首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When the soil water balance method is applied at a field scale, estimation of the spatial variability and confidence interval of actual evapotranspiration is rare, although this method is sensitive to the spatial variability of the soil, and thus to the sampling strategy. This work evaluated the effect of soil sampling strategies for soil water content and water flux at the bottom of the soil profile on the estimation of the daily and cumulative evapotranspirations. To do that, according to the statistical properties of daily measurements in a field experiment with a soybean crop, the water content and flux through the base to the soil profile in space (field scale) and time (daily scale) were simulated. Four different sampling strategies were then compared, and their effects on daily and seasonal cumulative evapotranspirations quantified. Strategy 1 used ten theoretical sites randomly located in the field. The daily water content estimates were assumed to be available each day from these same ten locations, which were located from 0.15 m to 1.55 m in depth, with space steps of 0.10 m. Strategy 2 assumed that daily water content estimates combined two sources: in the 0.00–0.20 m soil layer, ten theoretical sites were selected but changed every day, with thin soil layers for soil moisture sampling, from 1 to 5 cm in thickness. In the 0.20–1.60 m soil layer, the daily water content estimates were assumed to come from the same ten locations (the first soil moisture estimate was located at 0.25 m, and the others were located every 0.10 m until 1.55 m). Strategy 3 used ten theoretical sites located in the field, as in strategy 1, however the water content estimates in the 0.00–0.20-m soil layer were assumed to come from accurate water content measurements (soil layers from 1 to 5 cm in thickness), while for the 0.20–1.60 m soil layer, the strategy was similar to strategies 1 and 2. Strategy 4 used 10 new theoretical locations of measurement every day. Precise water content estimates for thin layers were assumed to be available in the 0.00–0.20 m soil layer as in strategy 2. The layers for water content estimates in the 0.20–1.60 m were similar to those of strategies 1, 2, and 3. Results showed that the spatial variability of the daily actual evapotranspiration may not be negligible, and differences from approximately ±1.0 mm d –1 to ±3.0 mm d –1 were calculated between the four sampling strategies. Strategy 1 gave the worst results, because variations in the water content of the top soil layers were neglected, and thus the daily evapotranspiration was underestimated. Strategy 2 led to a considerable variability for estimating daily evapotranspiration which was explained by the effect of the spatial variability due to the daily site sampling for the top soil layers (0 to 0.2 m). Strategy 3 appeared to be the best practical compromise between practical field considerations and the necessity to obtain accurate evapotranspiration measurements. The accuracy of daily evapotranspiration could reach ± 0.5 mm d–1, and could be further improved by increasing the number of measurement sites. The best results were obtained with strategy 4, although such a destructive and time-consuming strategy is not likely to be practical.  相似文献   

2.
Summary The effect of soil moisture regimes on the grain and straw yield, consumptive water use (Cu) and its relation with evaporation from free water surface (Eo), water use efficiency and soil moisture extraction pattern of lentil was studied in a field experiment conducted at the Indian Agricultural Research Institute, New Delhi during the fall-spring season of the crop years 1979–1980 and 1980–1981. The grain and straw yield, consumptive water use rate, Cu/Eo ratio and water use efficiency increased with an increase in irrigation frequency. Consumptive water use rate increased as the crop season advanced and reached its peak value during flowering and grain filling stage. The Cu/Eo ratio attained its minimum values 35 and 105 days after sowing at branching and grain filling stages. Depletion of soil moisture was most from the top 0–30 cm soil layer followed by 30–60 cm soil layer and was least from 90–120 cm soil layer. The pattern of soil moisture depletion was also influenced by soil moisture regime. During the vegetative and flowering stage the percent contribution from the top 0–30 cm soil layer decreased and that from the lower soil layers (30–60, 60–90, and 90–120 cm) increased with an increase in the soil moisture tension, however, the actual amount of moisture depleted from all the soil layers was always higher under low soil moisture tension regime than under high soil moisture tension regime. During the grain development stage the soil moisture treatment had no significant effect on the relative contribution from different soil layers under low and high soil moisture tension as the crop was irrigated at the same time under both these treatments. However, with no irrigation, the percent contribution from top soil layer continued to decrease, and from lower soil layers continued to increase, as the crop advanced from flowering stage to grain development stage.  相似文献   

