首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
In this study, the effect of a potential multimicrobe probiotic subjected to high-temperature drying was investigated. Potential multimicrobe probiotics produced by solid substrate fermentation were dried at low (LT, 40°C for 72 h) or high (HT, 70°C for 36 h) temperature. In Exp. 1, 288 weaned pigs (BW, 6.43 ± 0.68 kg) were allotted to 4 treatments on the basis of BW (4 pens per treatment with 18 pigs in each pen). Dietary treatments were negative control (NC; basal diet without any antimicrobial), positive control (PC; basal diet + 0.1% chlortetracycline), basal diet with 0.3% probiotic LT, and basal diet with 0.3% probiotic HT. Diets were fed in 2 phases, phase I (d 0 to 14) and phase II (d 15 to 28); and growth performance, apparent total tract digestibility (ATTD, d 28), and fecal microflora (d 14 and 28) were evaluated. Over the 28-d trial, pigs fed PC and probiotic diets had greater ADG (P < 0.001), ADFI (P < 0.05), and G:F (P < 0.01) than pigs fed NC diet. The ATTD of DM and GE was greater (P < 0.05) in pigs fed probiotic diets when compared with pigs fed the NC diet. At d 28, fewer Clostridia (P < 0.01) were identified in the feces of pigs fed PC and probiotic diets than pigs fed the NC diet. However, the performance, ATTD of DM and GE, and fecal Clostridia population were similar among pigs fed probiotic LT and HT diets. In Exp. 2, 288 weaned pigs (initial BW, 5.84 ± 0.18 kg) were allotted to 4 treatments in a 2 × 2 factorial arrangement on the basis of BW. The effects of 2 levels of probiotic HT (0.30 or 0.60%), each with or without antibiotic (chlortetracycline, 0 or 0.1%), on performance, ATTD, intestinal morphology, and fecal and intestinal microflora were investigated. Feeding of 0.60% probiotic HT diet improved (P < 0.05) overall ADG, ATTD of DM and GE, and Lactobacillus population in the feces and intestine, and reduced the population of Clostridium and coliforms in feces (d 14) and ileum. Inclusion of antibiotic improved (P < 0.05) the overall ADG, ADFI, and ATTD of DM at d 14 and reduced fecal Clostridium population at d 28. Increased (P < 0.05) villus height at jejunum and ileum, and villus height:crypt depth at the ileum was noticed in pigs fed 0.60% probiotic HT and antibiotic diets. In conclusion, high drying temperature had no effect on the efficacy of potential multimicrobe probiotic product. However, the probiotic product dried at high temperature was more effective at 0.60% inclusion, whereas inclusion of an antibiotic improved pig performance but did not show any interaction with probiotics.  相似文献   

2.
Two experiments were conducted to determine the effects of dietary supplementation of exogenous enzymes on growth performance, apparent total tract digestibility (ATTD) of energy and nutrients, blood metabolites, fecal VFA, and fecal ammonia-N in growing pigs (Sus scrofa) fed a corn (Zea mays L.)- and soybean [Glycine max (L.) Merr.] meal (SBM)-based diet. In Exp. 1, 240 growing barrows (initial BW: 55.6 ± 0.9 kg) were randomly allotted to 5 treatments on the basis of BW. There were 4 replicates in each treatment with 12 pigs per replicate. The 5 treatments consisted of a corn-SBM-based control diet and 4 additional diets were similar to the control diet, with the exception that 0.05% β-mannanase (M), α-amylase + β-mannanase (AM), β-mannanase + protease (MPr), or α-amylase + β-mannanase + protease (AMP) was added to the diets, which were fed for 28 d. Pigs fed the AM, MPr, or AMP diet had greater (P < 0.05) ADG than pigs fed the control diet. Pigs fed the AMP diet also had greater (P < 0.05) ADG than pigs fed the M, AM, or MPr diet. Pigs fed the AMP diet had greater (P < 0.05) G:F than pigs fed the control diet. The G:F of the pigs fed the M, AM, or MPr diet were not different (P > 0.05) from the G:F in pigs fed the AMP or control diet. The ADFI, ATTD of nutrients, blood metabolites, and fecal VFA and ammonia-N concentrations were not different among treatments. In Exp. 2, 192 growing barrows (initial BW: 56.9 ± 1.0 kg) were allotted to 4 treatments. There were 4 replicates in each treatment with 12 pigs per replicate. Pigs were fed a corn-SBM-based diet (CSD) or a complex diet (CD) that contained corn, SBM, 3% rapeseed (Brassica napus L.) meal, 3% copra (Cocos nucifera L.) meal, and 3% palm (Elaeis guineensis Jacq.) kernel meal. Each diet was prepared without exogenous enzymes or with 0.05% AMP and all diets were fed for 28 d. The ADG and G:F of pigs fed the CSD were greater (P < 0.05) than pigs fed the CD. However, the type of diet had no effect on the ATTD of nutrients, blood metabolites, or fecal VFA and ammonia-N, and there was no diet × enzyme interaction for any of the measured variables. Supplementation of diets with exogenous enzymes resulted in greater (P < 0.05) ADG, G:F, ATTD of DM, GE, and CP, and blood urea nitrogen (BUN) concentration. These results indicate that supplementation of 0.05% of AMP enzymes to a corn-SBM diet or a complex diet may improve the performance of growing pigs.  相似文献   

