首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study was analyzed the effect of crop year and harvesting time on the fatty acid composition of cv. Picual virgin olive oil. The study was carried out during the fruit ripening period for three crop seasons. The mean fatty acid composition of Picual oils was determined. The oils contained palmitic acid (11.9%), oleic acid (79.3%), and linoleic acid (2.95%). The content of palmitic acid and saturated fatty acids decreased during fruit ripening while oleic and linoleic acids increased. The amount of stearic and linolenic acids decreased. The amount of saturated acids, palmitic and stearic, and the polyunsaturated acids linoleic and linolenic was dependent on the time of harvest, whereas the amount of oleic acid varied with the crop year. The differences observed between crop years for both palmitic and linoleic acid may be explained by the differences in the temperature during oil biosynthesis and by the amount of summer rainfall for oleic acid content. A significant relationship was observed between the MUFA/PUFA ratio and the oxidative stability measured by the Rancimat method.  相似文献   

2.
Crude fat and fatty acid profile of 35 foxtail millets including seven varieties planted in five different regions of China were studied. The fat content ranged from 3.38 to 6.49% (averaging 4.51%). The major fatty acid in foxtail millets was linoleic acid (averaging 66.68%), followed by oleic acid (averaging 16.11%), palmitic acid (averaging 7.42%), stearic acid (averaging 6.84%), and linolenic acid (averaging 2.48%). Two‐way ANOVA showed that fat content was significantly affected by millet variety and cultivation area (P < 0.05). Fatty acids including linoleic acid, palmitic acid, stearic acid, and linolenic acid varied significantly in different foxtail millet varieties (P < 0.05), except oleic acid (P > 0.05). Fatty acids including linoleic acid, oleic acid, palmitic acid, and stearic acid did not change significantly in foxtail millets from different regions (P > 0.05), except linolenic acid (P < 0.05). Correlation analysis indicated that oleic acid was negatively correlated with palmitic acid and linoleic acid (P < 0.05), and linolenic acid was positively correlated with palmitic acid and linoleic acid but negatively correlated with stearic acid (P < 0.05). The research showed that millets with good fat composition can be obtained through breeding techniques or cultivation management.  相似文献   

3.
The variation in the seed shape, colour and yield, and content, yield and fatty acid composition of seed oil of 109 accessions of opium poppy Papaver somniferum, (majority of them Indian land races), was investigated. The seeds were white, pale yellow or light brown in colour, reniform or round in shape and varied in size up to three fold. The oil content, seed and the oil yield varied between 26 to 52%, 1.0 to 7.4 g/plant and 0.4 to 2.7 g/plant, respectively. The % content of palmitic, oleic and linoleic acid in the seed oil ranged between 9.3 to 40.0%, 7.5 to 58.4% and 0.7 to 72.7%, respectively. On average basis, the levels of major fatty acids in the seed oil were: oleic (37.1%) > palmitic (27.3%) > linoleic acid (17.2%). The palmitoleic, stearic and linolenic acids were present in the oils of only some of the accessions. Two of the accessions yielded linoleic acid rich seed oil of about the same quality as soybean and maize oils, and in four accessions, the proportion of palmitic, oleic and linoleic acids was roughly equal. The palmitic acid was relatively less and linoleic acid more in the seed oil from accessions rich in oil content. The oil that contained higher amount of oleic acid also contained higher amount of palmitic acid and relatively lower amount of linoleic acid. The correlation analyses revealed a strong positive relationship between seed yield and oil yield (r = +0.81), oil yield and oil content (r = +0.54) and oleic acid and palmitic acid content in the seed oil (r = +0.49), and a weak positive relationship between oil content and linoleic acid content of oil (r = +0.24), and a negative correlation was observed between oil content and palmitic acid content (r = –0.32), palmitic acid and linoleic acid (r = –0.55) and oleic acid and linoleic acid contents of oil (r = –0.68). The observations have permitted selection of accessions that are high seed and oil yielding and/or rich in linoleic, palmitic and oleic acids or containing palmitic, oleic and linoleic acids in about equal amounts.  相似文献   