3.
Summary The interactive effects of 0.0%, 0.4%, and 0.8% of a gel conditioner, Jalma, and four waters: salt solution (SS), distilled (DW), natural sewage (SW), and well (WW) waters on swelling (S), effective mean pore radius ( ), water penetrability (), diffusivity (D), and weighted-mean diffusivity ( ) in loamy sand and loam soil columns were investigated. The diffusivities of water in untreated soil columns were nearly independent of water quality. In general for both soils, S decreased, and , , and increased with increase in water salinity and decrease in % Jalma. For the loamy sand of SS, WW, SW, and DW were reduced, respectively by 15%, 39%, 45%, and 55% due to the addition of 0.4% Jalma and by 15%, 52%, 69%, and 83% due to addition of 0.8% Jalma compared to untreated control. It was concluded that 0.4% Jalma is the optimum rate when sewage (EC=1.6 dSm–1) or other waters of low salinity are used for irrigation and 0.8% Jalma when well water (EC =6.4 dSm–1) is used. When the irrigation water is of high salinity (EC =42.5 dSm–1), use of this gel conditioner is not recommended. Effective mean pore radius proved to be a reliable predictor of the multiple effects of texture, Jalma and water salinity on and .  相似文献   

4.
A field experiment was conducted during the 1996/1997 season at the University of Jordan Research Station near Al-Muwaqqar village to investigate the effects of sand columns, sand column spacing, soil ridges, and supplemental irrigation on soil water storage, redistribution, and barley yields. The experimental site represents a typical Jordanian arid environmental soil suffering from surface crust formation overlaying impermeable material. In the 600-mm-depth soil profile, soil water storage was improved significantly by 59%, 45%, and 38% in the 1-m, 2-m, and 3-m sand column spacing treatments, respectively, compared with soil water storage in the control treatment (no sand columns). Sand columns increased the moisture stored in all four soil layers (0–150, 150–300, 300–450, and 450–600 mm). Moisture stored in the 450–600 mm soil layer increased significantly by about 188%, 147%, 88%, and 29% in the 1-m, 2-m, 3-m, and 4-m sand column spacing treatments, respectively, compared with moisture stored in the same soil layer of the control treatment. Increasing soil water storage also increased barley consumptive use significantly from 130 mm in the control treatment to an average of about 185 mm in sand column treatments. Without supplemental irrigation, barley grain and straw yields were negligible and almost zero. Barley yields in the control treatment, with 167 mm supplemental irrigation were low, being 0.19 ton/ha and 1.09 ton/ha of barley grain and straw, respectively. Sand columns increased barley grain and straw yields significantly compared with the control treatment to a maximum of 0.68 ton/ha and 3.97 ton/ha, respectively, with the 1-m sand column spacing. Soil ridges perpendicular to the land slope had no significant effect on increasing soil water storage due to lateral runoff and loss along the ridge. In general, sand columns minimize surface runoff and evaporation by allowing water to infiltration through the strong surface crust. Sand columns act as a sink for surface water, enhance subsurface lateral water movement, and reduce the possibility of surface crust formation in the vicinity of the sand column opening by preventing surface ponding. Received: 3 October 1997  相似文献   

5.
Summary A neutron moisture meter was field calibrated in a cracking grey clay prepared for furrow irrigation at Narrabri, N.S.W. Neutron counts were taken in successive 0.1 m increments between the 0 and 1.5 m depths. Concomitant measurements using undisturbed soil cores provided independent estimates of volumetric water content. Separate linear calibrations were required for the 0–0.1 m, 0.1–0.2 m and 0.2–1.5 m depth increments. Correction for bias due to cracking and changes in bulk density slightly improved the calibrations. The accuracy of predicted soil water content was improved relative to previous calibrations. A precision of ±0.01 m3m–3 required 3 samples per mean by the neutron method or 11 samples per mean by the core sampling method.  相似文献   