3.
Two experiments were conducted to determine the efficacy of mannan oligosaccharides (MOS) fed at two levels of Cu on growth and feed efficiency of weanling and growing-finishing pigs, as well as the effect on the immunocompetence of weanling pigs. In Exp. 1, 216 barrows (6 kg of BW and 18 d of age) were penned in groups of six (9 pens/treatment). Dietary treatments were arranged as a 2 x 2 factorial consisting of two levels of Cu (basal level or 175 ppm supplemental Cu) with and without MOS (0.2%). Diets were fed from d 0 to 38 after weaning. Blood samples were obtained to determine lymphocyte proliferation in vitro. From d 0 to 10, ADG, ADFI, and gain:feed (G:F) increased when MOS was added to diets containing the basal level of Cu, but decreased when MOS was added to diets containing 175 ppm supplemental Cu (interaction, P < 0.01, P < 0.10, and P < 0.05, respectively). Pigs fed diets containing 175 ppm Cu from d 10 to 24 and d 24 to 38 had greater (P < 0.05) ADG and ADFI than those fed the basal level of Cu regardless of MOS addition. Pigs fed diets containing MOS from d 24 to 38 had greater ADG (P < 0.05) and G:F (P < 0.10) than those fed diets devoid of MOS. Lymphocyte proliferation was not altered by dietary treatment. In Exp. 2, 144 pigs were divided into six pigs/pen (six pens/treatment). Dietary treatments were fed throughout the starter (20 to 32 kg BW), grower (32 to 68 kg BW), and finisher (68 to 106 kg BW) phases. Diets consisted of two levels of Cu (basal level or basal diet + 175 ppm in starter and grower diets and 125 ppm in finisher diets) with and without MOS (0.2% in starter, 0.1% in grower, and 0.05% in finisher). Pigs fed supplemental Cu had greater (P < 0.05) ADG and G:F during the starter and grower phases compared to pigs fed the basal level of Cu. During the finisher phase, ADG increased when pigs were fed MOS in diets containing the basal level of Cu, but decreased when MOS was added to diets supplemented with 125 ppm Cu (interaction, P < 0.05). Results from this study indicate the response of weanling pigs fed MOS in phase 1 varied with level of dietary Cu. However, in phase 2 and phase 3, diets containing either MOS or 175 ppm Cu resulted in improved performance. Pharmacological Cu addition improved gain and efficiency during the starter and grower phases in growing-finishing pigs, while ADG response to the addition of MOS during the finisher phase seems to be dependent upon the level of Cu supplementation.  相似文献   

4.
Four experiments were conducted to determine whether betaine (BET) could replace dietary methionine (MET) in diets for weanling pigs. Pigs in each experiment were allotted to treatments on the basis of weight in a randomized complete block design. Each treatment was replicated four (Exp. 4), five (Exp. 1 and 2), or six (Exp. 3) times with five or six pigs per replicate. In Exp. 1, pigs were fed a diet formulated to be deficient in total sulfur amino acids (TSAA) (negative control; NC) or the NC + 0.05 or 0.10% MET or BET during Phase 1 and 0.035 or 0.07% MET or BET during Phase 2. Growth performance was not affected (P > 0.10) by dietary treatments, indicating that the diets were not deficient in TSAA. In Exp. 2, graded levels of TSAA (0.74, 0.79, 0.84, 0.89, or 0.94%) were fed. Overall ADG was increased (0 vs added MET, P < 0.07) in pigs fed TSAA levels of 0.79% or greater, but gain:feed was not affected (P > 0.10) by diet. Overall ADFI was increased (linear, P < 0.08) and plasma urea N (PUN) was decreased (quadratic, P < 0.01) as the level of TSAA was increased. Most of the change in ADG, PUN, and ADFI occurred between 0.74 and 0.84% TSAA. Thus, the 0.74% TSAA diet was used in Exp. 3 as the NC. In Exp. 3, the diets included the following: 1) NC, 2) NC + 0.05% MET, 3) NC + 0.10% MET, 4) NC + 0.039% BET, or 5) NC + 0.078% BET. The addition of MET resulted in increased (linear, P < 0.10) ADG, ADFI, and gain:feed, but MET decreased PUN (linear, P < 0.05). Daily gain, ADFI, and TSAA intake were not different (P > 0.10) between pigs fed 0.05% MET or 0.039% BET, but gain:feed was decreased (P < 0.01) in pigs fed 0.039% BET compared with pigs fed 0.05% MET. In Exp. 4, a 2 x 2 x 2 factorial arrangement of treatments was used (MET, 0 or 0.072%; cystine, 0 or 0.059%; or BET, 0 or 0.057%). Overall ADG and gain:feed were increased (P < 0.10) in pigs fed MET. The intake of TSAA was increased (P < 0.05), and PUN was decreased (P < 0.10) in pigs fed MET or cystine. Overall ADFI was increased in pigs fed BET or MET independently but not affected when BET and MET were fed together (BET x MET, P < 0.10). The addition of BET to TSAA-deficient diets resulted in increased ADG, which was due to an increase in ADFI (TSAA intake). Thus, BET did not spare MET in this experiment.  相似文献   

5.
Based on results of a recent meta-analysis, we hypothesized that increased dietary Val, Ile, or Trp could correct possible amino acid interactions because of excess Leu in diets containing high levels of corn protein, namely dried distiller’s grains with solubles (DDGS). A total of 1,200 pigs (PIC TR4 × (Fast LW × PIC L02); initially 33.6 ± 0.6 kg) were used in a 103-d study. The 6 dietary treatments were corn–soybean meal (SBM)-DDGS-based as follows: (1) high SBM and low level of l-Lys HCl (HSBM), (2) high l-Lys HCl and moderate Ile, Val, Trp (AA above NRC 2012 estimates; NC), (3) moderate l-Lys HCl and high Ile, Val, and Trp (PC), and PC with either increased (4) L-Val (PC+Val), (5) L-Ile (PC+Ile), or (6) L-Trp (PC+Trp). Pigs fed the NC diet were predicted to have the poorest average daily gain (ADG), the PC diet to be intermediate, and pigs fed the HSBM, PC+Val, PC+Ile, and PC+Trp have the same and highest predicted ADG. In the grower period (34 to 90 kg), ADG was greater (Ρ < 0.05) for the pigs fed HSBM and PC+Val diets than the NC with pigs fed other diets intermediate. Pigs fed HSBM were more (Ρ < 0.05) efficient (G:F) than the NC and PC with pigs fed other diets intermediate. In the finisher period (90 to 136 kg), ADG was greater (Ρ < 0.05) for pigs fed PC+Ile than that of the NC with pigs fed other diets intermediate. Pigs fed PC+Val had greater (Ρ < 0.05) average daily feed intake (ADFI) than the NC with pigs fed other diets intermediate. However, PC+Ile pigs were more (Ρ < 0.05) efficient than PC+Val with pigs fed other diets intermediate. Overall, ADG was greater (Ρ < 0.05) for pigs fed HSBM, PC+Val, and PC+Ile diets than the NC with pigs fed other diets intermediate. Pigs fed the PC+Val diet had greater (Ρ < 0.05) ADFI than the NC with pigs fed other diets intermediate. No differences were detected between treatments for overall G:F or other carcass characteristics. In conclusion, increasing Val or Ile in high l-Lys-HCl-DDGS-based diets improved growth performance compared with pigs fed diets containing high levels of l-Lys HCl without added Val and Ile. These results present evidence that the recently developed meta-analysis can predict the relative differences in overall ADG for pigs fed the NC, PC, PC+Val, and PC+Ile diets; however, the predicted G:F was less accurate. The data demonstrate that the negative effects of high Leu concentrations in corn-DDGS-based diets can be reversed by increasing the ratios of Val and Ile relative to Lys.  相似文献   

