首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
湖州市不同森林植被生物量的研究   总被引:3,自引:0,他引:3  
对浙江省湖州市5种森林植被的生物量进行研究,结果表明:湖州市不同森林植被的平均生物量分别是,毛竹林121 14t/hm2,杉木林111 77t/hm2,马尾松林51 48t/hm2,常绿阔叶林104 95t/hm2,松阔混交林99 42t/hm2。该地区5种森林植被的总生物量为17475213 08t。  相似文献   

2.
生物量估算是研究森林生态系统结构和功能的基础,森林生物量约占全球陆地植被生物量的90%,对维持全球碳平衡方面具有重要作用。由于人类活动的影响,我国亚热带森林类型多样,比较各森林生物量的差异和分配特征,可为评估森林碳收支提供基础数据。本研究在湘中丘陵区选择杉木(Cunninghamia lanceolata)人工林、马尾松(Pinus massoniana)-石栎(Lithocarpus glaber)针阔混交林、南酸枣(Choerospondias axillaris)落叶阔叶林、石栎-青冈(Cyclobalanopsis glauca)常绿阔叶林,利用各优势树种的相对生长方程和1hm2的样地数据估算森林生物量。结果表明:4种森林生物量为72.74~154.03 t/hm2,各森林之间的生物量差异极显著(P0.01),杉木林的最低(72.74 t/hm2),马尾松林的最高(154.03 t/hm2),石栎-青冈林(134.08 t/hm2)和南酸枣林(106.89 t/hm2)的居中。4种森林生物量分配中,树干生物量所占比例最高,叶生物量所占比例最低。林冠(枝、叶)生物量与树干生物量、地上生物量与地下生物量之间的关系显著,决定系数分别为0.753 9~0.989 4和0.939 2~0.993 3。因此,当仅有林分树干生物量数据时,可用生物量转换扩展系数(BEFs)估算林冠生物量和地下部分生物量,从而估算整个林分的生物量。  相似文献   

3.
【目的】对原生林及其皆伐后自然演替形成的次生林和造林形成的人工林的细根生物量及土壤特性进行研究,分析不同更新方式对细根动态分布的影响、了解细根与土壤特性之间的互动效应,为阐明森林生态系统中碳和养分循环以及为该地区森林恢复和森林经营提供理论依据。【方法】以小兴安岭南坡典型阔叶红松林、皆伐后天然更新的白桦次生林、皆伐后栽植的红松人工林和兴安落叶松人工林为研究对象,于2013年5—9月用连续钻取土芯法采集细根(直径≤2 mm)和土壤,测定细根生物量的垂直分布与季节动态,分析生物量与土壤特性的相关性。【结果】典型阔叶红松林、红松人工林细根生物量均显著高于白桦次生林和兴安落叶松人工林(P0.05);各森林类型细根生物量的垂直分布存在显著差异(P0.05),细根主要集中在0~20 cm土层中,其中白桦次生林0~20 cm土层中细根生物量占其细根总生物量的比例最高(75.81%),典型阔叶红松林最低(62.73%);各森林类型细根生物量存在季节性波动,各森林类型活、死细根生物量均有2个峰值;4种森林类型的细根生物量与土壤温度的相关性不显著,除典型阔叶红松林外,其他3种森林类型的细根生物量与土壤含水率极显著正相关(P0.01),4种森林类型的细根生物量与土壤水解氮含量极显著正相关(P0.01),白桦次生林的细根生物量与土壤有效磷含量显著负相关(P0.05)。【结论】本地区的顶极群落——典型阔叶红松林和以典型阔叶红松林的建群种为主要组成树种的红松人工林细根生物量显著高于以先锋树种白桦和兴安落叶松为主要组成树种的白桦次生林和兴安落叶松人工林;细根生物量在土壤中的分布具有明显的不均匀性,主要集中在养分含量较高的土壤表层,处于演替顶极阶段的森林较处于演替早期的森林采取更精细的获取资源的策略,土壤下层细根占细根总生物量比例较高;细根生物量的季节变化与物候节律一致,细根生物量的高峰期出现在春末和初秋。  相似文献   