6.
Nitrogen (N2) fixation in an irrigated white clover-grass sward was estimated using the 15N isotope dilution technique following the addition of K15NO3 at 0.5 gN m–2 and 80 atom % 15N in a field study during the 1990–91 season. Two water salinity treatments (channel water; ECw = 0.07 and groundwater; 2.4 dS m–1) and four irrigation frequencies were included in a factorial design with four replicates. The channel water treatments were irrigated when pan evaporation minus rainfall equalled 50 mm, whereas the groundwater treatments were irrigated at deficits of 40, 50, 65 or 80 mm. Cumulative dry matter of the clover was significantly less in treatments irrigated with saline groundwater compared to channel water at day 164, and soil salinities (ECe) increased on average from 2.3 to 5.07 dS m–1. In contrast, salinity of the irrigation water had no effect on the cumulative yield of grass. Cumulative dry matter of the grass and clover were not affected by groundwater irrigation frequency. Total N accumulation by the grass did not differ significantly between treatments. However, total N accumulation in white clover was significantly less (P < 0.05) in all treatments irrigated with groundwater compared to channel water. Neither the N concentrations of the grass nor the clover differed significantly between the salinity treatments. Salinity and irrigation frequency had no effect on the proportion of clover N (Patm) derived from N2 fixation. The values of Patm were high throughout, and increased progressively from 0.78 at day 39 to 0.91 at day 164 (P < 0.01). However, the yield of fixed N was lower in clover when watered with groundwater compared to channel water (P < 0.01). Thus low to moderate soil salinity did not affect the symbiotic dependence of clover, but the yield of biologically-fixed N was depressed through a reduction in the dry matter yield of the legume.  相似文献   

7.
Summary An irrigation experiment was conducted on wheat in the northern Negev, Israel. The growing season rainfall was 198 mm; six irrigation treatments, ranging from 0 to 320 mm were applied at different stages of growth. The grain yields ranged from 1.20 to 5.84 t/ha. Stomatal aperture was evaluated by leaf permeability, as measured with a fast-reading viscous flow porometer. Other indices of soil-plant water status measured were: soil moisture with a neutron probe; leaf water potential with a pressure chamber; CO2 uptake with a 14CO2-pulse apparatus; and leaf water saturation deficit.For the penultimate and flag leaves, midday leaf permeability was highly correlated with the soil moisture in the upper 60-cm layer. CO2-uptake, however, remained constantly high (ca. 0.8 mg m–2s–1 = 29 mg dm–2h–1) throughout a wide range of leaf permeability, from 10 down to 2 porometer units (p. u.); below this value, it decreased linearly with leaf permeability. Therefore, the value of 2 p. u. was tentatively regarded as a critical value for judging the critical values of the other indices studied; these were estimated to be: leaf water potential, –1.57 MPa = –15.7 bars; leaf saturation deficit, 18,8% and soilmoisture, 12.6% representing a 83% depletion of the available moisture in the Gilat soil. The grain yield was highly negatively correlated with the duration of period when the soil moisture was below these critical values. The use of the porometer method for evaluating water stress is discussed.  相似文献   

8.
Summary Field investigations carried out at the Indian Institute of Horticultural Research, Bangalore, during 1985–1986 and 1986–1987 with French bean crops indicated that irrigation when soil matric potential at 0.15 m depth reached — 45 kPa resulted in highest dry matter production, green pod yield, nutrient uptake and water use efficiency (WUE) as compared to irrigations scheduled at -65 or -85 kPa. The difference in pod yield between irrigations scheduled at -25 and -45 kPa was not significant. Increasing soil moisture stress increased the canopy temperature and adversely affected plant water relations. There was a quadratric relationship between green pod yield and evapotranspiration (ET) with the yield-maximising ET ranging between 268 and 299 mm. Nitrogen fertilization significantly increased green pod yield, nutrient uptake and WUE but had no marked effect on water relations and canopy temperature.Contribution No. 234/88 of Indian Institute of Horticultural Research, Bangalore, India  相似文献   