6.
Effects of adding protease with or without fructooligosaccharide (FOS) to low protein diet on growth performance, nutrient digestibility and fecal noxious gas emission were evaluated in 160 finishing pigs (57.70 ± 1.16 kg) in a 9‐week study. Pigs were randomly divided into four dietary treatments, PC: positive control diet (15.97% crude protein (CP)); NC: negative control diet (12.94% CP); PRO: NC supplemented with 0.05% protease; PROFOS: NC supplemented with 0.05% protease and 0.1% FOS. During weeks 4–9 and weeks 0–9, gain : feed ratio was impaired (< 0.05) in pigs fed NC diet compared with those fed PC, PRO and PROFOS diets. Pigs fed PC, PRO and PROFOS diets had higher (< 0.05) apparent total tract digestibility (ATTD) of CP than pigs fed NC diet. Pigs fed PROFOS diet had reduced (< 0.05) ammonia emissions compared to pigs fed NC and PRO diets. These data indicate that reducing dietary CP concentrations impaired growth performance, decreased ATTD of CP and reduced ammonia emissions. Supplementation of protease in low CP diet improved growth performance and increased ATTD of CP. Dietary supplementation with protease and FOS in low CP diet improved growth performance, increased ATTD of CP and decreased fecal ammonia emission.  相似文献   

7.
Effect of supplementing wheat dried distillers’ grain with solubles (DDGS)‐containing diet with enzymes on nutrient utilization by growing pigs was evaluated in two experiments. In Experiment 1, 60 pigs weighing ~30 kg were fed five diets that included a corn‐based diet (Control), Control with 10% wheat DDGS (DDGS‐PC), DDGS‐PC without inorganic P source (DDGS‐NC), and DDGS‐NC plus phytase alone or with multi‐carbohydrase for 4 weeks to determine average daily gain (ADG), average daily feed intake (ADFI) and gain‐to‐feed ratio (G:F). In Experiment 2, 30 barrows weighing 22 kg were fed five diets fed in Experiment 1 to determine nutrient digestibility and retention. Pigs fed DDGS‐PC and Control diets had similar ADG and G:F. The ADG and G:F for DDGS‐PC diet were higher (P < 0.05) than those for DDGS‐NC diet. Phytase improved (P < 0.05) ADG, G:F, total tract P digestibility and P retention by 6.6, 8.7, 86.0 and 85.5%, respectively. Addition of multi‐carbohydrase to phytase‐supplemented diet did not affected growth performance, but reduced (P < 0.05) P retention. In conclusion, inclusion of 10% wheat DDGS in growing pig diet may not affect growth performance of growing pigs. Phytase supplementation to wheat DDGS‐containing diet can eliminate the need for inorganic P supplement in pig diets.  相似文献   

8.
We conducted two trials to determine the effects of added dietary pyridoxine (vitamin B6) or thiamin (vitamin B1) on growth performance of weanling pigs. In Exp. 1, weanling pigs (n = 180, initially 5.55 +/- .84 kg, and 21 +/- 2 d of age) were fed either a control diet (no added pyridoxine or thiamin) or the control diet with added thiamin (2.8 or 5.5 mg/kg) from thiamin mononitrate or pyridoxine (3.9 or 7.7 mg/kg) from pyridoxine HC1. These five diets were fed in meal form in two phases (d0 to 14 and 14 to 35 after weaning), with identical vitamin concentrations in both phases. From d 0 to 14 after weaning, pigs fed added pyridoxine had increased (quadratic, P < .05) ADG and ADFI; pigs fed 3.9 mg/kg of added pyridoxine had the greatest improvement. From d 14 to 35 and 0 to 35, ADG and ADFI increased (linear P = .06) for pigs fed increasing pyridoxine. Growth performance was not improved by added thiamin. In Exp. 2, weanling pigs (n = 216, initially 6.08 +/- 1.13 kg, and 21 +/- 2 d of age) were fed a control diet or the control diet with 1.1, 2.2, 3.3, 4.4, or 5.5 mg/kg of added pyridoxine from pyridoxine HCl. From d 0 to 14 after weaning, increasing pyridoxine increased (quadratic, P < .05) ADG and ADFI; pigs fed 3.3 mg/kg of added pyridoxine had the greatest ADG and ADFI. Break-point analysis suggested a requirement estimate of 3.3 and 3.0 mg/kg of added pyridoxine to maximize ADG and ADFI, respectively. From d 14 to 35 or 0 to 35, increasing pyridoxine had no effect (P > .10) on pig growth performance. These results suggest that adding 3.3 mg/kg of pyridoxine (7.1 to 7.9 mg/kg of total pyridoxine) to diets fed from d 0 to 14 after weaning can improve pig growth performance.  相似文献   