4.
Twelve pumpkin cultivars (Cucurbita maxima D.), cultivated in Iowa, were studied for their seed oil content, fatty acid composition, and tocopherol content. Oil content ranged from 10.9 to 30.9%. Total unsaturated fatty acid content ranged from 73.1 to 80.5%. The predominant fatty acids present were linoleic, oleic, palmitic, and stearic. Significant differences were observed among the cultivars for stearic, oleic, linoleic, and gadoleic acid content of oil. Low linolenic acid levels were observed (<1%). The tocopherol content of the oils ranged from 27.1 to 75.1 microg/g of oil for alpha-tocopherol, from 74.9 to 492.8 microg/g for gamma-tocopherol, and from 35.3 to 1109.7 microg/g for delta-tocopherol. The study showed potential for pumpkin seed oil from all 12 cultivars to have high oxidative stability that would be suitable for food and industrial applications, as well as high unsaturation and tocopherol content that could potentially improve the nutrition of human diets.  相似文献   

5.
The paper assess the variability of fat content and fatty acids profiles in seeds of a white lupin (Lupinus albus L.) domestic collection. The initial material comprised 371 accessions originated from 30 countries of Europe, Asia, Africa, North- and South America and Australia. According to data given by accession donors the material is divided into four classes of origin: wild lines, landraces, lines created by man and cultivars. Variability of fat content and fatty acids composition were estimated in seeds of each accession. The average fat content for analyzed collection is 9.81%. The broadest range of fat content was noticed for landraces and cultivars as compared to narrowest represented by lines created by man. Fat content ranged from 6.9% (induced mutant Wt 95497) to 14.1% (Polish cultivar Wt 95420 and the landrace Wt 95212 from Jordan). From a dietetic point of view, oil quality is more important than oil quantity in lupin seeds. On average the fatty acid (FA) in examined accessions ranked in following order of abundance: oleic acid (C18:1) > linoleic acid (C18:2) > linolenic acid (C18:3) > palmitic acid (C16:0) > eicosenoic acid (C20:1) > stearic acid (C18:0) ≈ erucic acid (C22:1). In respect to unsaturated fatty acid (UFA), monounsaturated oleic acid in each of estimated classes of accessions was predominant and most abundant (55.7%) in broad range of minimum–maximum values from 41.2 to 66.2%. The second examined monounsaturated fatty acid was erucic acid (1.74%) found in seeds of almost all studied accessions. An exception were four accessions defined similarly to rapeseeds as “zero erucic” forms. In seeds of few accessions a content of erucic acid exceeded 3%. Among polyunsaturated fatty acids linoleic FA (ω?6) dominated followed by linolenic FA (ω?3). Both FA were in the range 13.7–33.2% and 5.6–12.8% with mean values on the level 19.6 and 10.1%, respectively. As a consequence, the examined white lupin seeds showed a very favourable ω?3/ω?6 FA ratio (0.51), ranging from 0.21 to 0.87, much higher than that of most vegetable oils. Fat content was positively correlated with stearic and oleic fatty acids and negatively with palmitic, linoleic, linolenic and erucic acid.  相似文献   

6.
Castor has tremendous potential as a feedstock for biodiesel production. The oil content and fatty acid composition in castor seed are important factors determining the price for production and affecting the key fuel properties of biodiesel. There are 1033 available castor accessions collected or donated from 48 countries worldwide in the USDA germplasm collection. The entire castor collection was screened for oil content and fatty acid composition by nuclear magnetic resonance (NMR) and gas chromatography (GC), respectively. Castor seeds on the average contain 48.2% oil with significant variability ranging from 37.2 to 60.6%. Methyl esters were prepared from castor seed by alkaline transmethylation. GC analysis of methyl esters confirmed that castor oil was composed primarily of eight fatty acids: 1.48% palmitic (C16:0), 1.58% stearic (C18:0), 4.41% oleic (C18:1), 6.42% linoleic (C18:2), 0.68% linolenic (C18:3), 0.45% gadoleic (C20:1), 84.51% ricinoleic (C18:1-1OH), and 0.47% dihydroxystearic (C18:0-2OH) acids. Significant variability in fatty acid composition was detected among castor accessions. Ricinoleic acid (RA) was positively correlated with dihydroxystearic acid (DHSA) but highly negatively correlated with the five other fatty acids except linolenic acid. The results for oil content and fatty acid composition obtained from this study will be useful for end-users to explore castor germplasm for biodiesel production.  相似文献   

