首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The effects of different integrated farming systems on microbial biomass was studied 20 years after their adoption at Meghalaya, India. The soil fertility was relatively greater in agricultural and agri‐horti‐silvi‐pastoral systems as a result of accumulation of leaf litter/crop residues and addition of inorganic and organic manures. Microbial biomass carbon was greatest in agricultural (378 mg kg?1) followed by the agri‐horti‐silvi‐pastoral systems (291 mg kg?1). The most microbial biomass nitrogen (N) and phosphorus (P) (32.4 and 17.07 mg kg?1, respectively) were recorded in agricultural followed by agri‐horti‐silvi‐pastoral systems. Microbial biomass carbon (C) had a significant relationship with organic C, microbial biomass N, and biomass P, indicating that the living part of soil organic matter is involved in the transformation of nutrients into the labile pool and governs their availability to the plants. Application of inorganic fertilizers and organics along with lime has contributed more microbial biomass that led to more biological activity attributed in nutrient transformations and also maintained the soil fertility.  相似文献   

2.
Neglected P and K fertilization in organic farming reduces N2 fixation and grain yield in a red clover‐oat rotation N2 fixation is the most important N source in organic farming. An insufficient P, K, and S supply to legumes may reduce their N2 fixation capacity. Consequently, the total yield of plant production may also be reduced. This problem was studied in a pot experiment with red clover followed by oat. Soil was taken from a field where organic farming had been practiced for more than 30 years without applying any mineral fertilizers or buying additional fodder. The soil (luvisol from loess) was characterized by: pH (CaCl2) 5.4; lactate‐soluble (CAL) P 5 mg kg–1 and K 110 mg kg–1. 6 kg dry soil were mixed with 400 mg P applied as (i) triplesuperphosphate (TSP), (ii) rock phosphate (RP) or (iii) compost from organic household residues (BAK). An additional treatment (iv) with TSP received 1000 mg K as K2SO4 (TSP+K) and an additional treatment with RP (v) received only 200 mg P (RP/2). A control treatment received no fertilizer. P application significantly improved the P nutritional status of the plants (P content) and increased the N amount in the shoots of red clover (with 400 mg P per pot by 64 % to 139 % as compared to the control) and the dry matter (DM) yield by 60 % to 130 %. No significant differences between TSP and RP were found. The application of BAK resulted in a significantly higher N yield than the application of RP and TSP. The treatment TSP+K resulted in the highest DM yield (230 %), removal of P was 343 %, of K 228 %, and of N 239 % as compared to the control plants. This indicates a synergistic effect of P, K, and S on N2 fixation, which was also found with BAK. Oat grown after red clover increased its grain yield by 132 % (200 mg P as RP) to 165 % (400 mg P treatments). This was mainly due to a higher P uptake (up to 172 %) and a higher N uptake (up to 172 %) as compared to the control.  相似文献   

3.
There is growing interest in investigations into soil carbon (C) sequestration, plant nutrients and biological activities in organic farming since it is regarded as a farming system that could contribute to climate mitigation and sustainable agriculture. However, most comparative studies have focused on annual crops or farming systems with crop rotations, and only a few on perennial crops without rotations, e.g. tea (Camellia sinensis (L.) O. Kuntze). In this study, we selected five pairs of tea fields under organic and conventional farming systems in eastern China to study the effect of organic farming on soil C sequestration, plant nutrients and biological activities in tea fields. Soil organic C, total nitrogen (N), phosphorus (P), potassium (K) and magnesium (Mg), available nutrients, microbial biomass, N mineralization and nitrification were compared. Soil pH, organic C and total N contents were higher in organic tea fields. Soil microbial biomass C, N and P, and their ratios in organic C, total N and P, respectively, net N mineralization and nitrification rates were significantly higher in organic fields in most of the comparative pairs of fields. Concentrations of soil organic C and microbial biomass C were higher in the soils with longer periods under organic management. However, inorganic N, available P and K concentrations were generally lower in the organic fields. No significant differences were found in available calcium (Ca), Mg, sodium (Na), iron (Fe), manganese (Mn), copper (Cu) and zinc (Zn) concentrations between the two farming systems. These findings suggest that organic farming could promote soil C sequestration and microbial biomass size and activities in tea fields, but more N-rich organic fertilizers, and natural P and K fertilizers, will be required for sustainable organic tea production in the long term.  相似文献   