9.
The capacity of a novel consensus bacterial 6-phytase variant (PhyG) to entirely replace dietary inorganic phosphorus (Pi) source in grower pigs fed diets with reduction of calcium (Ca), net energy (NE), and digestible amino acids (AA) was evaluated, using growth performance and apparent total tract digestibility (ATTD) of nutrients as outcome measures. A total of 352 mixed-sex pigs (initial BW 23.4 kg) were randomized to 4 treatments, 8 pigs/pen, and 11 pens/treatment. Diets were corn-soybean meal-based and formulated by phase (grower 1, 25 to 50 and grower 2, 50 to 75 kg BW). The positive control diet (PC) provided adequate nutrients and a negative control diet (NC) was formulated without Pi (1.2 g/kg ATTD P) and reduced in Ca (-0.12 to -0.13 percentage points), NE (-32 kcal/kg), and digestible essential AA (-0.004 to -0.026 percentage points) vs. PC. Two further treatments comprised the NC plus 500 or 1,000 FTU/kg of PhyG. Data were analyzed by ANOVA, mean contrasts and orthogonal polynomial regression. Nutrient reductions in the NC reduced (P < 0.05) average daily gain (ADG) during grower 1 and overall (73 to 136 d of age), increased (P < 0.05) feed conversion ratio (FCR) during grower 1 and overall and tended to reduce (P < 0.1) average daily feed intake (ADFI) during grower 2 and overall, vs. PC. Phytase supplementation improved (P < 0.05) FCR during grower 1, ADG during grower 2 and overall, ATTD of DM and P, and tended to improve DE (P = 0.053) in a linear dose-dependent manner. PhyG at 1,000 FTU/kg resulted in growth performance (all measures, all phases) equivalent to PC. The findings demonstrate that PhyG at 1,000 FTU/kg totally replaced Pi in complex grower pig diets containing industrial co-products, compensated a full nutrient matrix reduction and maintained performance.  相似文献   

10.
We conducted two experiments to study the effects of pelleting and pellet conditioning temperature on weanling pig performance. In Exp. 1, 252 weanling pigs (PIC, L326 x C22) averaging 6.0 +/- 1.3 kg and 21 +/- 3 d of age were used to evaluate six corn-soybean meal-based diets containing 15% dried whey and formulated to contain 1.4% lysine. Treatments consisted of a control diet without spray-dried animal protein (SDAP) fed in meal form, a diet with 5% SDAP fed in meal form, and four diets with 5% SDAP that were conditioned at 60, 66, 71, or 77 degrees C for 10 s prior to pelleting. Pellets had a 3.97-mm diameter. The experimental diets were fed from d 0 to 14 after weaning, and all pigs were fed a common diet in meal form from d 14 to 28 after weaning. From d 0 to 7 after weaning, pigs fed diets containing SDAP had greater ADG, gain/feed (P < 0.001), and ADFI (P < 0.05) than pigs fed the control diet. No differences (P > 0.10) were observed between pigs fed the pelleted diets and those fed the SDAP diet in meal form. Conditioning temperature had no effect (P > 0.10) on weanling pig performance from d 0 to 14, and the diet fed from d 0 to 14 had no effect on overall performance (d 0 to 28). In Exp. 2, 252 weanling pigs (6.3 +/- 1.5 kg and 22 +/- 4 d of age) were used to evaluate diets with same composition as in Exp. 1, but treatments consisted of diets with or without SDAP conditioned at 60 degrees C before pelleting, and four diets containing 5% SDAP that were conditioned at 68, 77, 85, and 93 degrees C before pelleting. As in Exp. 1, conditioning lasted 10 s, pellets were 3.97 in mm diameter, and experimental diets were fed for the first 14 d of the 28-d experiment. From d 0 to 7, pigs fed the SDAP diet conditioned at 60 degrees C had greater ADFI (P < 0.05) and tended (P = 0.12) to have greater ADG than pigs fed the diet without SDAP and conditioned at 60 degrees C. From d 0 to 7, ADG (quadratic effect, P < 0.03) and ADFI (linear effect, P < 0.002) decreased as conditioning temperature increased, with the largest decrease observed above 77 degrees C. From d 0 to 14 and 0 to 28, ADG was not affected (P > 0.10) by pellet conditioning temperature or SDAP fed from d 0 to 14. The results of these studies suggest that conditioning diets containing 5% SDAP at temperatures above 77 degrees C decreases weanling pig growth performance.  相似文献   

11.
This study was conducted to evaluate the effects of dietary energy density and weaning environment on pig performance. Treatment diets were formulated to vary in DE concentration by changing the relative proportions of low (barley) and high (wheat, oat groats, and canola oil) energy ingredients. In Exp. 1, 84 pigs in each of 3 replications, providing a total of 252 pigs, were weaned at 17 x 2 d of age and randomly assigned to either an on-site or an off-site nursery and to 1 of 3 dietary DE concentrations (3.35, 3.50, or 3.65 Mcal/kg). Each site consisted of a nursery containing 6 pens; 3 pens housed 7 barrows and 3 housed 7 gilts. All pigs received nontreatment diets in phase I (17 to 19 d of age) and phase II (20 to 25 d of age), respectively. Dietary treatments were fed from 25 to 56 d of age. Off-site pigs were heavier at 56 d of age (23.4 vs. 21.3 kg; P < 0.05) and had greater ADFI (0.77 vs. 0.69 kg/d; P < 0.01) than on-site pigs. There was a linear decrease in ADG (P < 0.01) and ADFI (P < 0.001) with increasing DE concentration. Efficiency of gain improved (P < 0.01) with increasing DE concentration. There was no interaction between weaning site and diet DE concentration, indicating that on-site and off-site pigs responded similarly to changes in diet DE concentration. In Exp. 2, nutrient digestibility of the treatment diets used in Exp. 1 was determined using 36 pigs with either ad libitum or feed intake restricted to 5.5% of BW. Energy and N digestibility increased (P < 0.001) with increasing DE concentration. Nitrogen retention and daily DE intake increased with DE concentration in pigs fed the restricted amount of feed (P < 0.05). These results indicate that weaning off-site improves pig weight gain. The weanling pig was able to compensate for reduced dietary DE concentration through increased feed intake. Growth limitation in the weanling pig may not be overcome simply by increasing dietary DE concentration.  相似文献   

