首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 218 毫秒
1.
通过对长安双竹村夏、秋季不同性质土层CO2释放量的测定,本文研究了不同性质土层CO2释放规律及其差异。资料表明,从当日早晨到次日早晨,不同性质土层土壤CO2释放量均呈现由低到高再到低的变化规律;土壤CO2释放量与土层性质有密切关系,马兰黄土土层CO2释放量最高,其次是黏性土,释放量最低的是含砾石中细砂土;土层CO2释放量变化与气温的变化呈现负相关。  相似文献   

2.
西安南郊夏季土壤碳排放量的变化研究   总被引:2,自引:1,他引:2  
根据NaOH溶液吸收CO2 的原理 ,对西安南郊土壤CO2 释放量进行观测 ,并探讨了土壤CO2 释放量的变化规律及其影响因素。资料表明 ,温度升高 ,土壤CO2 释放量增大 ;夏季早晚期土壤CO2 排放量较低 ,夏季中期的月份CO2 排放量较高 ;农田玉米地CO2 排放量较低 ,草地和林地CO2 排放量较大 ;与春秋季相比 ,夏季土壤CO2 排放量较大 ;CO2 排放量在一昼夜内具明显的变化规律性 ,这种规律主要是受温度变化控制的。CO2 排放量变化显示 ,深厚黄土层中土壤微生物夜间活动强度大于白天。  相似文献   

3.
西安南郊不同深度土壤CO_2浓度变化研究   总被引:2,自引:0,他引:2  
利用红外CO2监测仪对西安南郊不同深度条件下的土壤CO2浓度进行了多次昼夜观测。观测结果表明:在一昼夜内土壤CO2浓度具有从低到高再到低的变化规律,这种变化特点与昼夜温度变化基本一致;土壤CO2浓度从总体来看具有白天高,夜间低,夏季高,秋季低的特点;浅层土壤CO2浓度昼夜变化幅度明显大于深层土壤CO2浓度变化幅度;在厚层黄土的150cm深度范围内,土壤CO2浓度随着深度的增加而增加,在150~600cm深度范围内CO2浓度基本恒定,显示出与薄层土CO2浓度变化明显不同。  相似文献   

4.
陕西黄土高原中南部土壤CO2释放量变化研究   总被引:4,自引:0,他引:4  
本文根据 NaOH溶液吸收CO_2的方法 ,对陕西黄土高原中南部4个观测点的土壤CO_2释放量时行了昼夜观测。观测结果表明 ,不同地区、不同气候和不同土质土壤CO_2释放量存在差异 ,冷干地区较暖湿地区土壤CO_2释放量少,凉季较暖季土壤CO_2释放量少;粘性硬质土较松散黄土CO_2 释放量少。长武、洛川、西安南郊土壤CO_2释放量变化再次证明 ,在厚层黄土发育的地区 ,土壤CO_2释放量变化相对于大气温度变化具有滞后性,从当日早晨至次日早晨,CO_2释放量具有由低变高再变低的普遍规律。  相似文献   

5.
准噶尔盆地盐穗木群落土壤CO2释放规律及其影响因子   总被引:2,自引:2,他引:0  
采用LI-8100自动土壤碳通量测量系统,于2006年5~10月对分布于准噶尔盆地西北缘的盐穗木群落的土壤呼吸速率进行了(北京时间8:00~20:00)测定,并分析了温度和水分对土壤呼吸的影响.结果表明:土壤CO2释放速率具有明显的日变化和季节变化规律,均呈单峰曲线.日最大释放速率出现在14:00~16:00时,最小释放速率在8:00时,日变幅最大值为0.977 μmol/(m2·s)、最小值为0.549 μmol/(m2·s);土壤CO2释放速率的变化顺序为6月>7月>5月>8月>9月>10月,平均速率为0.436±0.061 μmol/(m2·s).土壤呼吸速率日变化与温度的相关性分析表明,呼吸速率与气温、地表温度和5 cm土层温度呈极显著和显著正相关关系,土壤呼吸速率与其之间的线性回归关系为Y=-0.034 0.045 X气温 0.011 X地表温度-0.044X5 cm,(R2=0.734,P<0.001).土壤呼吸速率与20~30 cm,30~40 cm土层的含水量具有显著的相关性.  相似文献   