4.
ABSTRACT

Understanding how plants use of various nitrogen (N) sources is important for improving plant N use efficiency in organic farming systems. This study investigated the effects of farming management practices (organic and conventional) on pakchoi short-term uptake of glycine (Gly), nitrate (NO3 ?) and ammonium (NH4 +) under two N level conditions. Results showed that plant N uptake rates and N contributions from the three N forms in the low N (0.15 μg N g?1 dry soil) treatment did not significantly differ between the organic and conventional soils, except the significantly greater Gly contribution in organic soil at 24 h after tracer addition. Under high N (15 μg N g?1 dry soil) conditions, the N uptake rates, uptake efficiencies, and N contributions of Gly and NH4 +-N were significantly greater in pakchoi cultivated in the organic soil compared to conventional soil, whereas the N uptake rates and N contributions from NO3 -N decreased in pakchoi cultivated in the organic soil. The greater Gly-N uptake in plants grown in high-N treated organic soil may be related to the greater gross N transformation, Gly turnover rate and the increased expression of an amino acid transporter gene BcLHT1. Intact Gly contributed at most 6% to Gly-derived N at 24 h after tracer additions, which accounting for about 1.24% of the total N uptake in organic soil. Our study suggested that Gly-N and other organic source N might serve as a more important compensatory N source for plants in organic farming.  相似文献   

5.
The economic benefits of organic agriculture and its wide adoption are well documented, but the impact of that practice on soil C dynamics in irrigated croplands of semi‐arid regions is less well understood. In manure‐based organic production systems, land applications of animal wastes not only provide nutrients but could also contribute to soil carbon sequestration. A study was conducted in irrigated cotton (Gossypium arboreum L) agro‐ecosystems of New Mexico (USA) under conventional (CONV; 100 kg N/ha as urea and NH4NO3) and organic farming practices (OF for 3–9 yr; 50 Mg dry manure/ha) to assess the effect of OF on soil C stocks (organic, inorganic) and biochemical indices [microbial biomass C (MBC); respiration; metabolic quotient (qCO2)]. In the plough layer (0–30 cm), soil organic carbon (SOC) stocks tended to be higher (although not statistically) under OF (35.9 Mg C/ha) than CONV (33.5 Mg C/ha). However, when the entire 100‐cm soil profile was considered, the total SOC under CONV exceeded that under OF by 39.8 Mg C/ha, but this may be influenced by other factors. Accounting for 52% of the total C stock, inorganic C was significantly higher under CONV than OF and was positively correlated with soil respiration and the H/C ratio of soil organic matter. While OF duration had no consistent effect on soil biochemical properties, MBC was significantly higher (1.5 times) and the qCO2 (3–6 times) was lower in the organically fertilized soils than under CONV. These results suggest the development, under OF, of a soil microbial community that is larger and processes added C substrates more efficiently compared with the community present in CONV practices.  相似文献   

6.
The effects of varied amounts of fertilization on yield, fruit quality, and nitrogen (N) uptake of muskmelons (Cucumis melo L. var reticulatus Naud) grown under both organic and conventional farming conditions were evaluated. Organic fertilizer (0.0, 0.55, 1.1, and 2.2 kg m?2) and mineral fertilizers containing the same amounts of estimated plant available nutrients [N, phosphorus (P), and potassium (K)] were applied to organic and conventional farming plots, respectively, in both the spring and autumn seasons of 2005. In comparison to conventional farming conditions, muskmelons grown under organic farming conditions had the same yield, total soluble solids (TSS) and soluble sugar contents in both growing seasons, and fruit pulp nitrate content was significantly reduced by 12% on average in spring and 16% on average in autumn. At harvest maturity the aboveground plant N concentration was significantly higher in the conventional treatments than in the organic treatments. At the vine growth stage, the plant N concentrations were similar in all treatments in both seasons. The ratios of nitrate N to total N amount in aboveground biomass were higher in conventional and high fertilized organic treatments than in low or not fertilized organic treatments under limited N supply from the soil. Muskmelon plants absorbed mainly inorganic N, and the protein N fraction in the xylem sap was larger than the amino acid N fraction. Plants grown in the organic system had a higher proportion of organic N in their xylem sap, especially when manure input was low.  相似文献   