7.
ABSTRACT

To select and introduce the best rapeseed genotypes under withholding irrigation, two field experiments were carried out in seasons 2015–2016 and 2016–2017 in Iran. Factorial arrangement of treatments was set up as RCBD with three replications. The experiment factors were two irrigation treatments (normal irrigation during the growing season and withholding irrigation from silique setting stage until the end of the growing season) and 17 genotypes of rapeseed. Grain yield, oil content and fatty acid contents were measured. The results revealed that oleic acid (62.15%) was the highest followed by linoleic (19.28%), linolenic (5.65%), palmitic (5.24%) and stearic acids (2.44%). ODR (oleic desaturation ratio) and LDR (linoleic desaturation ratio) were significantly affected by genotypes and irrigation treatments. The biosynthetic pathway of fatty acids affected by drought stress. This means that linoleic acid increases under withholding irrigation condition, while linolenic acid decreases in such a water deficit stress condition. The highest performance of qualitative and quantitative was detected in HL3721 genotype due to high values of grain yield (3892.45 kg ha?1), oil content (437.05 g kg?1), unsaturated fatty acids (87.63%) and low values of saturated fatty acids (7.98%), and it could be used under withholding irrigation in arid and semi-arid climates.  相似文献   

8.
The Hibiscus genus encompasses more than 300 species, but kenaf (Hibiscus cannabinus L.) and roselle (Hibiscus sabdariffa L.) are the two most economically important species within the genus. Seeds from these two Hibiscus species contain a relatively high amount of oil with two unusual fatty acids: dihydrosterculic and vernolic acids. The fatty acid composition in the oil can directly affect oil quality and its utilization. However, the variability in oil content and fatty acid composition for these two species is unclear. For these two species, 329 available accessions were acquired from the USDA germplasm collection. Their oil content and fatty acid composition were determined by nuclear magnetic resonance (NMR) and gas chromatography (GC), respectively. Using NMR and GC analyses, we found that Hibiscus seeds on average contained 18% oil and seed oil was composed of six major fatty acids (each >1%) and seven minor fatty acids (each <1%). Hibiscus cannabinus seeds contained significantly higher amounts of oil (18.14%), palmitic (20.75%), oleic (28.91%), vernolic acids (VA, 4.16%), and significantly lower amounts of stearic (3.96%), linoleic (39.49%), and dihydrosterculic acids (DHSA, 1.08%) than H. sabdariffa seeds (17.35%, 18.52%, 25.16%, 3.52%, 4.31%, 44.72%, and 1.57%, respectively). For edible oils, a higher oleic/linoleic (O/L) ratio and lower level of DHSA are preferred, and for industrial oils a high level of VA is preferred. Our results indicate that seeds from H. cannabinus may be of higher quality than H. sabdariffa seeds for these reasons. Significant variability in oil content and major fatty acids was also detected within both species. The variability in oil content and fatty acid composition revealed from this study will be useful for exploring seed utilization and developing new cultivars in these Hibiscus species.  相似文献   

9.
A germplasm collection consisting of 1475 entries from 21 species of Brassica, including 36 lower taxa, was evaluated for the fatty acid composition of the seed oil. A total of 358 entries representing the taxonomic variability in the collection were selected and analysed by gas-liquid chromatography (GLC). The remaining 1117 entries were analysed by near-infrared reflectance spectroscopy (NIRS), after developing multi-species calibration equations. The results demonstrated that NIRS is an effective technique to assess variability for oleic, linoleic, linolenic and erucic acid in intact-seed samples of multiple Brassica species, provided that calibration equations be developed from sets containing large taxonomic and chemical variability. Some fatty acid ratios were used to estimate the efficiency of the different biosynthetic pathways. Two well-defined patterns were observed. The first one was characterised by high elongation efficiency and accumulation of high levels of erucic acid. The highest erucic acid content (>55% of the total fatty acids) was found in the cultivated species B. napus L., B. oleracea L., and B. rapa L., and in the wild species B. incana Tenore, B. rupestris Raf., and B. villosa Bivona-Bernardi, the three latter belonging to the B. oleracea group (n=9). The second pattern was characterised by high desaturation efficiency, resulting in the accumulation of high levels of the polyunsaturated linoleic and linolenic acid (up to more than 55%). The highest levels of these fatty acids were found in samples of B. elongata Ehrh., especially of the var. integrifolia Boiss. The utility of the reported variability for plant breeding is discussed.  相似文献   