9.
Summary Rapid drying of surface layers of coarse-textured soils early in the growth season increases soil strength and restricts root growth. This constraint on root growth may be countered by deep tillage and/or early irrigation. We investigated tillage and irrigation effects on root growth, water use, dry matter and grain yield of wheat on loamy sand and sandy loam soils for three years. Treatments included all combinations of two tillage systems i) conventional tillage (CT) — stirring the soil to 10 cm depth, ii) deep tillage (DT) — subsoiling with a single-tine chisel down to 35–40 cm, 40 cm apart followed by CT; and four irrigation regimes, i) I0 — no post-seeding irrigation, ii) I1 — 50 mm irrigation 30 days after seeding (DAS), iii) I2 — 50 mm irrigation 30 DAS and subsequent irrigations of 75 mm each when net evaporation from USWB class A open pan (PAN-E) since previous irrigation accumulated to 82 mm, and iv) I3 — same as in I2 but irrigation applied when PAN-E accumulated to 62 mm. The crop of wheat (Triticum aestivum L. HD 2329) was fertilized with 20kg P, 10kg K and 5kg Zn ha–1 at seeding. The rate of nitrogen fertilization was 60 kg ha–1 in the unirrigated and 120 kg ha–1 in the irrigated treatments. Tillage decreased soil strength and so did the early post-seeding irrigation. Both deep tillage and early irrigation shortened the time needed for the root system to reach a specified depth. Subsequent wetting through rain/irrigation reduced the rate of root penetration down the profile and also negated deep tillage effects on rooting depth. However, tillage/irrigation increased root length density in the rooted profile even in a wet year. Better rooting resulted in greater profile water depletion, more favourable plant water status and higher dry matter and grain yields. In a dry year, the wheat in the DT plots used 46 mm more water, remained 3.3 °C cooler at grain-fill and yielded 68% more grain than in CT when unirrigated and grown in the loamy sand. Early irrigation also increased profile water depletion, more so in CT than DT. Averaged over three years, grain yield in DT was 12 and 9% higher than in CT on loamy sand and sandy loam, respectively. Benefits of DT decreased with increase in rainfall and irrigation. Irrigation significantly increased grain yield on both soils, but the response was greatly influenced by soil type, tillage system and year. The study shows that soil related constraints on root growth may be alleviated through deep tillage and/or early irrigation.  相似文献   

10.
Summary The evapotranspiration rates of five-year-old coconut palms (Cocos nucifera Linn. cv West Coast Tall) grown in an Oxisol on the West coast of India were quantified from soil moisture depletion studies and lysimetric measurements. The rates increased from 2.9 mm day–1 in December to 5.5 mm day–1 in April and reduced to 2.3 mm day–1 in June following the onset of monsoon rain. Ratios of evatranspiration to class A pan evaporation were 0.87–0.88 in the moderate rainfall period (September and October), 0.78–0.85 in the winter period (November–February), 0.87–0.96 in the summer period (March–May) and 0.60–0.68 in the rainy period (June–August).  相似文献   