12.
Fifty weanling crossbred pigs averaging 6.2 kg of initial BW and 21 d of age were used in a 5-wk experiment to evaluate lower dietary concentrations of an organic source of Zn as a Zn-polysaccharide (Zn-PS) compared with 2,000 ppm of inorganic Zn as ZnO, with growth performance, plasma concentrations of Zn and Cu, and Zn and Cu balance as the criteria. The pigs were fed individually in metabolism crates, and Zn and Cu balance were measured on individual pigs (10 replications per treatment) from d 22 to 26. The basal Phase 1 (d 0 to 14) and Phase 2 (d 14 to 35) diets contained 125 or 100 ppm added Zn as Zn sulfate, respectively, and met all nutrient requirements. Treatments were the basal Phase 1 and 2 diets supplemented with 0, 150, 300, or 450 ppm of Zn as Zn-PS or 2,000 ppm Zn as ZnO. Blood samples were collected from all pigs on d 7, 14, and 28. For pigs fed increasing Zn as Zn-PS, there were no linear or quadratic responses (P > or = 0.16) in ADG, ADFI, or G:F for Phases 1 or 2 or overall. For single degree of freedom treatment comparisons, Phase 1 ADG and G:F were greater (P < or = 0.05) for pigs fed 2,000 ppm Zn as ZnO than for pigs fed the control diet or the diet containing 150 ppm Zn as Zn-PS. For Phase 2 and overall, ADG and G:F for pigs fed the diets containing 300 or 450 ppm of Zn as Zn-PS did not differ (P > or = 0.29) from pigs fed the diet containing ZnO. Pigs fed the diet containing ZnO also had a greater Phase 2 (P < or = 0.10) and overall (P < or = 0.05) ADG and G:F than pigs fed the control diet. There were no differences (P > or = 0.46) in ADFI for any planned comparison. There were linear increases (P < 0.001) in the Zn excreted (mg/d) with increasing dietary Zn-PS. Pigs fed the diet containing ZnO absorbed, retained, and excreted more Zn (P < 0.001) than pigs fed the control diet or any of the diets containing Zn-PS. In conclusion, Phase 2 and overall growth performance by pigs fed diets containing 300 or 450 ppm Zn as Zn-PS did not differ from that of pigs fed 2,000 ppm Zn as ZnO; however, feeding 300 ppm Zn as Zn-PS decreased Zn excretion by 76% compared with feeding 2,000 ppm Zn as ZnO.  相似文献   

13.
Four experiments were conducted to determine the effects of adding a beta-mannanase preparation (Hemicell, ChemGen, Gaithersburg, MD) to corn-soybean meal-based diets on growth performance and nutrient digestibility of weanling and growing-finishing pigs. In Exp. 1, 156 weanling pigs (20 d, 6.27 kg BW) were allotted to four dietary treatments in a randomized complete block design. Treatments were a factorial arrangement of diet complexity (complex vs simple) and addition of 3-mannanase preparation (0 vs 0.05%). Pigs were fed in three dietary phases (Phase 1, d 0 to 14; Phase 2, d 14 to 28; and Phase 3, d 28 to 42). Pigs fed complex diets gained faster and were more efficient (P < 0.05) during Phase 1 compared with pigs fed simple diets. Overall, gain:feed ratio (G:F) tended to be improved (P < 0.10) for pigs fed complex diets and it was improved (P < 0.01) for those fed diets with beta-mannanase. In Exp. 2, 117 pigs (44 d, 13.62 kg BW) were allotted randomly to three dietary treatments. Dietary treatments were 1) a corn-soybean meal-based control, 2) the control diet with soybean oil added to increase metabolizable energy (ME) by 100 kcal/kg, and 3) the control diet with 0.05% beta-mannanase preparation. Beta-mannanase or soybean oil improved (P < 0.05) G:F compared with pigs fed the control diet. In Exp. 3, 60 pigs (22.5 kg BW) were allotted randomly to the three dietary treatments used in Exp. 2. Dietary treatments were fed in three phases (23 to 53 kg, 53 to 82 kg, and 82 to 109 kg with 0.95, 0.80, and 0.65% lysine, respectively). Overall, the addition of soybean oil tended to improve G:F (P < 0.10) compared with that of pigs fed the control diet, and G:F was similar (P > 0.54) for pigs fed diets with soybean oil or beta-mannanase. Also, addition of beta-mannanase increased ADG (P < 0.05) compared with that of pigs fed the control or soybean oil diets. There were no differences (P > or = 0.10) in longissimus muscle area or backfat; however, on a fat-free basis, pigs fed the diet with beta-mannanase had greater (P < 0.05) lean gain than pigs fed the control or soybean oil diets. In Exp. 4, 12 barrows (93 kg BW) were allotted randomly to one of the three dietary treatments used in Exp. 3. Addition of 3-mannanase had no effect (P > 0.10) on energy, nitrogen, phosphorus, or dry matter digestibility. These results suggest that beta-mannanase may improve growth performance in weanling and growing-finishing pigs but has minimal effects on nutrient digestibility.  相似文献   