10.
The objective of this experiment was to evaluate the effect of foliar fertilization of some micronutrients [i.e., manganese (Mn) and boron (B)] on reproductive yield and fatty acid concentrations of a standard sunflower hybrid (‘NuSun 636') irrigated with different concentrations of saline water made by dissolving sea salt. Reproductive yield showed a significant decrease with the increase in salt in the rooting medium. However, foliar sprays of boric acid (H3BO3) and manganese chloride (MnCl2) showed a significant increase in seed number, seed weight, and oil content of seeds in the nonsaline control, which persisted even under saline water irrigation. An increase under the MnCl2 spray was more than with H3BO3 irrespective of non saline or saline water irrigation. Increasing levels of salinity appeared to be responsible for a decrease in oleic monounsaturated fatty acid concentration and an increase in the linoleic polyunsaturated, palmitic and stearic saturated fatty acid content whereas no significant change was found in linolenic polyunsaturated fatty acid content. Foliar applications of H3BO3 and MnCl2 brought some beneficial alteration in fatty acid concentrations of sunflower. Foliar application of H3BO3 caused a significant increase in palmitic and stearic saturated fatty acids and linoleic polyunsaturated fatty acids in control as well as under saline conditions. Oleic monounsaturated fatty acid concentration showed a decline under H3BO3 treatment irrespective to nonsaline or saline conditions. Foliar applications of MnCl2 increased the concentration of palmitic saturated fatty acid and oleic monounsaturated fatty acid irrespective to the plant growth under non saline or saline conditions. While stearic saturated fatty acid, linoleic and linolenic polyunsaturated fatty acid decreased with the application of manganese as compared to the non sprayed control.  相似文献   

11.
Amaranthus grain of 104 genotypes from 30 species was investigated for oil and squalene contents and fatty acid profiles. The overall average oil content in Amaranthus grain was 5.0%, ranging from 1.9 to 8.7%. Squalene concentration in extracted oils ranged from trace to 7.3%, with an average concentration of 4.2%. The average contents of three major fatty acids in Amaranthus grain were 22.2, 29.1, and 44.6% for palmitic, oleic, and linoleic, respectively. The average fat content in dried mature leaves of 45 Amaranthus genotypes was 1.63%, ranging from 1.08 to 2.18%. The squalene concentration in leaf lipid extracts averaged 0.26%, ranging from trace to 0.77%, which is much lower than that from seeds. The major fatty acids of leaf extracts were linolenic, linoleic, and palmitic. Linolenic ranged from 56.5 to 62.0% of total fatty acids; linoleic, from 15.5 to 24.7%; and palmitic acid, from 13.5 to 15.5%. As for the fatty acid compositions at different growth stages, fatty acid content in leaf lipid was lower in mature leaves than in young leaves. The saturated/unsaturated ratio decreased when the leaf grew to maturity. Principal component analysis (PCA) was carried out on compositional characteristics of grain. The first two components accounted for 70% of the total variance (38.3 and 21.7%, respectively). There was a positive correlation between oil content and squalene yield, and a negative correlations were found between linoleic and either of the other two major fatty acids, palmitic and oleic. The taxonomic relationship among the species was also elucidated by PCA.  相似文献   

12.
In this study, we analyzed fatty acid and carotenoid composition of fruit tissues, including seed (which are surrounded by a bright red, oily aril) of Momordica cochinchinensis Spreng, known as gac in Vietnam. Carotenoid content was analyzed by reversed-phase HPLC, using a C(30) column and a method separating cis- and trans-isomers of the major carotenoids in this fruit. Mean values obtained in aril tissues were 1342 microg trans-, 204 microg cis-, and 2227 microg total lycopene; 597 microg trans-, 39 microg cis-, and 718 microg total beta-carotene; and 107 microg alpha-carotene/g FW. Mesocarp contained 11 microg trans-, 5 microg cis-beta-carotene/g FW, trace amounts of alpha-carotene, and no lycopene. Gac aril contained 22% fatty acids by weight, composed of 32% oleic, 29% palmitic, and 28% linoleic acids. Seeds contained primarily stearic acid (60.5%), smaller amounts of linoleic (20%), oleic (9%), and palmitic (5-6%) acids, and trace amounts of arachidic, cis-vaccenic, linolenic, and palmitoleic, eicosa-11-enoic acids, and eicosa-13-enoic (in one fruit only) acids.  相似文献   