4.
内蒙古大青山森林植物群落与碳储量的调查研究   总被引:1,自引:1,他引:0  
根据内蒙古大青山山地分布的天然林植被和大规模分布的人工林植被构成的森林生态系统,分别就白桦次生林、华北落叶松人工林、油松人工林和虎榛子灌木林等4个主要森林类型进行了林分生物量与森林群落结构的调查。估算了大青山4种主要森林植物类型地上部分碳储量总量为305.25t/hm2,为大青山森林生态功能评价提供依据。  相似文献   

5.
[目的]研究间伐后杉木人工林碳(C)、氮(N)、磷(P)生态化学计量关系变化,为杉木人工林养分循环研究提供参考。[方法]在浙江开化县林场17年生杉木人工纯林内,建立9块20 m×20 m的固定样地,测定分析了未间伐、中度间伐(20%间伐强度)和强度间伐(37%间伐强度)处理地表凋落物、林下植被、杉木细根和土壤C、N、P含量及其计量关系。[结果]间伐2 a后,强度间伐处理地表凋落物和杉木细根生物量显著降低,林下植被生物量显著增加。强度间伐处理下地表凋落物总氮(TN)含量显著降低,林下植被总氮(TN)含量则显著增加,土壤有机碳(SOC)和总氮(TN)含量也显著增加,杉木细根C、N、P含量在未间伐、中度间伐和强度间伐之间无显著差异。地表凋落物C/N和C/P随着间伐强度增加而增大;林下植被C/N随着间伐强度增加而减小,N/P比随着间伐强度增加而增大;杉木细根和土壤C/N、C/P和N/P在不同间伐处理之间差异不显著。土壤与林下植被C、N、P含量及其比值具有显著相关性。[结论]间伐后短期内杉木人工林地表凋落物、林下植被和土壤C、N含量受间伐强度显著影响,间伐改变了地表凋落物和林下植被C、N、P生态化学计量关系,但对杉木细根和土壤C、N、P生态化学计量关系无显著影响。  相似文献   

6.
中亚热带天然林改造成人工林后土壤呼吸的变化特征   总被引:1,自引:0,他引:1  
【目的】研究中亚热带常绿阔叶林(天然林)改造成人工林后土壤碳排放量的变化及主要影响因子,为评估森林类型转换对土壤碳排放的影响提供科学依据。【方法】在福建农林大学西芹教学林场的常绿阔叶林及由其改造而来的38年生闽楠人工林与35年生杉木人工林中分别设置4块20 m×20 m样地,利用Li-8100土壤碳通量观测系统于2014年9月—2016年9月进行定点观测,并同期观测土壤温度、含水量、有机碳含量(SOC)、微生物生物量碳含量(MBC)、可溶性有机碳含量(DOC)、0~20 cm土层细根生物量和年凋落物量及凋落物碳氮比(C/N)。【结果】常绿阔叶林改造成闽楠(38年后)和杉木人工林(35年后),年均土壤碳排放通量由16. 22显著降为12. 71和4. 83 tC·hm-2a-1,分别减少21. 60%和70. 20%;各林分类型的土壤呼吸温度敏感性Q10值表现为常绿阔叶林(1. 97)<闽楠人工林(2. 03)<杉木人工林(2. 91),转换为杉木人工林后,Q10值显著升高(P<0. 05);土壤温度能分别解释常绿阔叶林、闽楠人工林与杉木人工林土壤呼吸速率变化的89. 70%、88. 50%和87. 90%,土壤呼吸速率和土壤含水量相关不显著(P>0. 05);土壤呼吸速率和SOC、MBC、DOC、年凋落物量及0~20 cm土层细根生物量均极显著正相关(P<0. 01);土壤呼吸温度敏感性指数Q10值和凋落物C/N极显著正相关(P<0. 01),而与年均土壤呼吸速率及MBC极显著负相关(P<0. 01);进一步分析发现土壤MBC和SOC含量是影响土壤呼吸速率的2个最重要因子,而凋落物C/N在影响土壤呼吸温度敏感性中的贡献最大。【结论】中亚热带地区常绿阔叶林改造成闽楠(38年)或杉木(35年)人工林后,土壤碳排放通量显著降低。林分类型转换后树种组成和林分结构发生改变,凋落物数量、质量及细根生物量显著降低,土壤SOC和MBC含量显著下降可共同导致土壤呼吸通量的下降。土壤温度是3种林分类型土壤呼吸季节变化的主导因素,而土壤总有机碳库和土壤微生物量碳库的差异是不同林分之间土壤呼吸差异的主导因素,凋落物C/N对土壤呼吸的Q10影响最大。为提高模型预测森林类型转换影响土壤碳排放的精度,应综合考虑土壤有机碳库、易变性有机碳库及底物质量的变化。  相似文献   