14.
A total of 180 weanling pigs (21 ± 3 d of age; 5.98 ± 0.04 kg) were used to investigate the effect of chito-oligosaccharide (COS) on growth performance, intestinal barrier function, intestinal morphology, and cecal microflora. Based on initial BW, gender and litter, the pigs were given 5 treatments during a 14-d feeding experiment, including a basal diet (control), 3 diets with COS supplementation (200, 400, or 600 mg/kg), and a diet with colistin sulfate (CSE) supplementation (20 mg/kg). Six randomly selected pigs from each treatment were used to collect serum, duodenal, jejunal, ileal, and cecal samples on d 7 and 14 postweaning. From d 1 to 7 postweaning, pigs fed COS or CSE had greater ADG and ADFI compared with the control pigs. From d 1 to 14, diets with either 400 or 600 mg/kg COS, or 20 mg/kg CSE increased (P < 0.05) ADG and G:F compared with the control diet. No significant differences were observed in ADG, ADFI, and G:F between the pigs fed COS and CSE. Pigs fed either 400 or 600 mg/kg COS, or 20 mg/kg CSE had less (P < 0.05) diamine oxidase (DAO) in the serum, but greater concentration of (P < 0.05) DAO in jejunal mucosa, than the control pigs on d 7 postweaning. Treatments did not affect villous height and crypt depth of the duodenum, jejunum, or ileum. Pigs fed COS at 400 mg/kg had greater (P < 0.05) concentration of Bifidobacteria and Lactobacilli in the cecum than pigs fed the control diet and CSE diet on d 7 postweaning. Supplementation of COS or CSE decreased (P < 0.05) the population of cecal Staphylococcus aureus compared with the control diet on d 7 postweaning. The number of cecal Bifidobacteria in pigs fed 600 mg/kg COS was greater (P < 0.05) than that of pigs fed the control diet or CSE diet on d 14 postweaning. No significant differences were observed in Escherichia coli counts in the cecum among treatments. The present results indicate that dietary supplementation of COS at 400 or 600 mg/kg promotes growth performance and improves gut barrier function, increases the population of Bifidobacteria and Lactobacilli, and decreases S. aureus in the cecum of weanling pigs.  相似文献   

15.
The purpose of this investigation was to compare the growth performance of grower pigs fed low-CP, corn-soybean meal (C-SBM) AA-supplemented diets with that of pigs fed a positive control (PC) C-SBM diet with no supplemental Lys. Five experiments were conducted with Yorkshire crossbred pigs, blocked by BW (average initial and final BW were 21 and 41 kg, respectively) and assigned within block to treatment. Each treatment was replicated 4 to 6 times with 4 or 5 pigs per replicate pen. Each experiment lasted 28 d and plasma urea N was determined at the start and end of each experiment. All diets were formulated to contain 0.83% standardized ileal digestible Lys. All the experiments contained PC and negative control (NC) diets. The PC diet contained 18% CP and was supplemented with only DL-Met. The NC diet contained 13% CP and was supplemented with L-Lys, DL-Met, L-Thr, and L-Trp. The NC + Ile + Val diet was supplemented with 0.10% Val + 0.06% Ile. The NC + Ile + Val diet was supplemented with either His (Exp. 1), Cys (Exp. 2), Gly (Exp. 2, 3, and 4), Glu (Exp. 3), Arg (Exp. 4), or combinations of Gly + Arg (Exp. 4 and 5) or Gly + Glu (Exp. 5). Treatment differences were considered significant at P < 0.10. In 3 of the 4 experiments that had PC and NC diets, pigs fed the NC diet had decreased ADG and G:F compared with pigs fed the PC diet. The supplementation of Ile + Val to the NC diet restored ADG in 4 out of 5 experiments. However, G:F was less than in pigs fed the PC diet in 1 experiment and was intermediate between the NC and PC diets in 3 experiments. Pigs fed supplemental Ile + Val + His had decreased G:F compared with pigs fed the PC. Pigs fed supplemental Cys to achieve 50:50 Met:Cys had decreased G:F compared with pigs fed the PC. Pigs fed Ile + Val + 0.224% supplemental Gly had similar ADG, greater ADFI, and decreased G:F compared with pigs fed the PC. Pigs fed Ile + Val + 0.52% supplemental Gly had ADG and G:F similar to that of pigs fed the PC. Pigs fed supplemental Glu had decreased G:F compared with pigs fed the PC. Pigs fed Ile + Val + 0.48% supplemental Arg had decreased G:F compared with pigs fed the PC. Pigs fed the diet supplemented with Gly + Arg had ADG and G:F similar to pigs fed the PC. Pigs fed the low-CP diets had reduced plasma urea N compared with pigs fed PC. The results of these experiments indicate that supplementing Gly or Gly + Arg to a low-CP C-SBM diet with 0.34% Lys, Met, Thr, Trp, Ile, and Val restores growth performance to be similar to that of pigs fed a PC diet with no Lys supplementation.  相似文献   