11.
The effect of watering up to approximately 100% of volumetric available soil water on total biomass, nitrogen (N) balance, and market yield of broccoli crops (Brassica oleracea L. convar. botrytis var. italica Plenck, cv. Emperor) was studied. The experiment was carried out in a microplot field installation on two soil types (alluvial loam and loessal loam) under spring and autumn cultivation and consisted of three soil water regimes: plants received 21 mm of water by irrigation until the soil moisture reached 75% of the available soil water (ASW), treatment 1; 42 mm after the soil moisture reached 55% ASW, treatment 2; and 63 mm after the soil moisture reached 35% ASW, treatment 3. The ASW of the three treatments was measured at a depth of 0.15 m. The total plant mass was significantly affected by the irrigation strategy on the loessal loam in spring and on the alluvial loam in autumn. The total mass and head mass were lowest when water was applied at 75% ASW in spring and autumn. Calculations of N-balances showed that N losses were large, i.e. more than 70 kg·ha–1 in spring and 130 kg·ha–1 in autumn on the alluvial loam in treatment 1, and were only slightly affected by the irrigation strategy on the loessal loam.Communicated by R. Evans  相似文献   

12.
Production and water use in lettuces under variable water supply   总被引:3,自引:0,他引:3  
The effects of a variable water supply on the water use, growth and yield of two crisphead and one romaine (i.e., Cos) lettuce cultivar were examined in a field experiment using a line source sprinkler system that produced a range of water regimes that occur in growers fields. Four locations at increasing distances from the main line were monitored through the season (i.e., from thinning to harvest, 28–63 days after planting (DAP)). These locations at the end of the season corresponded to: (1) rewatering to field capacity (FC); (2) watering with a volume 13% below that required in the field capacity treatment (0.87*FC); (3) 30% below FC (0.70*FC); and (4) 55% below FC (0.45*FC). A linear production function for dry matter accumulation and fresh weight vs. crop evapotranspiration (ETc) was determined for lettuce during this period, giving a water use efficiency for dry matter of 1.86 g m–2 mm–1 and for fresh weight of 48 g m–2 mm–1 . For lettuce irrigated to field capacity, ETc between thinning and harvest was 146 mm; maximum crop coefficients of 0.81–1.02 were obtained at maturity (55–63 DAP). For the three irrigation treatments receiving the largest water application, ETc was higher in the Cos culivar than in the two crisphead lettuce cultivars which had similar ETc. Plant fresh weight was more sensitive than dry weight to reduction in water supply. In the FC treatment, root length density and soil water extraction were greatest in the top 0–45 cm, and decreased rapidly below 45 cm depth. Soil water extraction by roots increased at lower depths when irrigation was reduced. Instantaneous rates of leaf photosynthesis and leaf water potential showed no response to the irrigation treatments in this study, despite differences in biomass production. Evaporation was determined to be the major component of ETc for 45 of the 63 days of the growing season. The large loss of water by evaporation during mid-season and the apparent insensitivity of lettuce to the volume of irrigation during this period may provide an opportunity for reducing irrigation applications.  相似文献   

13.
Summary Dry-seeded rice (Oryza sativa L., cv. Calrose) was subjected to 4 irrigation treatments — continuous flood (CF) and sprinkler irrigation at frequencies of one (S1 W), two (S2W) and three (S3W) applications per week — commencing 37 d after 50% emergence (DAE). The amount of water applied was calculated to replace water lost by pan evaporation. Urea (120 kg N ha–1) was applied in a 1:1 split 36 and 84 DAE, and there were also unfertilized controls for each irrigation treatment. Amounts of nitrate (NO 3 ) in the soil were very low throughout the growing season in all treatments, despite regular periods of draining which lasted for up to 7 d in SlW. In all irrigation treatments, the majority of the fertilizer nitrogen (N) was located in the top 20 mm of soil. After each application of fertilizer, levels of mineral N in CF declined rapidly, while levels in S3W and S1W remained high for 1–2 weeks longer. The poor growth of sprinkler-irrigated rice was not due to lower amounts of mineral N in the soil. The greater persistence of fertilizer N in the sprinkler-irrigated treatments was probably due to reduced root activity near the soil surface because of frequent periods of soil drying in between irrigations. Net mineralization of soil N in the unfertilized sprinkler-irrigated treatments was reduced by about half compared with CF.On average, the quantity of water applied (1.2–1.4 × EP) to the sprinkler-irrigated treatments appeared to be sufficient to meet the evapotranspiration demands of the crop, except possibly around flowering time. However, the plants may have suffered from moisture stress in between irrigations. Soil matric potential data at 100 mm suggested little water stress in the sprinkler-irrigated treatments during the vegetative stage, consistent with the similar tiller and panicle densities in all irrigation treatments. However, the crop was stunted and yellow and leaf rolling was observed in the sprinkler-irrigated treatments during this period. Soil matric potential data at 100 mm indicated considerable water stress in S1W beyond the commencement of anthesis, and in S2W during grain filling, consistent with the reduced floret fertility and grain weight in those treatments.  相似文献   