7.
凋落物蓄积量和持水能力是反映森林水源涵养能力的重要因素。对祁门低山丘陵区不同林分类型地表凋落物层蓄积量及其持水性能进行了调查分析,结果表明,不同林分凋落物蓄积量大小为:马尾松林杉木林马尾松阔叶混交林阔叶次生林;其最大持水率依次为:阔叶次生林杉木林马尾松阔叶混交林马尾松林;最大持水量及有效拦蓄量依次为:马尾松林杉木林马尾松阔叶混交林阔叶次生林。  相似文献   

8.
云南高原盆地城市水源地土壤水源涵养能力研究   总被引:1,自引:0,他引:1  
城市水源地土壤水源涵养能力大小关系到城市的供水安全,因此,对不同森林类型土壤的水源涵养能力进行研究对于保障城市水安全具有重要意义。采用实地采样调查法对云南省蒙自市菲白水库水源区4种植被类型区的土壤理化性质和贮水性能进行分析测试。结果表明,不同林分的土壤理化性质及其水源涵养能力差异明显。相同立地条件下0~80 cm土层内贮水性能最优的为柏树次生林,总贮水量高达5 946.9 t/hm2;4种林分的水源涵养能力从大到小依次为:柏树次生林(5 946.9 t/hm2)桉树人工林(5 725.85 t/hm2)桃树(5 349.55 t/hm2)杉树人工林(4 850.83t/hm2)。  相似文献   

9.
研究我国亚热带地区杉木人工林采伐迹地上营造的19年生米老排人工林和杉木人工林土壤呼吸及其影响因子。结果表明:米老排人工林土壤呼吸速率的年均值为2.95μmolCO2·m -2 s -1,显著高于杉木人工林的2.37μmolCO2·m -2 s -1;米老排人工林土壤呼吸的 Q10值为1.83,显著低于杉木人工林的1.99;2种林分土壤呼吸均呈现明显的季节动态,主要受土壤温度的驱动,土壤温度能分别解释米老排和杉木人工林土壤呼吸速率变化的77.0%和81.6%;回归分析显示,2种林分土壤呼吸速率与凋落物量、细根生物量、土壤有机碳含量、轻组有机碳含量、微生物生物量碳含量和可溶性有机碳含量均显著相关;逐步线性回归分析表明,土壤呼吸速率与凋落物量和土壤微生物生物量碳含量的关系最密切;树种间凋落物量和土壤微生物生物量的差异是导致米老排人工林土壤碳排放速率高于杉木人工林的重要原因。  相似文献   

10.
通过对26 a生拉氏栲与杉木人工林蓄积生长、林分生物量和林分空间格局的测定分析,进行拉氏栲和杉木人工林生产力的比较研究.结果表明:拉氏栲人工林单株材积为0.229 3 m3/hm2,比杉木人工林高14.76%,但其林分蓄积量小于杉木林;拉氏栲林分生物量为148.59 t/hm2,是杉木人工林的1.13倍;其干、枝、叶和根的生物量均高于杉木林,拉氏栲根系十分发达,其根系分布较杉木更为合理,说明拉氏栲人工林的林分空间格局比杉木人工林更有利于林分光合产物的积累.拉氏栲生产力较高,可望在南方大面积推广.  相似文献   