7.
Abstract. In dairy farming systems the risk of nitrate leaching is increased by mixed rotations (pasture/arable) and the use of organic manure. We investigated the effect of four organic farming systems with different livestock densities and different types of organic manure on crop yields, nitrate leaching and N balance in an organic dairy/crop rotation (barley–grass-clover–grass-clover–barley/pea–winter wheat–fodder beet) from 1994 to 1998. Nitrate concentrations in soil water extracted by ceramic suction cups ranged from below 1 mg NO3-N l?1 in 1st year grass-clover to 20–50 mg NO3-N l?1 in the winter following barley/pea and winter wheat. Peaks of high nitrate concentrations were observed in 2nd year grass-clover, probably due to urination by grazing cattle. Nitrate leaching was affected by climatic conditions (drainage volume), livestock density and time since ploughing in of grass-clover. No difference in nitrate leaching was observed between the use of slurry alone and farmyard manure from deep litter housing in combination with slurry. Increasing the total-N input to the rotation by 40 kg N ha?1 year?1 (from 0.9 to 1.4 livestock units ha?1) only increased leaching by 6 kg NO3-N ha?1. Nitrate leaching was highest in the second winter (after winter wheat) following ploughing in of the grass-clover (61 kg NO3-N ha?1). Leaching losses were lowest in 1st year grass-clover (20 kg NO3-N ha?1). Averaged over the four years, nitrate concentration in drainage water was 57 mg l?1. Minimizing leaching losses requires improved utilization of organic N accumulated in grazed grass-clover pastures. The N balance for the crop rotation as a whole indicated that accumulation of N in soil organic matter in the fields of these systems was small.  相似文献   

8.
Earthworms play an important role in many soil functions and are affected by soil tillage in agricultural soils. However, effects of tillage on earthworms are often studied without considering species and their interactions with soil properties. Furthermore, many field studies are based on one-time samplings that do not allow for characterisation of temporal variation. The current study monitored the short (up to 53 days) and medium term (up to 4 years) effects of soil tillage on earthworms in conventional and organic farming. Earthworm abundances decreased one and three weeks after mouldboard ploughing in both conventional and organic farming, suggesting direct and indirect mechanisms. However, the medium-term study revealed that earthworm populations in mouldboard ploughing systems recovered by spring. The endogeic species Aporrectodea caliginosa strongly dominated the earthworm community (76%), whereas anecic species remained <1% of all earthworms in all tillage and farming systems over the entire study. In conventional farming, mean total earthworm abundance was not significantly different in reduced tillage (153 m−2) than mouldboard ploughing (MP; 130 m−2). However, reduced tillage in conventional farming significantly increased the epigeic species Lumbricus rubellus from 0.1 m−2 in mouldboard ploughing to 9 m−2 averaged over 4 years. Contrastingly, in organic farming mean total earthworm abundance was 45% lower in reduced tillage (297 m−2) than MP (430 m−2), across all sampling dates over the medium-term study (significant at 3 of 6 sampling dates). Reduced tillage in organic farming decreased A. caliginosa from 304 m−2 in mouldboard ploughing to 169 m−2 averaged over 4 years (significant at all sampling dates). Multivariate analysis revealed clear separation between farming and tillage systems. Earthworm species abundances, soil moisture, and soil organic matter were positively correlated, whereas earthworm abundances and penetration resistance where negatively correlated. Variability demonstrated between sampling dates highlights the importance of multiple samplings in time to ascertain management effects on earthworms. Findings indicate that a reduction in tillage intensity in conventional farming affects earthworms differently than in organic farming. Differing earthworm species or ecological group response to interactions between soil tillage, crop, and organic matter management in conventional and organic farming has implications for management to maximise soil ecosystem functions.  相似文献   