14.
Summary The water use of two soybean cultivars (Bragg and Ruse) was measured for three seasons for a range of irrigation treatments. The seasonal totals of plant and soil evaporation ranged from 450 to 750 mm or from 36 to 64% of class A pan evaporation for the same period. Both cultivars extracted approximately 60% of the total extractable soil water in the top 1.2 m of soil before actual evaporation (Ea) dropped below potential evaporation (Eo). Up to this point the ratio between Ea and class A pan evaporation averaged 0.8. Ruse used water at a faster rate than Bragg but Ruse was not as effective in extracting the deep (below 1.0 m) soil water as Bragg. Water use efficiency (kg seed ha–1 mm–1 water) showed a small but general increase with decreasing irrigation water application. Runoff losses varied from zero for non-irrigated Ruse in 1977/78 to 352 mm for frequently-irrigated Bragg in 1976/77, generally increasing with the number of irrigations.  相似文献   

15.
Experiments were undertaken at CCS Haryana Agricultural University Farm, Sirsa (India) to estimate the optimum irrigation schedule for cotton resulting in minimum percolation losses. The sprinkler line source technique was adopted for creating various irrigation regimes at different crop growth stages. The SWASALT (Simulation of Water And SALT) model after calibration and validation provided water balance components. The wa-ter management response indicators (WMRI's) such as transpiration efficiency Et/(Irr + P), relative transpiration Et/Etp, evapotranspiration efficiency ET/(Irr + P), soil moisture storage change ΔW/Wint (deficit/excess) and percolation loss Perc/(Irr. + P) were evaluated using water balance components as estimated by the simulation study. Under limited water supply conditions, the optimum irrigation depth was found to be 57 mm at crop growth stages with pre-sowing and 1st irrigation of 120 mm and 80 mm respectively for sandy clay loam underlain by sandy loam soil (Type I). The corresponding values of relative transpiration, transpiration efficiency and evapotranspiration efficiency were 0.65, 0.65 and 0.89 respectively. The crop yield varied linearly with increasing irrigation depth which was evident from increase in relative transpiration with increasing depth of water application. However, increased depth of irrigation resulted in less moisture utilisation from soil storage (20% depletion at 40 mm depth and 4.4% moisture built up at 100 mm depth). The extended simulation study for sandy soil underlain by loamy sand (Type II) indicated that two pre-sowing irrigations each 40 mm and subsequent irrigations of 40 mm at an interval of 20 days depending upon rainfall were optimum. This irrigation scenario resulted in zero percolation loss accompanied by 74% relative transpiration and 14 per cent soil moisture depletion. Received: 20 November 1995  相似文献   