16.
Weanling pigs with mean initial BW of 6.04 kg (Exp.1) and 5.65 kg (Exp. 2) and mean age at weaning of 18.2 d (Exp. 1) and 17.7 d (Exp. 2) were used in two 5-wk experiments (Exp. 1, n = 180; Exp. 2, n = 300) to evaluate the effects of an organic acid blend (Acid LAC, Kemin Americas Inc., Des Moines, IA) and an inorganic/organic acid blend (Kem-Gest, Kemin Americas Inc.) on weanling pig growth performance and microbial shedding. In Exp. 1, the 5 dietary treatments were 1) negative control, 2) diet 1 + 55 ppm carbadox, 3) diet 1 + 0.4% Acid LAC, 4) diet 1 + 0.2% Kem-Gest, 5) diet 1 + 0.4% Acid LAC and 0.2% Kem-Gest. In Exp. 2, the 6 dietary treatments were diets 1 through 4 corresponding to Exp. 1, plus 5) sequence 1: 0.4% Acid LAC for 7 d followed by 0.2% Kem-Gest for 28 d, and 6) sequence 2: 0.2% Kem-Gest for 7 d followed by 0.4% Acid LAC for 28 d. Pigs were housed at 6 (Exp. 1) or 10 (Exp. 2) pigs/pen. Treatments were fed throughout the experiment in 3 phases: d 0 to 7, d 7 to 21, and d 21 to 35. In Exp. 1, there were no differences (P > 0.05) in ADG, ADFI, or G:F among the dietary treatments at any time during the study. In Exp. 2, throughout the study, pigs fed carbadox (diet 2) and sequence 1 (diet 5) diets had the greatest ADG (d 0 to 35; 262, 294, 257, 257, 292, and 261 g/d, diets 1 through 6, respectively; P < 0.05), greater ADFI than all other acid treatments (P < 0.05), and tended to have greater ADFI than diet 1 (P < 0.10). Fecal pH, Escherichia coli concentrations, and Salmonella presence were determined at d 6, 20, and 34 for Exp. 1, and on d 32 for Exp. 2. For both experiments, there was no effect of treatment on the presence of fecal Salmonella (P > 0.10) at any sampling time. In Exp. 1, fecal E. coli concentrations for pigs fed the carbadox (P < 0.05) diet were greater than for pigs fed the combination diet with 0.4% Acid LAC and 0.2% Kem-Gest on d 34, and the pigs fed the negative control diet tended (P < 0.10) to have greater fecal E. coli concentrations than those fed the combination diet on d 34. In Exp. 2, fecal pH of pigs fed sequence 1 tended to be greater than fecal pH of pigs fed diet 1, diet 4, or sequence 2 (P < 0.10), but there was no dietary effect on fecal E. coli. In Exp. 1, growth performance of pigs fed the Acid LAC and Kem-Gest diets was similar to each other and to that of the carbadox-fed pigs. Adding the combination of 0.4% Acid LAC and 0.2% Kem-Gest to nursery pig diets reduced ADFI and pig growth rate. In Exp. 2, pigs fed the acid sequence of Acid LAC-Kem-Gest had similar growth performance to pigs fed carbadox, and this novel dietary acid sequence may have merit as a replacement for antibiotics in the nursery phase.  相似文献   

17.
A study determined the effects of supplementing corn-based diets for weaned pigs with multi-enzymes on growth performance, apparent total tract digestibility (ATTD) of nutrients, fecal score, and fecal microbial composition. A total of 132 pigs (initial body weight = 7.23 kg) that had been weaned at 21 d of age and fed a drug-free nursery diet for 7 d were housed in 33 pens of 4 barrows or gilts, blocked by body weight and gender, and fed 3 experimental diets at 11 pens per diet. The diets were corn-based diet without or with multi-enzyme A or B. Multi-enzyme A supplied 4,000 U of xylanase, 150 U of β-glucanase, 3,500 U of protease, and 1,500 U of amylase per kilogram of diet. Multi-enzyme B was the same as multi-enzyme A except that it supplied amylase at 150 U/kg, and that its source of amylase was different from that of multi-enzyme A. All diets contained phytase at 1,000 U/kg. The diets were fed for 35 d in 2 phases; phase 1 for the first 14 d and phase 2 for the last 21 d of the trial. Fecal score was determined daily during the first 7 d of the trial. Fecal samples were collected from rectum of 1 pig per pen on days 2, 7, 14, and 35 of the trial for determining bacterial composition. Also, fresh fecal samples were collected from each pen on days 41 and 42 to determine ATTD of nutrients. Multi-enzyme B increased (P < 0.05) average daily gain (ADG) for phases 1 and 2. For the overall study period, multi-enzyme B increased (P < 0.05) ADG from 262 to 313 g, and average daily feed intake (ADFI) from 419 to 504 g. Multi-enzyme A increased (P < 0.05) overall ADG from 262 to 290 g, but did not affect ADFI. Multi-enzyme A or B did not affect ATTD of gross energy, but increased (P < 0.05) the ATTD of ether extract from 30% to 36% or 37%, respectively. Multi-enzyme A did not affect fecal score; however, multi-enzyme B tended to decrease (P = 0.09) fecal score, implying that it tended to decrease diarrhea. Firmicutes were the most abundant phylum of fecal bacteria (its relative abundance ranged from 58% to 72%). Bacteroidetes and Actinobacteria were the 2nd and 3rd most abundant phyla of fecal bacteria. Neither multi-enzyme affected fecal bacterial composition. In conclusion, the addition of multi-enzyme A or B to phytase-supplemented corn-based diet for weaned pigs can improve their growth performance and fat digestibility. However, multi-enzyme B was more effective than multi-enzyme A in terms of improving the growth performance of weaned pigs fed corn-based diet.  相似文献   

18.
In each of two experiments, 924 pigs (4.99 kg BW; 16 to 18 d of age) were assigned to 1 of 42 pens based on BW and gender. Pens were allotted randomly to dietary copper (Cu) treatments that consisted of control (10 ppm Cu as cupric sulfate, CuSO4 x 5H2O) and supplemental dietary Cu concentrations of 15, 31, 62, or 125 ppm as cupric citrate (CuCit), or 62 (Exp. 2 only), 125 (Exp. 1 only), or 250 ppm as CuSO4. Live animal performance was determined at the end of the 45-d nursery phase in each experiment. On d 40 of Exp. 2, blood and fecal samples were collected from two randomly selected pigs per pen for evaluation of plasma and fecal Cu concentrations and fecal odor characteristics. In Exp. 1, ADG, ADFI, and G:F were increased (P < 0.05), relative to controls, when pigs were fed diets containing 250 ppm Cu as CuSO4. Pigs fed diets containing 125 ppm Cu as CuCit had increased (P < 0.05) ADG compared with pigs fed diets supplemented with 15 or 62 ppm Cu as CuCit. The ADG, ADFI, and G:F did not differ among pigs fed diets containing 125 and 250 ppm Cu as CuSO4 or 125 ppm Cu as CuCit. In Exp. 2, pigs fed diets containing 250 ppm Cu as CuSO4 had improved (P < 0.05) ADG, ADFI, and G:F compared with controls. In addition, ADG, ADFI, and G:F were similar when pigs were fed diets containing either 250 ppm Cu as CuSO4 or 125 ppm Cu as CuCit. Pigs fed diets containing 62 ppm Cu as CuSO4 or CuCit had similar ADG, ADFI, and G:F. Plasma Cu concentrations were not affected by dietary Cu source or concentration, but fecal Cu concentrations were increased (P < 0.05) as the dietary concentration of Cu increased. Pigs consuming diets supplemented with 125 ppm Cu as CuCit had fecal Cu concentrations that were lower (P < 0.05) than pigs consuming diets supplemented with 250 ppm Cu as CuSO4. Fecal Cu did not differ in pigs receiving diets supplemented with 62 ppm Cu as CuSO4 or CuCit. Odor characteristics of feces were not affected by Cu supplementation or source. These data indicate that 125 and 250 ppm Cu gave similar responses in growth, and that CuCit and CuSO4 were equally effective at stimulating growth and improving G:F in weanling pigs. Fecal Cu excretion was decreased when 125 ppm Cu as CuCit was fed compared with 250 ppm Cu as CuSO4. Therefore, 125 ppm of dietary Cu, regardless of source, may provide an effective environmental alternative to 250 ppm Cu as CuSO4 in weanling pigs.  相似文献   

