首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inland lakes and alpine glaciers are important constituents of water resources in arid and semiarid regions. Understanding their variations is critical for both an accurate evaluation of the dynamic changes of water resources and the retrieval of climatic information. On the basis of earlier researches, this study investigated the growth of the Sayram Lake and the retreat of its water-supplying glaciers in the Tianshan Mountains using long-term sequenced remote sensing images. Our results show that over the past 40 years, the surface area and the water level of the lake has increased by 12.0±0.3 km2 and 2.8 m, respectively, and the area of its water-supplying glaciers has decreased continuously since the early 1970 s with a total reduction of about –2.13±0.03 km2. Our study has indicative significance to the research of regional climate change.  相似文献   

2.
近40年来内蒙古岱海水位下降的主要原因   总被引:5,自引:3,他引:5  
内蒙古岱海为地处东南季风区边缘的内陆封闭湖泊,近40多年来湖泊水位持续下降,湖泊面积持续萎缩。结合历史文献,本文回顾近代岱海湖面涨、水位波动的历史,进而对近40年的岱海水量平衡要素,以及气候资料进行了定量分析。结果显示岱海湖面波动气候变化的反应敏感,气候变化仍是近40年来岱海湖泊水面萎缩、水位波动的根本原因;现代人类活动的强烈干预是岱海萎缩的强化因素。  相似文献   

3.
西北典型内陆湖泊近40年来的演化特点及机制分析   总被引:13,自引:0,他引:13  
利用40年来的实测数据研究揭示了西北典型内陆湖泊的演化特点及机制。研究表明:赛里木湖气候向暖湿转变,降水逐渐增加,处于湖面稳定扩张阶段;青海湖降水无明显变化,入湖地表径流却逐年减少,湖泊处于持续萎缩阶段;察尔汗盐湖,入湖水量少,湖面蒸发量大,处于干涸、半干涸状态,更容易萎缩。影响湖泊演化的因子主要是气候变化及人类活动。  相似文献   

4.
流域气候变化和人类活动对内陆湖泊影响的分析   总被引:9,自引:1,他引:8  
近几十年来干旱和半干旱地区的内陆湖泊发生了巨大的变化,有的出现了面积萎缩和水位下降,有的水位和面积保持稳定,有的消失;博斯腾湖是我国最大的内陆淡水湖,青海湖是我国最大的内陆咸水湖;因此,研究其流域气候变化和人类活动对湖泊的影响具有代表性,对更好保护内陆湖泊,合理利用湖泊水资源具有重要的意义。利用1958-2000年流域降水和温度的资料和灌溉引水量的资料,采用年代对比、距平百分率、滑动平均曲线方法分析了气候变化和人类活动对博斯腾湖和青海湖的影响。分析结果表明气候变化是湖泊水位变化的主要原因;人类活动对博斯腾湖水位变化有一定的影响,而对青海湖水位变化的影响微弱。  相似文献   

5.
基于MODIS数据的近期新疆主要湖泊水面变化分析   总被引:2,自引:0,他引:2  
湖泊的水面积变化是气候变化和人类活动的指示器。利用2000-2011年的MODIS影像,提取新疆水面面积大于100 km2的11个湖泊信息,分析其变化特征。结果表明:11个湖泊总的水面积年变化大,其中最低值出现在2001年,约为4 585 km2,峰值在2003年,水面积为52 77 km2,湖面变幅大且频繁,而近几年湖泊面积总体呈增加趋势。从海拔和地域上分析,阿雅克库木湖等青藏高原型湖泊呈现持续扩张态势,山地湖泊如赛里木湖等湖泊面积基本保持稳定,而出山口绿洲湖泊如博斯腾湖水面积逐渐萎缩,尤其是平原湖泊艾比湖和玛纳斯湖等湖泊水面年变化幅度大,且极不稳定。新疆地区不同海拔和区域主要湖泊水面积变化存在明显的差异,体现了不同区域气候和人类活动的影响特征,但近期湖泊变化的总体趋势与气候变化一致,主要受气候变化的影响。   相似文献   