9.
ABSTRACT

Organic amendments in the soil perform better than synthetic fertilizers in regards to soil fertility and sustainable crop productivity. Experiments were conducted to compare the effects of organic and synthetic fertilizers on soil fertility and wheat (Triticum aestivum L.) productivity. Soil fertility and protein contents of wheat grains (13.2% and 13.3% during 2005–06 and 2006–07, respectively) were improved by organic amendments. However, synthetic fertilizer (at the rate of 150, 100, and 60 kg ha?1 N, P2O5, and K2O, respectively) applications resulted in the maximum grain yield (4.05 and 4.46 t ha?1 during 2005–06 and 2006–07, respectively). The observed and simulated soil organic carbon (SOC) reasonably agreed during RothC model validation (R 2 = 0.99). Economic analysis showed the maximum net profit and relative increase in income ($729 US ha?1 and 309%, respectively) from inorganic treatment. Application of synthetic fertilizers increased grain yield and farm profit while organic manure enhanced grain quality. The RothC model had potential for determining the SOC in organic farming under arid environment.  相似文献   

10.
The aim of this paper is to discuss the demand of fresh organic matter (FOM) supply to maintain soil organic matter (SOM) levels and productivity of arable soils under organic management. The basic question is whether the different frame conditions in organic vs. conventional farming result in a different and system‐specific FOM demand. If this is the case, it would follow that the farming system has to be considered in the calculation of SOM balances. SOM balances are the most common decision support tools in organic matter management. A conversion to organic farming in practice usually leads to an increase of SOM levels as well as soil microbial activity over time. The system‐specific driver of this effect is the indispensable extension of the share of (perennial) legumes in crop rotations at the expense of non‐legumes such as cereals, row crops, and maize. Extended legume cropping is essential for N supply in crop rotations as the import of N fertilizer in total is limited by organic farming regulations and mineral N fertilizer may not be used at all. Based on this characteristic of organic management, we argue that the demand of FOM supply to soils must be higher than in conventional crop production. The most relevant factors are (1) the non‐existence of mineral N fertilizer as an external N source that supports the maintenance of SOM by decreasing the demand for SOM‐N, (2) benefits of increasing SOM stocks and turnover for soil productivity under organic management, and, (3) increased mass‐losses of FOM and easily degradable SOM compartments due to higher microbial activity in soils. These effects have to be quantified and must be considered in SOM balances in order to avoid misleading assessments and erroneous decisions.  相似文献   

11.
有机水稻品种产量、品质和氮素吸收利用的关系   总被引:3,自引:0,他引:3  
Due to the relatively late start of organic rice (Oryza sativa L.) research in China, there is a still lack of systematic research on rice varieties, organic fertilizer management practices, and especially the mechanisms of nitrogen (N) uptake and utilization. Three rice varieties, Nanjing 5055, Nanjing 9108, and Nanjing 46, were grown at organic farming (OF) with three organic fertilizer levels (103.2, 160.8, and 218.4 kg N ha-1) and conventional farming (CF) with regular chemical fertilizers. Rice grain yields, yield components, and quality, dry matter accumulation, and plant N were measured at different growth stages during the 2012 and 2013 growing seasons. Compared with CF, OF had a significantly reduced yield. Nanjing 9108 showed significant reductions in number of panicles per unit area and the percentage of filled grains, and had the lowest yield. The effects of fertilizer type and application rate on dry matter accumulation during the main growth periods were significant for all varieties. The N content and uptake of organically grown rice were lower compared with that of rice under CF. The N recovery efficiency and N agronomic efficiency were significantly lower, whereas N physiological efficiency and N partial factor productivity were greater under OF than under CF. Under OF, the processing quality showed a slight but insignificant decline, protein content and gel consistency increased, and amylose content decreased compared with those under CF. Correlation analysis showed that under OF, grain yield was significantly correlated with N uptake. The medium organic fertilizer level (160.8 kg N ha-1) was found to be the optimum fertilizer treatment, and Nanjing 46 appeared to be the best variety for organic rice cultivation. To increase rice grain yields and reduce the potential risk of non-point source pollution in organic agriculture, further research is needed to improve the N use efficiency in organic rice cultivation.  相似文献   

