yellow bullhead (Ameiurus natalis) and two species of trout preyed on small‐bodied fishes and predaceous aquatic invertebrates leading to significantly higher trophic positions than small and large‐bodied native fishes. Thus, the presence of these nonnative fishes extended community food‐chain lengths by foraging at higher trophic levels. Although predation on juvenile native fishes might threaten persistence of native fishes, the high degree of omnivory suggests that impacts of nonnative predators may be lessened and dependent on environmental variability.  相似文献   

15.
16.
River–floodplain complexes represent some of the most variable and diverse habitats on earth, yet they are among our planet's most threatened ecosystems. Use of these habitats by large‐bodied fishes is especially poorly understood, particularly in temperate regions. To provide insight into the factors that affect floodplain assemblages and migration, we sampled large‐bodied fishes with a fyke trap for 7 years in the Yolo Bypass, the primary flood basin of the Sacramento River, California. We collected a total of 18,336 individual fish comprised of 27 species, only 41% of which were native. Year‐round resident species white catfish Ameiurus catus, channel catfish Ictalurus punctatus and common carp Cyprinus carpio (all alien species) were the most abundant and comprised 74% of the total catch. Splittail Pogonichthys macrolepidotus (3.8%), white sturgeon Acipenser transmontanus (2.3%) and Sacramento sucker Catostomus occidentalis (1.1%) were the primary native species. We found that seasonal variation in water temperature and flood stage were important factors affecting the fish assemblage structure and the presence of migratory species. American shad Alosa sapidissima, an alien species, showed highest abundance during the early summer upstream migration, when temperatures were warmer. For native species, the abundances of white sturgeon, splittail, Sacramento pikeminnow Ptychocheilus grandis and Sacramento sucker were all highest during flood pulses. While our results suggest that flow alone is not sufficient to control alien species, the strong linkage between native fish migration and flow pulses highlights the importance of river–floodplain connectivity for the conservation of native fishes.  相似文献   

17.
Water resource development and non‐native species have been cited as primary drivers associated with the decline of native fishes in dryland rivers. To explore this topic, long‐term trends in the fish community composition of the Bill Williams River basin were studied over a 30‐year period (Arizona, USA). We sampled 31 sites throughout the basin that were included in fish surveys by Arizona Game and Fish in 1994–97 and the Bureau of Land Management in 1979–80. We found that non‐native species have proliferated throughout the entire basin, with greater densities in the lower elevations. Native species have persisted throughout most of the major river segments, but have experienced significant declines in frequency of occurrence and abundance in areas also containing high abundances of non‐native species. Next, we assessed the short‐term response of the fish assemblage to an experimental flood event from the system's only dam (i.e. Alamo Dam). In response to the flood, we observed a short‐term reduction in the abundance of non‐native species in sites close to the dam, but the fish assemblage returned to its preflood composition within 8 days of the event, with the exception of small‐bodied fish, which sustained lower postflood densities. Our findings demonstrate the importance of natural flow regime on the balance of native and non‐native species at the basin scale within dryland rivers and highlight minimal effects on non‐native fishes in response to short duration flood releases below dams.  相似文献   

18.
19.
The mobility patterns of two native species, barbel, Barbus barbus (L.) and chub, Squalius cephalus (L.), and of one non‐native fish species, the catfish Silurus glanis (L.), were assessed on a 35.5‐km reach of the Upper Rhône River, a strong flowing river with notable thermal regime alterations. An active acoustic tracking technique adapted to large rivers allowed (1) the identification of longitudinal home ranges, movements and preferred habitat at large scale, and (2) the analysis of the influence of discharge and water temperature on the movement patterns of the fish. The active fish‐tracking system recorded 1,572 fish localisations over 7 months on a weekly basis for 80% of the tagged fish (37 barbel, 23 chub and 13 catfish). Compared with the catfish, barbel and chub showed wider longitudinal home ranges, more movements >1 km and higher interindividual variability. The catfish preferred artificially heated habitats with less morphological diversity. The three species were more often localised in river sections with high density of woody debris. The results suggest that habitat degradation is more damaging for cyprinids in large modified rivers, while the catfish seemed less, impacted.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号