6.
Changing climatic conditions and extensive human activities have influenced the global water cycle. In recent years, significant changes in climate and land use have degraded the watershed ecosystem of the Ebinur Lake Basin in Xinjiang, Northwest China. In this paper, variations of runoff, temperature, precipitation, reference evapotranspiration, lake area, socio-economic water usage, groundwater level and water quality in the Ebinur Lake Basin from 1961 to 2015 were systematically analyzed by the Mann-Kendall test methods(M-K) mutation test, the cumulative levelling method, the climate-sensitive method and land-use change index. In addition, we evaluated the effects of human activities on land use change and water quality. The results reveal that there was a significant increase in temperature and precipitation from 1961 to 2015, despite a decrease in reference evapotranspiration. The Wenquan station was not significantly affected by human activities as it is situated at a higher altitude. Runoff at this station increased significantly with climate warming. In contrast, runoff at the Jinghe station was severely affected by numerous human activities. Runoff decreased without obvious fluctuations. The contributions of climate change to runoff variation at the Jinghe and Wenquan stations were 46.87% and 58.94%, respectively; and the contributions of human activities were 53.13% and 41.06%, respectively. Land-use patterns in the basin have changed significantly between 1990 and 2015: urban and rural constructed lands, saline-alkali land, bare land, cultivated land, and forest land have expanded, while areas under grassland, lake, ice/snow and river/channel have declined. Human activities have dramatically intensified land degradation and desertification. From 1961 to 2015, both the inflow into the Ebinur Lake and the area of the lake have declined year by year; groundwater levels have dropped significantly, and the water quality has deteriorated during the study period. In the oasis irrigation area below the runoff pass, human activities mainly influenced the utilization mode and quantity of water resources. Changes in the hydrology and quantity of water resources were driven primarily by the continuous expansion of cultivated land and oasis, as well as the growth of population and the construction of hydraulic engineering projects. After 2015, the effects of some ecological protection projects were observed. However, there was no obvious sign of ecological improvement in the basin, and some environmental problems continue to persist. On this basis, this study recommends that the expansion of oasis should be limited according to the carrying capacity of the local water bodies. Moreover, in order to ensure the ecological security of the basin, it is necessary to determine the optimal oasis area for sustainable development and improve the efficiency of water resources exploitation and utilization.  相似文献   

7.
Stable isotopic compositions(δ18O and δD) have been utilized as a useful indicator for evaluating the current and historical climatic and environmental changes. Therefore, it is vital to understand the relationship between the stable isotopic contents in lake water and the variations of lake level, particularly in Lake Qinghai, China. In this study, we analyzed the variations of isotope compositions(δ18O, δD and d-excess) in lake water and precipitation by using the samples that were collected from Lake Qinghai region during the period from 2009 to 2012. The results showed that the average isotopic contents of δ18O and δD in lake water were higher than those in precipitation, which were contrary to the variations of d-excess. The linear regression correlations between δ18O and δD in lake water and precipitation showed that the local evaporative line(LEL) in lake water(δD=5.88δ18O–2.41) deviated significantly from the local meteoric water line(LMWL) in precipitation(δD=8.26δ18O+16.91), indicating that evaporative enrichment had a significant impact on isotopic contents in lake water. Moreover, we also quantified the E/I ratio(evaporation-to-input ratio) in Lake Qinghai based on the lake water isotopic enrichment model derived from the Rayleigh equation. The changes of E/I ratios(ranging from 0.29 to 0.36 between 2009 and 2012) clearly revealed the shifts of lake levels in Lake Qinghai in recent years. The average E/I ratio of 0.40 reflected that water budget in Lake Qinghai was positive, and consistent with the rising lake levels and the increasing lake areas in many lakes of the Tibetan Plateau. These findings provide some evidences for studying the hydrological balance or water budget by using δ18O values of lake sedimentary materials and contribute to the reconstruction of paleolake water level and paleoclimate from an isotopic enrichment model in Lake Qinghai.  相似文献   

8.
黄河源区湖泊水环境特征及其对气候变化的响应   总被引:1,自引:0,他引:1  
为了掌握青藏高原东北部湖泊水环境状况和气候变化特征,特地开展了青海境内黄河源区湖泊现状调查,结果发现黄河源区湖泊呈现水位升高和水量增大现象。收集近50年来气候资料得到:区域气候整体处于气温升高,降水趋减的态势,近几年降水呈现增多;区域内部有效降水存在差异:东部有效降水逐步减少,西部玛多有效降水呈逐年增大。湖泊水位升高的水源主要来自气候降水。应与区域气候波动周期的丰水阶段有关。  相似文献   

9.
Understanding the relationship between the changes in lake water volume and climate change can provide valuable information to the recharge sources of lake water. This is particularly true in arid areas such as the Badain Jaran Sand Sea, an ecologically sensitive area, where the recharge sources of lakes are heatedly debated. In this study, we determined the areas of 50 lakes(representing 70% of the total permanent lakes in this sand sea) in 1967, 1975, 1990, 2000 and 2010 by analyzing remote-sensing images using image processing and Ar GIS software. In general, the total lake area decreased from 1967 to 1990, remained almost unchanged from 1990 to 2000, and increased from 2000 to 2010. Analysis of the relationship between these changes and the contemporaneous changes in annual mean temperature and annual precipitation in the surrounding areas suggests that temperature has significantly affected the lake area, but that the influence of precipitation was minor. These results tend to support the palaeo-water recharge hypothesis for lakes of the Badain Jaran Sand Sea, considering the fact that the distribution and area of lakes are closely related to precipitation and the size of mega-dunes, but the contemporaneous precipitation can hardly balance the lake water.  相似文献   