12.
Rice fields are a major source of greenhouse gases,such as nitrous oxide (N2O) and methane (CH4).Organic fertilizers may potentially replace inorganic fertilizers to meet the nitrogen requirement for rice growth;however,the simultaneous effects of organic fertilizers on N2O and CH4emissions and crop yield in paddy fields remain poorly understood and quantified.In this study,experimental plots were established in conventional double-cropping paddy field...  相似文献   

13.
In 1998, the Organic Arable Farming Experiment Gladbacherhof (OAFEG) was started in order to explore the impact of different organic arable production systems (mixed farming, stockless farming with rotational ley, stockless cash crop farming) and of different tillage intensities (conventional plough as a full inversion tillage, two-layer plough, inversion tillage at reduced depth, non-inversion tillage) on sustainability parameters. In this article, we present results on the development of soil organic matter (SOM) levels. Starting with organic mixed farming with approximately 0.7 livestock units (LU) per ha cattle before set-up of the experiment, only the mixed farming system in the experiment was able to maintain SOM levels. The stockless system with ley maintained soil organic carbon (SOC), but lost soil total nitrogen (STN), and the stockless cash crop system had a significant SOM loss in the magnitude of 7.7 t SOM ha?1, or roughly 8.4% of the initial SOM mass. Reducing tillage intensity had no impact on SOM masses, but only on organic matter stratification in soils. We conclude that specialization of organic farms towards stockless arable crop production requires special attention on SOM reproduction to avoid detrimental effects. Further, reduced tillage intensity does not necessarily have a positive effect on SOM.  相似文献   

14.
Biochar produced in cost‐efficient flame curtain kilns (Kon‐Tiki) was nutrient enriched either with cow urine or with dissolved mineral (NPK) fertilizer to produce biochar‐based fertilizers containing between 60–100 kg N, 5–60 kg P2O5 and 60–100 kg K2O, respectively, per ton of biochar. In 21 field trials, nutrient‐enriched biochars were applied at rates of 0·5–2 t ha−1 into the root zone of 13 different crops. Treatments combining biochar, compost and organic or chemical fertilizer were evaluated; control treatments contained same amounts of nutrients but without biochar. All nutrient‐enriched biochar substrates improved yields compared with their respective no‐biochar controls. Biochar enriched with dissolved NPK produced on average 20% ± 5·1% (N  = 4 trials) higher yields than standard NPK fertilization without biochar. Cow urine‐enriched biochar blended with compost resulted on average in 123% ± 76·7% (N  = 13 trials) higher yields compared with the organic farmer practice with cow urine‐blended compost and outcompeted NPK‐enriched biochar (same nutrient dose) by 103% ± 12·4% (N  = 4 trials) respectively. Thus, the results of 21 field trials robustly revealed that low‐dosage root zone application of organic biochar‐based fertilizers caused substantial yield increases in rather fertile silt loam soils compared with traditional organic fertilization and to mineral NPK or NPK‐biochar fertilization. This can be explained by the nutrient carrier effect of biochar, causing a slow nutrient release behaviour, more balanced nutrient fluxes and reduced nutrient losses, especially when liquid organic nutrients are used for the biochar enrichment. The results open up new pathways for optimizing organic farming and improving on‐farm nutrient cycling. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
Organic farming is considered an effective means of reducing nitrogen losses compared with more intensive conventional farming systems. However, under certain conditions, organic farming may also be susceptible to large nitrogen (N) losses. This is especially the case for organic dairy farms on sandy soils that use grazed grass–clover in rotation with cereals. A study was conducted on two commercial organic farms on sand and loamy sand soils in Denmark. On each farm, a 3‐year‐old grass–clover field was selected. Half of the field was ploughed the first year and the other half was ploughed the following year. Spring barley (Hordeum vulgare L.) was sown after ploughing in spring. Measurements showed moderate N leaching during the pasture period (9–64 kg N ha?1 year?1) but large amounts of leaching in the first (63–216 kg N ha?1) and second (61–235 kg N ha?1) year after ploughing. There was a small yield response to manure application on the sandy soil in both the first and second year after ploughing. To investigate the underlying processes affecting the residual effects of pasture and N leaching, the dynamic whole farm model farm assessment tool (FASSET) was used to simulate the treatments on both farms. The simulations agreed with the observed barley N‐uptake. However, for the sandy soil, the simulation of nitrate leaching and mineral nitrogen in the soil deviated considerably from the measurements. Three scenarios with changes in model parameters were constructed to investigate this discrepancy. These scenarios suggested that the organic matter turnover model should include an intermediate pool with a half‐life of about 2–3 years. There might also be a need to include effects of soil disturbance (tillage) on the soil organic matter turnover.  相似文献   