13.
Red pepper seeds were roasted with constant stirring for 6, 9, 10, and 12 min at 210 degrees C, and oils were extracted from the roasted red pepper seeds using an expeller. The iodine values and fatty acid compositions of red pepper seed oils did not change with roasting time. The fatty acid composition of the oil obtained from the red pepper seeds roasted for 6 min was 0.24% myristic acid, 13. 42% palmitic acid, 0.33% palmitoleic acid, 2.07% stearic acid, 10. 18% oleic acid, 73.89% linoleic acid, and 0.37% linolenic acid, showing a fatty acid composition similar to that of high-linoleate safflower oil. Thirteen alkylpyrazines were identified in the roasted red pepper seed oils: 2-methylpyrazine, 2,5-dimethylpyrazine, 2,6-dimethylpyrazine, 2-ethylpyrazine, 2-ethyl-6-methylpyrazine, 2-ethyl-5-methylpyrazine, trimethylpyrazine, 2,6-diethylpyrazine, 2-ethyl-3,5-dimethylpyrazine, tetramethylpyrazine, 2, 3-diethyl-5-methylpyrazine, 2-isobutyl-3-methylpyrazine, and 3, 5-diethyl 2-methylpyrazine. The pyrazine content increased markedly as the roasting time increased, showing 2.63, 5.01, 8.48, and 13.10 mg of total pyrazine/100 g of oils from the red pepper seeds roasted for 6, 8, 10, and 12 min, respectively, at 210 degrees C. 2, 5-Dimethylpyrazine in the roasted red pepper seed oil seemed to be the component most responsible for the pleasant nutty aroma of the oils. The oxidative stabilities of oils increased greatly as the roasting time increased.  相似文献   

14.
种植密度和施肥水平对高油大豆品质性状的影响   总被引:8,自引:0,他引:8  
采用二因素裂区试验,研究了不同种植密度和施肥水平对高油大豆品质性状的影响。结果表明,高油大豆的油脂含量随着种植密度的降低和施肥水平的升高而升高,蛋白质含量则相反; 不同品种间以农大15751油脂含量最高。中等种植密度处理硬脂酸和油酸含量较高,而高密度处理下亚油酸和亚麻酸含量较高,棕榈酸含量差异不显著。不同施肥水平对高油大豆脂肪酸含量影响较大,棕榈酸、硬脂酸和油酸含量在高肥处理下较高,亚油酸和亚麻酸在低肥处理下含量较高。  相似文献   

15.
光对油菜胚中蛋白质和脂肪酸生物合成的影响   总被引:1,自引:0,他引:1  
齐晓  王兴春  向小娥 《核农学报》2019,33(8):1501-1507
为探究光对油菜胚中蛋白质和脂肪酸生物合成中的影响,本研究于油菜开花后25 d(25 d)起,对油菜角果用锡箔进行遮光处理,分别收集遮光处理后3 d(28 d)和10 d(35 d)角果种子中的胚,以未遮光处理的油菜种子胚为对照。结果表明,与对照相比,经遮光处理的胚中叶绿素和蛋白质含量显著降低;脂肪酸组分发生明显变化,其中棕榈酸(C16:0)、硬脂酸(C18:0)和油酸(C18:1)含量显著增加,而不饱和脂肪酸中的亚油酸(C18:2)和亚麻酸(C18:3)含量却大幅下降。进一步将开花后25 d油菜胚在加入电子传递抑制剂DCC培养基中进行体外培养,发现胚中不饱和脂肪酸的生物合成以及叶绿素含量均受到ATP的调节。综上,油菜胚发育过程中光照可以影响质体中氨基酸和脂肪酸的生物合成,从而调控油菜营养物的积累。本研究揭示了质体光合作用在油菜种子油脂积累过程中的作用,为今后培育高含油量、高品质油菜品种提供了理论依据。  相似文献   

16.
钼磷配合施用对甘蓝型油菜产量和子粒品质的影响   总被引:1,自引:1,他引:0  
利用酸性黄棕壤进行连续2年的盆栽试验,研究了钼肥和磷肥配合施用对甘蓝型油菜产量和子粒含油量、油产量、蛋白质含量、硫甙和芥酸含量以及脂肪酸组分等品质指标的影响。钼肥和磷肥各设置3个水平,分别为Mo 0、0.15、0.30 mg /kg土和P2O5 0、0.20、0.40 g /kg土,共9个处理。结果表明:施钼能够显著(P0.05)提高油菜子粒产量和生物学产量,显著增加油菜子粒含油量、油产量及油酸、亚油酸含量,降低子粒硫甙、亚麻酸和硬脂酸的含量;施磷则能够极显著提高子粒产量和子粒油产量,显著增加生物学产量和亚油酸含量,降低芥酸、硫甙及二十碳烯酸的含量;钼肥和磷肥对提高油菜子粒产量、油产量和油酸含量,降低芥酸含量存在显著(P0.05)的协同效应。因此,钼肥和磷肥在提高油菜产量、改善油菜子粒品质方面均具有良好的作用,且两者配合施用效果更好。  相似文献   