10.
Lake area is an important indicator for climate change and its relationship with climatic factors is critical for understanding the mechanisms that control lake level changes. In this study, lake area changes and their relations to precipitation were investigated using multi-temporal Landsat Thermatic Mapper(TM) and Enhanced Thermatic Mapper plus(ETM+) images collected from 10 different regions of Mongolia since the late 1980 s. A linear-regression analysis was applied to examine the relationship between precipitation and lake area change for each region and across different regions of Mongolia. The relationships were interpreted in terms of regional climate regime and hydromorphological characteristics. A total of 165 lakes with areas greater than 10 hm2 were identified from the Landsat images, which were aggregated for each region to estimate the regional lake area. Temporal lake area variability was larger in the Gobi regions, where small lakes are densely distributed. The regression analyses indicated that the regional patterns of precipitation-driven lake area changes varied considerably(R2=0.028–0.950), depending on regional climate regime and hydromorphological characteristics. Generally, the lake area change in the hot-and-dry Gobi regions showed higher correlations with precipitation change. The precedent two-month precipitation was the best determining factor of lake area change across Mongolia. Our results indicate the usefulness of regression analysis based on satellite-derived multi-temporal lake area data to identify regions where factors other than precipitation might play important roles in determining lake area change.  相似文献   

11.
新疆平原湖泊最优运行水位评价指标体系初探   总被引:1,自引:0,他引:1  
上世纪中叶以来,在人类活动和气候变化的双重影响下,新疆大多数平原湖泊咸化、萎缩甚至干涸,湖泊生态环境严重恶化。近十年以来,在全球气候普遍变暖的情况下,新疆气候逐渐向暖湿转变[1],气温升高、降水增加,部分湖泊水域又呈扩大趋势,给湖泊水资源的可持续利用带来新的挑战。如何确定湖泊最优运行水位,是实现湖泊水资源可持续利用的首要问题。本文旨在通过总结与分析影响新疆平原湖泊水位的因素及湖泊水位变化对湖区生态环境和社会济发展的影响,来构建新疆平原湖泊最优运行水位的评价指标体系。  相似文献   

12.
近期新疆湖泊变化所示的气候趋势   总被引:39,自引:5,他引:39  
由绿洲及其所在荒漠盆地平原与周边山地系统共同组成的新疆地域系统、是我国西北干旱区的主要部分之一。由于荒漠盆地平原系统不产生径流 ,因此 ,地表水、浅层地下水和泉水、湖泊都必然地以相邻的山地系统为供给水源地。从山地进入荒漠盆地平原的河流就成为主要供给渠道。博期腾湖、艾丁湖、艾比湖 1 995年以来 ,湖水水位明显升高 ,湖水面积的不断扩大 ,从湖泊水面面积的演变过程 ,主要水源变化 ,气温略微上升 ,降水显著增多诸因素综合系统分析 ,说明在全球气候背景下 ,区域气候和水文变化朝着有利新疆社会经济发展的方向演变 ,这种趋势将持续到 2 1世纪前 1 0年  相似文献   

13.
亚洲中部干旱区湖泊的地域分异性研究   总被引:2,自引:0,他引:2  
湖泊是干旱区气候与环境变化的敏感指示器,了解干旱区湖泊的空间分布和变化特征,有利于正确分析和评估气候变化和人类活动对干旱区水资源的影响。采用2010年的Landsat 遥感数据资料,对新疆、中亚五国及其毗邻高山地区的湖泊制图,并分析该区域内湖泊的数量、面积的时空分布特征。研究表明:① 2010年研究区域内大于0.01 km2以上的湖泊总数为30 952个,总面积为496 674.35 km2,其中哈萨克斯坦北部、阿尔泰山地区和昆仑山南麓是湖泊富集的地区。② 湖泊数量与湖泊面积呈幂指数关系,湖泊面积每升高一个10的量级,该量级内的湖泊数量下降4~6倍,湖泊面积增加1~2倍,与全球的湖泊分布相比,属于湖泊分布相对稀少的地区。③ 湖泊数量在纬度带的空间分布相对均一,大型湖泊集中分布在41°~44°、46°和48°~50°的纬度带上;低海拔地区的湖泊数量多,面积大,高海拔地区湖泊数量多,面积小;山区、河谷湿地和哈萨克斯坦北部草原湖泊数量多;荒漠区湖泊分布稀少。④近20 a来,高山地区湖泊与平原地区湖泊呈相反的变化模式,高山地区湖泊处于稳定或快速扩张态势,而平原地区的湖泊剧烈萎缩。  相似文献   