16.
Six phosphorus (P) fertilizers recycled from sewage sludge [Struvite SSL, Struvite AirPrex®, P‐RoC®, Mephrec®, Pyrolysis coal and Ash (Mg‐SSA)] were tested for their plant availability in potted soil of pH 7.2 under greenhouse conditions. The crop sequence simulated a rotation of red clover (Trifolium pratense L.), maize (Zea maize L.), and ryegrass (Lolium perenne L.). Other P fertilizer treatments included: Phosphate Rock (PR), Calcium dihydrogen phosphate [Ca(H2PO4)2], and an unfertilized control. Additionally, soil was regularly inoculated with two strains of plant growth‐promoting rhizobacteria (PGPR; Pseudomonas sp. Proradix, and Bacillus amyloliquefaciens) to test their ability to increase P availability to plants. Sequential P fractionation was conducted to link the amount of readily available P in fertilizers to plant P acquisition. Shoot P content and dry matter of maize decreased in the following order: Struvite SSL ≥ Ca(H2PO4)2 > P‐RoC® ≥ Struvite AirPrex® ≥ Mephrec® > Pyrolysis coal ≥ Mg‐SSA ≥ PR ≥ unfertilized. Rhizobacteria did not affect shoot biomass or P content. The results show that red clover might have mobilized substantial amounts of P. Sequential P fractionation was not suitable to predict the efficacy of the fertilizers. Generally, the sewage sludge‐based fertilizers tested proved to be suitable alternative P sources relevant to organic farming systems. However, the efficacy of recycled fertilizers is strongly dependent on their specific production conditions.  相似文献   

17.
Farming practices involving less intense chemical use are becoming popular in the United States primarily because of environmental concerns related to the use of chemicals in conventional farming systems. Physical and chemical soil properties were assessed on four farms, one conventional farm and three organic farms 3 (OF3), 6 (OF6), and 9 (OF9) years after certification. All farms were located in Doña Ana County of southern New Mexico, sited on Harkey soil (coarse silty, mixed, calcareous, thermic typic Torrifluvents). OF3, OF6, and OF9 were planted to cotton (Gossypium arboreum L.), chile (Capsicum annuum), and alfalfa (Medicago sativa) in 2006, respectively, and the conventional farm was planted to cotton. Core and bulk soil samples were collected from each farm at three different locations and three depths during September 2005, June 2006, and November 2006. Clay content was positively correlated with field capacity, wilting point, and available water capacity (AWC) and negatively correlated with transmission pore volume (VTP) and sand content at most depths. The one-way analysis of means of soil physical and chemical properties separately by depth showed that bulk density (ρb) was greater in November 2006 samples than in September 2005 and June 2006 samples in OF9 and was lowest in the conventional farm. In general, saturated hydraulic conductivity (Ks), volume of storage pores, effective porosity, AWC, and VTP showed little variation and were not related to the amount of time under organic farming. Soil pH and electrical conductivity (EC) were greater in the organic farms, and EC values mostly increased with increasing amount of time under organic farming. The greatest EC (2.6 dS m?1) in OF9 indicated that 9 years of manure application has raised soil salinity only slightly. Although no evidence on significant improvement of soil quality due to organic farming was observed, with regard to soil storage and transport properties and soil salinity, the organic farming system is sustainable for this region.  相似文献   