16.
秸秆覆盖条件下滨海盐渍土水盐分布及蒸发特征   总被引:1,自引:0,他引:1  
为了揭示秸秆覆盖滨海盐渍土水盐调控机理,通过室内模拟实验研究了不同秸秆覆盖量(0、0.3、0.6、0.9和1.2 kg/m2分别由CK、秸秆A、秸秆B、秸秆C和秸秆D表示)对土壤水盐运移和蒸发强度的影响。结果表明,秸秆覆盖可有效提高表层及土壤剖面含水率,且增墒效果随秸秆覆盖量的增加而增加:试验期间秸秆A、秸秆B、秸秆C和秸秆D剖面平均含水率比CK依次高了41.2%、52.3%、65.7%和58.5%;秸秆覆盖可抑制表层土壤盐分积聚并有效调控土壤剖面盐分分布,秸秆覆盖量越大表层积盐量越低,土壤剖面盐分分布越趋于均衡:试验结束时,CK、秸秆A、秸秆B、秸秆C和秸秆D表层0~2 cm土壤电导率比3~5 cm电导率分别高了246.3%、242.8%、138.4%、40.5%和47.6%;土壤蒸发强度和累积蒸发量随着秸秆覆盖量的增加而降低:试验期间CK、秸秆A、秸秆B、秸秆C和秸秆D处理平均蒸发强度依次为1.79×10-3、1.64×10-3、0.93×10-3、1.35×10-3和0.76×10-3mm/min,累积蒸发量分别为17.79、20.30、14.20、14.57和10.27 mm,且蒸发初期秸秆覆盖对蒸发强度和累积蒸发量的抑制作用更明显。  相似文献   

17.
为了探明黄河三角洲盐渍土蒸发对土壤盐分变化的响应特征,采用矿化度分别为5,10,30,50,70,90 g/L的咸水灌溉黄河三角洲0~40 cm土壤,获得不同盐分梯度的盐渍土处理,依次标记为处理T1—T6,并测定各处理的土壤含水率和电导率、蒸发强度和累积蒸发量等指标.结果表明,蒸发过程中表层土壤含水率和电导率均随土壤含盐量增加呈逐渐增加趋势;蒸发结束时,处理T1—T6的土壤表层平均含水率比试验初期降低了80.0%~95.8%,表层含水率的降低幅度随着含盐量增加而逐渐降低;土壤表层电导率分别增加135%~330%,且蒸发前期表层电导率增加幅度明显高于蒸发后期.土壤含盐量对土壤剖面含水率及电导率分布影响差异具有统计学意义,蒸发结束时,处理T1—T6表层0~2 cm比3~6 cm土壤含水率低了8.3%~30.5%,土壤电导率则高了82%~196%,且随着土壤含盐量增加,盐分对土壤剖面盐分分布的影响逐渐增强,表层与深层土壤含盐量差异逐渐增大.蒸发过程中,土壤平均蒸发强度和累积蒸发量随土壤含盐量增加呈降低趋势,处理T1—T6的平均蒸发强度为3.5×10-4,3.5×10-4,3.4×10-4,3.2×10-4,3.0×10-4和2.7×10-4 mm/d,土壤累积蒸发量分别为26.13,26.20,25.50,24.26,22.50和20.58 mm,且蒸发前期各处理的土壤平均蒸发强度及累积蒸发量均高于蒸发后期,土壤含盐量对土壤蒸发的抑制作用主要在蒸发前期.研究表明土壤含盐量可影响土壤剖面含水率与电导率分布以及土壤蒸发强度和累积蒸发量.  相似文献   

18.
The effects of irrigation methods, application rates and initial moisture content on soil water storage and surface runoff were studied in soils liable to surface crust formation during 1995–1996 at the University of Jordan Research Station near Al-Muwaqqar village. Four irrigation methods were tested (sprinkler, furrow, basin and trickle) and four application rates (6.2, 14.4, 24.4 and 28.4 mm/h). Two runs were performed (soil initially dry and soil initially wet). Basin irrigation provided the highest application efficiency followed by trickle, sprinkler and furrow irrigation methods. Entrapping water by the basin borders increased soil water storage by allowing more water to infiltrate through the surface crust. Decreasing the application rate from 28.4 to 6.2 mm/h increased soil water storage significantly in all 150 mm layers to a depth of 600 mm. If the soil was already wet, soil moisture storage decreased owing to siltation during the prewetting and formation of a surface crust and low soil water storage capacity. A sedimentary crust formed at the bottom of the furrows in the furrow irrigation treatment, which reduced soil water storage and increased surface runoff significantly owing to the reduction in infiltration. Increasing the application rate from 6.2 to 28.4 mm/h in the furrow surface irrigation treatment increased the runoff discharge 10-fold. Even with the lowest application rate the runoff coefficient under sprinkler irrigation was 20.3% indicating high susceptibility of Al-Muwaqqar soils to surface crust formation.  相似文献   