6.
宁夏黄土丘陵区冬小麦农田土壤呼吸特征及影响因素分析   总被引:2,自引:0,他引:2  
土壤呼吸是陆地碳循环研究的关键环节,是大气CO2的重要来源,文中以冬小麦农田为研究对象,利用ACE土壤呼吸自动监测系统,研究了冬小麦农田土壤呼吸、土壤温度、土壤水分和光合有效辐射的变化特征、相互关系以及碳释放量。结果表明:1)土壤呼吸日变化呈现"单峰型",最大值出现在13:00左右,最小值出现在夜间;2)土壤呼吸日变化表明土壤呼吸与土壤温度(0-10cm)和光合有效辐射呈显著正相关关系(P<0.01),与土壤水分的关系不确定;3)土壤呼吸季节变化表明土壤呼吸与土壤温度呈显著正相关关系(P<0.01),与土壤水分和光合有效辐射无显著相关关系;4)冬小麦农田碳释放量168gC·m-2·a-1。  相似文献   

7.
采用碱液吸收法,对(土娄)土剖面CO2通量进行连续1年的定位观测研究。结果表明:(土娄)土剖面CO2通量具有明显的、较为复杂的季节变化规律,8月下旬最高,冬季最低;一般情况下观测期间耕作区(土娄)土剖面CO2通量呈现表层低-中部高-底层低的分布特征;休闲区(土娄)土剖面CO2通量的季节变化和剖面变化与耕作区相类似,但是在土剖面CO2通量的变化剧烈程度和复杂性方面,耕作区表现的更为明显。土壤温度是影响土剖面CO2通量的主要因素,二者间存在极显著的指数函数相关关系(P0.01);土壤含水量与土剖面CO2通量之间也有着一定的相关关系,但是与土壤温度相比其属于次要地位。土壤CO2释放通量与土壤含水量之间存在一个最适土壤含水量,随着剖面深度的增加,最适土壤含水量逐渐增大。  相似文献   

8.
胡杨夜间液流通量及其影响因子研究   总被引:2,自引:0,他引:2  
夜间液流在树木的整个生长过程中起着非常重要的作用,它不但与夜间蒸腾有关,而且有助于夜间自根系向上运输物质,为植物器官的夜间呼吸提供氧传递的机制。采用热比率技术,测量了荒漠河岸林自然生长条件下胡杨(Populus euphratica)的夜间液流通量大小、变化规律及影响因子。结果表明:1 4月胡杨夜间液流通量变化不大;5月和9月前半夜缓慢下降,后半夜缓慢上升,但变化幅度不大;6、7、8月均呈先下降后上升的趋势,且变化幅度较5月和9月大。2前半夜胡杨累积液流量约占整夜液流量的53%~62%,而后半夜仅占整夜累积液流量的38%~47%;后半夜液流通量显著低于前半夜;胡杨各月夜间累积液流量占整日累积液流量的比例依次为:4月(45.7%)5月(30.7%)8月(30.1%)9月(29.5%)6月(28.6%)7月(26.2%),春季夜间累积液流量占整日累积液流量的比例大于夏季和秋季。3胡杨夜间液流通量受水汽压差、气温等影响,就4—9月来看,胡杨夜间液流通量与环境因子的相关系数依次为:水汽压差(0.63)气温(0.58)空气相对湿度(-0.335)土壤含水量(0.17)。水汽压差是影响夜间液流通量最关键的因子。  相似文献   

9.
浑善达克沙地沙地榆土壤种子库特征与动态规律研究   总被引:1,自引:0,他引:1  
在浑善达克沙地以沙地榆为研究对象,针对60年生、46年生、30年生3种不同树龄沙地榆林进行了土壤种子库调查,研究了沙地榆土壤种子库的组成、数量及动态变化规律。结果表明:1)不同树龄沙地榆林结实量差异明显,结实量大小顺序为60年生林分>46年生林分>30年生林分,结实量分别为2101粒/m2、451粒/m2、24粒/m2;2)在整个观测期内,不同树龄沙地榆林土壤种子库内种子总数呈下降趋势。2011年9月各林分种子总数比2011年6月分别减少了75.17%、47.46%和96.15%。3)从成熟种子组成及动态变化趋势来看,60年生和30年生沙地榆林土壤中成熟种子在整个观测期内呈逐月下降趋势,46年生沙地榆土壤中成熟种子总数呈先下降后增加的趋势。2011年7月,成熟种子的比例最小,种子质量最差,2011年9月,成熟种子的比例最大,不存在腐烂虫害种子,种子质量最好。4)不同树龄沙地榆林土壤种子库种子总数分布规律基本一致,表现为枯枝落叶层>0-2cm土层>2-4cm土层。枯枝落叶层土壤种子库种子总数随时间呈持续减少的趋势,0-2cm土层和2-4cm土层土壤种子库种子总数呈先减少后增加的趋势。  相似文献   