18.
Abstract

Dairy farming regions are important contributors of nitrogen (N) to surface waters. We evaluated the N budget and relationships to riverine N exports within the Shibetsu River catchment (SRC) of a dairy farming area in eastern Hokkaido, Japan. Five drainage basins with variable land-cover proportions within the SRC were also evaluated individually. We quantified the net N input (NNI) to the catchment from the difference between the input (atmospheric deposition, chemical fertilizers, N fixation by crops and imported food and feed) and the output (exported food and feed, ΔS liv and ΔS hu, which are the differences between input and output in livestock and human biomass, respectively) using statistical and measured data. Volatilized ammonia (NH3) was assumed to be recycled within the catchment. The riverine export of N was quantified. Agricultural N was a dominant source of N to the SRC. Imported feed was the largest input (38.1?kg?N?ha?1?year?1), accounting for 44% of the total inputs, followed by chemical fertilizers (32.4?kg?N?ha?1?year?1) and N fixation by crops (13.4?kg?N?ha?1?year?1). The exported food and feed was 24.7?kg?N?ha?1?year?1 and the ΔS liv and ΔS hu values were 7.6 and 0.0?kg?N?ha?1?year?1, respectively. As a result, the NNI amounted to 54.6?kg?N?ha?1?year?1. The riverine export of total N from the five drainage basins correlated well with the NNI, accounting for 27% of the NNI. The fate of the missing NNI that was not measured as riverine export could possibly have been denitrified and/or retained within the SRC. A change in the estimate of the deposition rate of volatilized NH3 from 100 to 0% redeposited would have decreased the NNI by 37%, although we believe that most NH3 was likely to have been redeposited. The present study demonstrated that our focus should be on controlling agricultural N to reduce the impact of environmental pollution as well as on evaluating denitrification, N stocks in soil and the fate of NH3 volatilization in the SRC.  相似文献   

19.
Diagnostic tests for organic production of crops would be useful. In this study, the difference in natural 15N abundances (δ15N) of soils and plants between fertilizer-applied upland (FU) and compost-applied upland (CU) fields was investigated to study using δ15N as a marker of organic produce. Twenty samples each of soils and plants were collected from each field in early summer after applying fertilizer or compost. The δ15N of fertilizers and composts was −1.6±1.5‰ (n=8) and 17.4±1.2‰ (n=10), respectively. The δ15N of total soil-N was significantly (P<0.05) higher in CU fields (8.8±2.0‰) than in FU fields (5.9±0.7‰) due to long-term continuous application of 15N-enriched compost, as indicated by a positive correlation (r=0.62) between N content and δ15N of total soil-N. The NO3 pool of CU soils (11.6±4.5‰) was also significantly (P<0.05) enriched in 15N compared to FU soils (4.7±1.1‰), while the 15N contents of NH4+ pool were not different between both soils. Compost application resulted in 15N enrichment of plants; the δ15N values were 14.6±3.3‰ for CU and 4.1±1.7‰ for FU fields. These results showed that long-term application of compost resulted in a significant 15N-enrichment of soils and plants relative to fertilizer. Therefore, this study suggested that δ15N could serve as promising indicators of organic fertilizers application when used with other independent evidence. However, further studies under many conditions should be conducted to prepare reliable δ15N guidelines for organic produce, since the δ15N of inorganic soil-N and plant-N are influenced by various factors such as soil type, plant species, the rate of N application, and processes such as mineralization, nitrification, and denitrifcation.  相似文献   

20.
The effects of soil mesofauna and different farming systems on decomposition of clover (Trifolium repens) litter were investigated in a laboratory experiment. Microcosms were incubated for 16 weeks with fine and coarse litterbags in soils from three types of management systems: fallow, integrated farming and organic farming, the latter two cropped with wheat. The effects were studied by analysing litter mass loss, C and N content, DOC, nitrate and pH in soil leachate, and CO2 production, as well as mesofauna. Mesofauna significantly accelerated mass loss and C and N release from clover litter in all three soils. With mesofauna access, at the end of the experiment average clover mass loss was almost twice as high and clover C and N content were 60% lower than without mesofauna. Farming systems influenced the decomposition through affecting both element turnover and mesofauna. Although in the first weeks less N was leached from organic farming than from integrated farming soil, cumulative N leaching did not differ between these soils. However, more than 20% less N was leached from the fallow soil than from the field soils. CO2 production was highest in fallow soil. Here, mesofauna had no effect on this variable. In soil with integrated farming, mesofauna reduced cumulative CO2 production by 10% whereas in soil from organic farming it increased CO2 production by 20%. Our data suggest that differences in C and N turnover in different management systems are strongly mediated by soil mesofauna.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号