19.
The effect of microbial phytase (MP) and organic acids (OA) supplementation in diets for early-weaned pigs was investigated in an in vitro assay and a growth performance and digestibility trial involving 96 pigs (18 d old). The experimental diets were: 1) a control (C) formulated according to NRC (1998); 2) a negative control (NC) that was similar to diet C except that available P was reduced by 0.19%; 3) NC plus MP (500 U/kg); and 4) NC+MP and OA (NC+MPOA). In the in vitro assay, the four diets were incubated under simulated gut conditions. Addition of MP increased (P = 0.003) phytate hydrolysis from 34 (NC) to 87.5% (NC+MP); this was further increased to 90.1% due to the addition of OA (NC+MPOA). In the 4-wk growth trial, each diet was randomly assigned to six pens each with four pigs. At the end of wk 3, a mobility test was conducted on one pig randomly selected from each pen. Pigs fed the NC diet tended to have a lower (P = 0.06) mobility score compared with those fed the other diets. At the end of wk 4, six pigs per treatment were killed and samples of digesta from different sections of the gut and the third metatarsal bone were collected for nutrient digestibility and bone ash measurements, respectively. There were no differences in ADFI, ADG, and gain:feed ratio among treatments (P > 0.05); however, ADG was 6.5% higher in piglets fed the NC+MPOA diet compared with those fed the C diet. Bone ash content was lower (P = 0.003) in NC fed pigs than in those fed the other treatments. Supplementing NC with MP and MP+OA improved bone ash content to the same level as C. Apparent ileal digestibility (AID) of DM and CP did not differ (P > 0.10) among treatments and averaged 80.7 and 79.4%, respectively. Of all AA, only AID of isoleucine, histidine, and aspartic acid was increased (P < 0.05) by MP+OA supplementation. Overall, there were slight numerical improvements in AID of AA due to MP and OA supplementation, with AID of essential AA averaging 79.4, 77.7, 80.1, and 81.6% for C, NC, NC+MP, and NC+MPOA, respectively. The AID of P was increased (P = 0.0001) by 21 percentage units, and the amount of P excreted was decreased (P = 0.03) by 19.4% as a result of MP+OA supplementation compared with C. In conclusion, addition of MP and OA to pig starter diets improved P digestion and utilization, thereby leading to a reduction in P excretion. Addition of MP and OA to corn-soybean meal diets fed to young pigs had only a slight effect on ileal amino acid digestibilities.  相似文献   

20.
Four experiments with 1,040 weanling pigs (17 +/- 2 d of age at weaning) were conducted to evaluate the effects of spray-dried animal plasma source, drying technique, and methods of bacterial reduction on nursery pig performance. In Exp. 1, 180 barrows and gilts (initial BW 5.9 +/- 1.8 kg) were used to compare effects of animal plasma, animal plasma source, drying technique (spray-dried or freeze-dried), and plasma irradiation in nursery pig diets. From d 0 to 10, pigs fed diets containing irradiated spray-dried animal plasma had increased ADG and ADFI (P < 0.05) compared with pigs fed diets containing nonirradiated spray-dried animal plasma. Pigs fed irradiated animal plasma Sources 1 and 2 were similar in ADG and ADFI, but pigs fed animal plasma Source 1 had greater ADG (P < 0.05) than pigs fed animal plasma Source 2 and pigs not fed plasma. Pigs fed freeze-dried animal plasma had growth performance similar (P > 0.36) to pigs fed spray-dried animal plasma. Overall (d 0 to 24), pigs fed irradiated spray-dried animal plasma were heavier (P < 0.05) than pigs fed no animal plasma, whereas pigs fed nonirradiated spray-dried plasma were intermediate. In Exp. 2, 325 barrows and gilts (initial BW 5.8 +/- 1.7 kg) were used to compare the effects of irradiation or formaldehyde treatment of animal plasma and formaldehyde treatment of the whole diet. Pigs fed diets containing irradiated animal plasma had greater ADG (P < 0.05) than pigs fed nonirradiated plasma. Pigs fed formaldehyde-treated plasma had greater ADG and ADFI (P < 0.05) than pigs fed diets with either nonirradiated plasma or whole diet treated with formaldehyde. In Exp. 3 (360 barrows and gilts; initial BW 6.3 +/- 2.7 kg) and Exp. 4 (175 barrows and gilts; initial BW 6.1 +/- 1.7 kg), the irradiation of feed (high bacteria) and food-grade (low bacteria) animal plasma in nursery pig diets was examined. Pigs fed irradiated feed-grade plasma Product 2 had increased ADG (P < 0.05) compared with pigs fed nonirradiated plasma Product 2 and pigs fed the control diet without plasma. In Exp. 3 and 4, pigs fed irradiated food-grade plasma had growth performance similar to pigs fed nonirradiated food-grade plasma (P > 0.12). These studies indicate that bacterial reduction of feed-grade, but not food-grade animal plasma, improves nursery pig performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号