10.
地表覆盖秸秆和地膜是我国西北旱作农田土壤固碳的重要田间管理措施,但其对土壤碳组分的长期影响尚不明确。基于田间定位试验,设生育期高量秸秆覆盖(9 000 kg·hm-2,HSM)、生育期低量秸秆覆盖(4 500 kg·hm-2,LSM)、夏闲期秸秆覆盖(9 000 kg·hm-2,FSM)、生育期地膜覆盖(PM)和无覆盖对照(CK)共5个处理,研究了秸秆覆盖和地膜覆盖12 a和13 a后旱作冬小麦农田土壤总有机碳(SOC)、颗粒有机碳(POC)、潜在矿化碳(PCM)和微生物量碳(MBC)含量的变化规律。2 a平均结果表明:与CK相比,HSM和LSM处理均显著提高了0~10 cm土层各碳组分含量以及10~20 cm土层SOC、POC、MBC含量,同时还显著提高了0~20 cm土层POC和MBC占SOC的比例;而FSM和PM处理对各土层土壤碳组分含量及其占SOC的比例均无显著影响。土壤碳组分含量相互之间均存在极显著正相关关系。综上可知,长期生育期秸秆覆盖能有效提高旱作冬小麦农田耕层土壤有机碳及其组分含量,且提高覆盖量有助于促进...  相似文献   

11.
祁连山不同海拔梯度和放牧强度土壤呼吸变化特征   总被引:2,自引:0,他引:2  
分析青海云杉林、灌丛林、放牧草地三者的呼吸速率差异性以及放牧强度对土壤呼吸速率的影响,结果表明:①云杉林、灌丛林和放牧草地在16:00之前的呼吸速率大小顺序为:灌从林>云杉林>草地;16:00之后顺序为:云杉林>灌丛林>草地.②土壤呼吸速率和日均温有Y=10.342e-0.0002x,R2=0.0002的线性关系.这一线性关系可以解释很多土壤呼吸的变化情况.③放牧直接影响土壤含水量,放牧强度与土壤含水量呈负相关,土壤含水量与土壤呼吸速率呈正相关.土壤含水量为:重度放牧区>过度放牧区>极度放牧区;土壤呼吸速率为:重度放牧区>过度放牧区>极度放牧区.④温度是影响土壤呼吸的主要因子,与土壤呼吸速率呈正相关,呼吸速率日均最大值出现在6~7月,为8.66umoL/(m2·s);最小值出现在5月,为0.37umol/(m2·s).  相似文献   

12.
The decomposition behaviour of glyphosate in four Victorian soils was investigated at two temperatures using non-steady-state compartmental analysis. At 25°C, glyphosate degradation was shown numerically to be derived from two different sources where the rate of release from each source behaved in accordance with first-order kinetics. Over the first 40 day period for each of the soils, glyphosate was derived simultaneously from the labile and non-labile phase, whilst after the first 40 days, glyphosate was derived solely from the non-labile phase. At this temperature, the amount of glyphosate partitioned into the labile phase ranged from 24·1 to 34·5%, whilst the amount partitioned into the sorbed, non-labile phase ranged from 67·2 to 74·9%. The half-lives for glyphosate within each phase was calculated and ranged from six to nine days for the labile phase to 222–835 days for the non-labile phase. Glyphosate appeared to be more strongly held in the acidic Rutherglen soil than in the alkaline soils studied, and this was thought to be related to the substantially lower pH and higher Fe content of the acidic soil. At 10°C, glyphosate was shown numerically to be derived from two different sources for two of the soils. However, for the two remaining soils, glyphosate appeared to be derived either from a single phase or from two phases at either the same rate or at differential rates where the rate of release from one phase was sufficiently fast to mask the rate of release from the other. At this temperature, more glyphosate was partitioned into the non-labile phase of the Walpeup and Rutherglen soils than at 25°C. However, the rate of release of glyphosate from this phase increased for the Walpeup soil relative to that at 25°C, but decreased substantially for the Rutherglen soil. This suggests that different mechanisms for the binding of glyphosate into the non-labile phase may exist between soils. © 1998 SCI.  相似文献   