11.
采用样地法对西双版纳13年生的西南桦纯林和西南桦+肉桂混交林两种西南桦人工林林分的生物量进行了测定,并与当地相同林龄的天然西南桦次生林和热带次生林进行了对比研究.结果表明:西南桦+肉桂混交林的生物量最大,为136.94 t/hm2 ,西南桦纯林次之,为115.89 t/hm2 ,西南桦次生林为102.48 t/hm2 ,热带次生林为68.19 t/hm2 .西南桦+肉桂混交林林分生物量的年增长量达9.18 t/hm2 ,西南桦纯林为8.02 t/hm2 ,西南桦次生林也达到了7.42 t/hm2 ,热带次生林为4.84 t/hm2 .4 种林分中,地上部分生物量最大的是西南桦+肉桂混交林,达91.22 t/hm2 ,最小的是热带次生林,仅46.16 t/hm2,西南桦纯林和西南桦次生林分别以84.35 t/hm2 和80.23 t/hm2 居中;地下部分生物量方面,西南桦+肉桂混交林最大,为28.11 t/hm2 ,西南桦纯林以19.48 t/hm2 位居其次,西南桦次生林与热带次生林差异不大,分别为16.20 t/hm2 和16.81 t/hm2 ;凋落物层生物量方面,西南桦+肉桂混交林最大,为17.61 t/hm2 ,西南桦纯林以12.06 t/hm2 位居其次,西南桦次生林为6.05 t/hm2 ,大于热带次生林的5.22 t/hm2 .  相似文献   

12.
根据7块不同林龄杉木人工林标准地调查的数据,对亚热带杉木人工林生物量和碳储量及其垂直分布进行研究。结果表明:杉木人工林林木和各器官生物量随着林龄的增大而增加,树干所占比重最大且逐渐增大,在林龄28年时,乔木层的生物量最大为167.86 t/hm2。杉木人工林碳储量垂直分布序列为乔木层凋落物层草本层,分别为50.28 t/hm2、4.32 t/hm2、1.50 t/hm2,平均年固碳量分别为2.44 t/hm2·a-1、0.19 t/hm2·a-1、0.14 t/hm2·a-1。杉木人工林总平均生物量、总平均碳储量和总平均年固碳量分别为119.05 t/hm2、56.10 t/hm2、2.77 t/hm2·a-1。因此,乔木层作为森林生态系统中主要的碳库层,对于森林的碳汇功能发挥着重要的作用。  相似文献   

13.
长沙市4种人工林林下植被生物量及分布格局研究   总被引:1,自引:0,他引:1  
以长沙市城乡交错带4种人工林为研究对象,对各林分林下植被生物量的分布特征进行了分析。结果表明:4种林分林下活地被物生物量均表现为地上部分>地下部分;枯落物层生物量的变化趋势一致:已分解>半分解>未分解,且在不同林分中,枯落物的生物量占林下地被物生物量的比例均为最大,在50%~76%之间,除杉木人工林外,其余3种林分草本层所占比例最小;总生物量差异较为显著,湿地松林为28.75 t/hm2,显著大于其它3种林分;活地被物生物量以湿地松林为最大,达8.46 t/hm2;幼树层生物量的大小为湿地松林>枫香林>杉木林>樟树林;灌木层生物量的排列顺序为枫香林>湿地松林>樟树林>杉木林;草本层为杉木林>湿地松林>枫香林>樟树林;凋落物生物量的变化规律同草本层。  相似文献   

14.
以柳江流域中游柳江县3种典型人工林为研究对象,通过野外样地调查和室内实验相结合的方法,从林下草本层、凋落物层、土壤层3个方面研究了不同人工林的水源涵养功能.结果表明:桉树林(巨尾桉Eucalyptus grandis×E.uroplylla)、杉木林(Cunninghamia lanceolata)和马尾松林(Pinus massoniana)林下草本层最大持水量差异不显著,分别为12.12、11.33和8.56 t/hm2;而凋落物层最大持水量的大小顺序为桉树林>马尾松林>杉木林,3种林分间差异显著(P<0.05),分别为13.92、9.86和6.82 t/hm2;3种林分凋落物的持水量和持水率与浸泡时间均呈对数关系,吸水速率与浸泡时间呈幂函数关系;土壤密度随土层厚度的增加而增大,非毛管孔隙度、毛管孔隙度、总孔隙度则相反,均随着土层厚度的增加而减小,桉树林毛管总孔隙度和总孔隙度除外;马尾松林和杉木林60 cm土层的最大持水量差异不明显,但均明显大于桉树林,分别为2968.44、2964.03、2585.20 t/hm2;不同林分的林下层持水总量大小顺序依次为马尾松林(2986.86 t/hm2)、杉木林(2982.17 t/hm2)、桉树林(2611.24 t/hm2),其中土壤层的持水量占99%及以上.  相似文献   