19.
Summary Lucerne was irrigated for three years on a slowly permeable, duplex soil, with saline water up to 2.4 dS m–1 without significant yield decline. Irrigation water of 4.5 dS m–1 significantly reduced yield. Lucerne yield was most closely related to the soil ECe of the 0–15 cm depth, rather than the total rootzone, and was described by; Relative yield=100–6.5 (ECe-2.1). While lucerne roots reached depths of at least 150 cm, approximately 80% of total root length was located in the 0–60 cm depth.Increasing salinity increased the plant concentrations of sodium and chloride, however, these changes were not closely related to changes in yield.Soil salinity increased with increasing salinity of the applied water. However, during the irrigation season water penetration and the accumulation of salt within the profile was predominantly restricted to the 0–60 cm depth. No portion of the applied irrigation water was available as a leaching fraction. Any leaching of salts to the watertable, particularly below 120 cm, was due to winter rainfall rather than the application of summer irrigation water.Ripping the soil to a depth of 75 cm increased water infiltration and resulted in increased crop yields, but did not significantly affect the crop relative yield-soil ECe relationship.From the results it is proposed that on the slowly permeable duplex soils, when watertable depth is controlled, management strategies for lucerne irrigated with saline water should be based on controlling the salinity of the shallow soil depths, to 60 cm.  相似文献   

20.
Chloride mass balance (steady state or transient state) models are used extensively in Vertisols of Queensland and New South Wales (NSW) in Australia to estimate deep drainage. The aim of this study was to compare deep drainage estimated assuming steady state and transient state conditions with chloride mass balance models in irrigated cotton (Gossypium hirsutum L.)-based farming systems in the lower Namoi Valley of North Western NSW. Drainage was estimated at seven sites, and treatments included rotation crops such as wheat (21–62 mm/year) (Triticum aestivum), sorghum (12–47 mm/year) (Sorghum bicolor) and dolichos (12–21 mm/year) (Lablab purpureus), minimum tillage (62–83 mm/year), where cotton was sown into standing wheat stubble, and conventional tillage where stubble was incorporated (35–78 mm/year). Soil water content was measured with a neutron moisture meter in the 0.2–1.2 m depth. Soil was sampled before sowing and after harvest to a depth of 1.2 m along diagonal transects. The soil chloride concentration was determined by titration with AgNO3. Irrigation water was also analysed for chloride. The deep drainage estimates were compared using regression analysis and students paired t-test. In addition, a paired t-test of the soil chloride concentration before sowing and after harvest was used to determine if the soil chloride flux was either in a steady state or transient state. In 9 out of the 13 data sets (69%), drainage estimated with the models agreed with changes between pre- and post-season soil chloride concentrations. Under frequently irrigated summer crops such as cotton and sorghum and in better structured soils chloride flux reached steady state conditions whereas under partially-irrigated crops or where soil structure was poorer, the chloride flux deviated markedly from steady-state conditions. The latter observation may be due to preferential flow via deep cracks in infrequently irrigated soil. Deep cracking would be due to the more intense shrinking and swelling in partially irrigated soil in comparison with frequently-irrigated crops. Comparison of estimated deep drainage with pre- and post-season soil chloride concentrations showed that the steady state mass balance model best estimated deep drainage under cotton crops which were irrigated more frequently or wheat crops which had better soil structure.
T. B. WeaverEmail: Phone: +61-2-67991570Fax: +61-2-67991503
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号