13.
Night‐time tillage and sowing (photocontrol of weeds, soil cultivation in darkness) can reduce the germination and subsequent density of light‐sensitive weeds by excluding the short light flash during soil disturbance. In most experiments conducted from 1990 to 2004 worldwide, total weed density was reduced in night‐time tilled plots as expected. However, in a few field experiments, total weed density was significantly increased in night‐time compared with daytime tilled plots. We hypothesise that the desiccation process of the upper soil layer (roughly about 0–30 mm), from where most small seeded weeds emerge, may have been delayed in night‐time compared with daytime tilled plots, with significant effects on early seed germination processes. Daytime tillage was usually performed around noon, to capture high light intensities during soil tillage. However, around noon soil desiccation can be much higher than during the night. A few hours of relatively higher water availability for seeds in the upper soil layer during the night, before the next morning when soil desiccation usually increases again, may have favoured seed germination and subsequent weed emergence compared with daytime tillage, finally resulting in higher weed density in night‐time tilled plots. On the other hand, crop germination and emergence may also be higher under such conditions.  相似文献   

14.
Fan YANG 《干旱区科学》2017,9(4):568-579
Knowledge of soil respiration and the influencing factors in desert ecosystems is essential to understanding carbon dynamics and responses of biotic and abiotic processes in soils to climate change. In this study, soil respiration rate(R_s) for three land-cover types(shifting sandy land, sandy land with straw checkerboard barriers, and shelter forest land) in the hinterland of the Taklimakan Desert was measured in May 2015 using an automated soil CO_2 flux system. The effects of soil temperature(T_s) and soil water content(W_s) on R_s were also analyzed. The results showed that R_s values in shifting sandy land, sandy land with straw checkerboard barriers, and shelter forest land were all low and exhibited obvious diurnal fluctuations. The establishment of straw checkerboard barriers in sandy land had no significant effect on R_s, while the establishment of shelterbelts significantly increased R_s. Shifting sandy land and sandy land with straw checkerboard barriers were carbon sinks at night and early morning and were carbon sources in the daytime, while shelter forest land always acted as a carbon source during the whole day. The synergistic effect of T_s and W_s could better explain the diurnal dynamics in R_s than single factor. In shifting sandy land and sandy land with straw checkerboard barriers, W_s was identified as a limiting factor influencing the diurnal dynamics of R_s. Furthermore, a relatively strong hysteresis loop existed between R_s and T_s. In contrast, in shelter forest land, R_s was significantly influenced by T_s, and a relatively weaker hysteresis loop existed between R_s and W_s.  相似文献   

15.
关中农田土壤物理状态与分析   总被引:3,自引:0,他引:3  
针对关中农田土壤通气、透水能力下降,抗不良环境能力减弱,生产成本逐年递增的实际问题,以关中11个县区农田土壤为研究对象,以土壤耕作层厚度、容重及团聚体特征为指标,开展了现代利用强度及土壤管理模式下农田土壤物理状态及其退化特征研究。结果表明:关中地区土壤发生学层次厚度尽管很厚,但受下层土体紧实化的影响,农田土壤耕作层普遍浅薄,疏松良好的土壤耕作层厚度变化在5~21 cm。调查范围内耕作层厚度在20 cm左右的仅占18%,10~15 cm之间的占64%,10 cm占18%左右。关中地区农田0~20 cm耕层土壤容重变化在1.04~1.34 g·cm~(-3),平均容重为1.21 g·cm~(-3),属于良好物理状态;而20~40 cm土壤容重变化在1.46~1.70 g·cm~(-3)之间,平均容重为1.58 g·cm~(-3),属于很紧实土壤状态。约36%的农田在20~40 cm处容重达到或超过了1.60 g·cm~(-3)的极限容重值。用干、湿筛技术测定的土壤团聚体的组成,关中农田1~5 mm的"(质量)优势团聚体"、团聚体的几何均重直径(GMD)、标准化平均当量直径(NMWD)以及土壤结构系数(Kctp)均显示,耕作层土壤团聚状态处于良好级别,其下层64%的土壤团聚状态较差,关中农田土壤团聚体水稳定性差,各地土壤团聚体状态以及稳定性差别明显。结论:关中地区农田土壤耕层变浅薄,是因为20~40 cm土层紧实化程度增大和犁底层上移与变厚所致;20~40土壤容重已经增大到极限值;0~20 cm土壤团聚体状态良好,但稳定性不强是引起其下层土壤紧实化的重要原因。关中农田土壤亚表层紧实化问题普遍,有愈加严重的发展态势。从空间上紧实化土层具有很强的隐蔽性,难以被人们所觉察,属于隐型土壤物理退化特征,不可小觑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号