15.
对福建省浦城县36a生栓皮栎人工造林效果进行了调查研究。结果表明,栓皮栎人工林具有较高的林分生产量,林分总生物量达266.560t/hm~2,乔木层为257.149t/hm~2;林分平均树高20.4m,平均胸径19.5cm,蓄积量达201.87m~3/hm~2。与杉木人工林相比,栓皮栎人工林具有良好的土壤结构和较强的养分供应能力。其表层土壤>0.25mm水稳性团聚体含量比杉木人工林高9.99%,土壤有机质含量比杉木人工林高0.695%。栓皮栎人工林还具有良好的水源涵养能力,林分总持水量比杉木人工林高10%。  相似文献   

16.
通过测定 9年生马褂木人工林生物量和建立其估算模型 ,分析了生物量分配规律及林分生产力水平。结果表明 :人工林总生物量为64.538.t/hm2 ,乔木层、林下植物层和凋落物所占比例分别为 :93.4 0 %、3.63%和 2 .97%。乔木层各器官生物量大小顺序依次为 :干、根、枝、皮、叶 ,所占比例依次为 :62 .79%、 16. 61%、 11. 11%、7.12 %、2 .4 7%。林分净生产力为7.17t/hm2 ·a,略低于中、北亚热带地区森林植被的平均净生产力  相似文献   

17.
以杉木人工林为对照,采用标准地法分析了10年生乐昌含笑人工林土壤的理化性质、林下植被生物量及凋落物现存量、林分涵养水源的功能。发现乐昌含笑人工林表层土壤水稳性团聚体含量比杉木人工林增加3.80%,非毛管孔隙和总孔隙分别比杉木人工林高4.84%和7.46%,林地凋落物质量的(F+H)/L的比值为0.45,高于杉木纯林的0.21,乐昌含笑0~20 cm土层有机质、全N、全P分别比杉木纯林增加19.07%、13.67%和3.42%,水解性N、速效P、速效K分别增加3.64%、6.17%和11.01%,地上部分最大持水量达10.26 t/hm2,高于杉木人工林的9.02 t/hm2。  相似文献   

18.
云南省森林生态系统植被碳储量及碳密度估算   总被引:1,自引:0,他引:1  
基于2009-2013年第8次全国森林资源连续清查数据,利用生物量扩展因子法,采用改良的计算参数,从不同龄组、林型等方面进行考虑,对云南省森林资源的生物量、碳储量及碳密度进行了估算。结果表明,我国第8次森林资源清查中,云南省森林林分生物量为1 640.92×106t,平均生物量为101.71 t/hm2,林分碳储量为775.30×106t C,林分平均碳密度为50.77 t C/hm2,森林植被碳储量总量为818.29×106t C。人工林碳储量只占林分碳储量的5.90%,幼龄林只占林分碳储量的17.09%;天然林与成熟林在云南省森林资源碳储量中所占比重较大,在扩大云南省森林植被碳储量方面,可以通过选择林龄结构及森林林分类型来加以实现。人工林将会在森林植被碳储量中占有越来越重要的地位。  相似文献   

19.
为解决目前南方林区人工林针叶化引起的系列生态问题,发展阔叶树种造林,应用平均标准木法和样方收获法对桤木×杉木混交林各模式林分的生物量、分配比例及分布格局进行研究,结果表明:不同经营模式的林分的生物量及生产力由高到低为:行间混交、行带混交、株间混交、杉木纯林,以行间混交的乔木层生物量及生产力最高,分别为68.66(t/hm2)和6.86(t/hm·2a);混交林各经营模式的营养空间分布均比杉木纯林合理,能较好地促进林木生长。  相似文献   

20.
采用重铬酸钾容量法测定广东省桉树林、马尾松林、杉木林、阔叶混交林、针阔混交林5种主要林分下的土壤A层有机碳密度。结果表明:5种林分土壤A层有机碳密度在2.38—122.85t/hm2,有机碳密度排列为阔叶混交林〉针阔混交林〉桉树林〉杉木林〉马尾松林;并对土壤A层有机碳密度的主要影响因素进行分析,为评价不同林分类型的碳汇功能提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号