17.
In this study, the effects of penconazole (PEN) and calcium (Ca) on growth amelioration and quality of seed oil in canola (Brassica napus L.) under drought stress were investigated. Drought stress reduced the growth parameters (fresh weight and dry weight) in canola; however the application of PEN and Ca improved these parameters under drought condition. Inducing effect of Ca on protein content was more prominent than PEN. Proline content increased under drought stress and PEN and Ca treatment caused more induction it under drought. PEN and Ca alleviated the negative effects of drought stress in canola by inducing antioxidant defense. The application of PEN and Ca caused a significant reduction in lipid peroxidation and hydrogen peroxide and mitigation of the drought induced oxidative stress. Drought stress induced protein content, total phenol, flavonol content, soluble sugar, palmitic acid and palmitoloic acid, and reduced flavonoid content, oleic acid, linolenic acid, and linolonoic acid in canola seed. PEN and Ca increased palmitic acid, linoleic acid (Omega-6), linolenic acid (Omega-3), oleic acid, protein, and soluble sugar. Our results indicated that application of PEN and Ca enables canola plants to withstand the deleterious impact of drought stress and caused improvement of antioxidant capacity, essential fatty acids (linolenic acid and linolonoic acid) and oil quality in canola seed.  相似文献   

18.
为了探讨缓慢降温抑制采后鸭梨果实褐变的机理,研究了不同降温方法对不同采收期鸭梨果心膜脂脂肪酸组分、含量、膜相变温度、脂氧合酶(LOX)活性以及果心褐变的影响。结果表明:鸭梨果心含有月桂酸、豆蔻酸、棕榈酸、棕榈油酸、珠光酸、硬脂酸、油酸、亚油酸、亚麻酸,其中含量较多的是亚油酸、棕榈酸和油酸。缓慢降温提高了早采鸭梨果心的亚麻酸和亚油酸相对含量及不饱和脂肪酸与饱和脂肪酸比值(U/S),降低了果心的膜相变温度,明显抑制了果心LOX活性和褐变。推迟采收提高了鸭梨果心的U/S值,降低了膜相变温度,但由于采收期晚,果实衰老较快,后期果心LOX活性快速升高,膜脂过氧化严重,导致晚采果更容易褐变。总之,适当早采结合缓慢降温可以提高鸭梨果心膜脂不饱和脂肪酸含量和U/S值,抑制果心褐变。  相似文献   

19.
The triacylglycerol (TAG) composition of oils from new high-saturated sunflower lines has been studied by means of GLC. The TAG profiles have been compared with the TAG reconstruction made after lipase hydrolysis (according to the 2-random 1,3-random theory). New TAG species with asclepic (cis,Delta11-octadecenoic acid, isomer of oleic acid), araquidic, or behenic acids have been synthesized and identified in oils from mutant lines. The TAG molecular species that contain asclepic acid instead of oleic acid have a longer retention time. Because each mutant oil has a specific TAG GLC pattern, this method could be used for a more precise validation of oil type than current fatty acid methyl ester analysis. The comparison of the results obtained by GLC with the reconstruction after pancreatic lipase hydrolysis shows, in general, a good agreement between both methods. However, results shown in this paper show that this is not always the case. TAG species containing two molecules of linoleic acid show a higher presence of palmitic or stearic acid than could be expected from a random distribution. The abundance of SLL increased in proportion to the stearic acid content of the oil, and the amount of TAG species with three unsaturated fatty acids (LLL or OLL) was therefore reduced.  相似文献   

20.
Sunflower mutant lines with high saturated fatty acid content (palmitic or stearic) in the oil have a completely different set of triacylglycerols (TAG), some of which were not found in standard sunflowers. For optimum seed germination, all of these new TAG species must be effectively catabolized. The behavior of the TAG composition during germination in cotyledons of all these mutant lines showed two different phases: an initial phase (between 0 and 2 days after sowing) with a higher catalytic activity and a preference for TAG containing at least two oleic acid molecules and a second phase with lower TAG degradation rate and a low preference for TAG containing two saturated fatty acids usually accompanied by linoleic acid. Despite the elevated content of saturated fatty acids in some TAG species, the total TAG degradation rate and germination process were similar in these lines, suggesting that sunflower seed lipases do not show a marked preference for any TAG species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号