14.
1976-2009年青藏高原内陆湖泊变化的时空格局与过程   总被引:1,自引:0,他引:1  
为了揭示近几十年来气候变化条件下青藏高原内陆现代湖泊的时空变化规律,在1976年、1990年、2000年和 2009年4个时段青藏高原内陆湖泊变化制图结果的基础上,重点分析流域内湖泊变化的时间过程和流域间湖泊变化的空间模式,并从气候要素变化、流域水源补给等方面探讨影响内陆湖泊变化的主要因素。结果表明:流域内湖泊总面积1970-1990年萎缩、1990-2009年扩张,1976-2009年呈现扩张的变化趋势,年均降水量和年均气温的变化趋势较好地解释了湖泊由萎缩到扩张的变化状况。从湖泊变化的空间格局来看,不同地域、不同流域的湖泊面积变化模式及其剧烈程度与流域内的水源补给方式有关,以雪冰融水补给的流域内湖泊总面积变化的剧烈程度远不及以冻融水补给为主的流域。因此,区域气候的变化是近几十年来高原内陆湖泊整体显著萎缩或扩张的主要原因,而流域水源补给的方式诠释了湖泊变化的区域差异。  相似文献   

15.
基于RS和GIS的内蒙古达里诺尔湖1999-2010年动态监测   总被引:2,自引:0,他引:2  
近10年来干旱和半干旱地区的内陆湖泊发生了巨大变化,有的稳定、有的萎缩,有的消失。文中以多时相LandSat TM/ETM+影像和早期1:5万地形图为数据源,选择内蒙古地区第二大湖泊达里诺尔为研究区域,从面积、变化率和空间分异特征等多个方面对该湖泊近12年的变化过程进行分析。结果表明:达里诺尔湖从1999年到2010年湖泊重心西移岸线的发育系数减小,面积由220.3389km2缩减到190.0944km2,面积缩减了30.2445km2,年平均变化率为-0.012479%;对邻近三个气象台站50年气象资料的分析表明,湖泊萎缩的主要因素是气温的升高,蒸发量的上升以及降水量的减少。  相似文献   

16.
WU Duo 《干旱区科学》2016,8(4):479-491
Changes in the status of freshwater resources are a topic of major global,regional and local concern.This is especially so in the arid and semi-arid regions of China,where shortage of water resources plays a crucial role in limiting sustainable socioeconomic development,as well as in sustaining natural ecosystems.Recent climate change,as well as the effects of localized human activity,such as the use of water for irrigation agriculture,may have significant effects on the status of the water resources in the region.Here,we report the results of a study of changes in the areas of lakes in Gonghe Basin,northeastern Tibetan Plateau of China,over the last 60 years.The data were acquired from optical satellite images and demonstrate that the total water area of lakes in Gonghe Basin decreased significantly from the 1950 s to 1980 s.The cause is ascribed mainly to human activity including exploitation of farmland,against a background of increasing population;in addition,climatic data for the region demonstrate a minor drying trend during this period as the temperature increased slightly.After the construction of several reservoirs,significant amounts of water were redistributed to promote irrigation agriculture and we conclude that this caused a significant shrinkage of the natural lakes.However,both the area of farmland and the population size remained approximately constant after 1990.We conclude that the variation of the total area of lakes during the second period was mainly controlled by climatic factors(precipitation and temperature).As the regional temperature reached a new high,the area of some of the lakes decreased sharply before finally maintaining a relatively steady state.We emphasize that anthropogenic climate change and human activity have both significantly influenced the status of water resources in the arid and semi-arid regions of China.  相似文献   

17.
西藏玛旁雍错流域湖泊面积变化及成因分析   总被引:5,自引:0,他引:5  
利用1975年地形图、1990年、1999-2009年TM卫星遥感影像和近35 a(1975-2009年)气温、降水、积雪日数、蒸发量等气候资料,分析研究了位于西藏阿里地区南部普兰县境内玛旁雍错、拉昂错湖泊面积变化对气候变化的响应。结果表明:在过去35 a里玛旁雍错、拉昂错面积先减少后增加,总体呈减小趋势,到2009年玛旁雍错面积为415.44 km2,拉昂错面积为261.36 km2。与1975年相比2个湖泊面积分别减少了1.56 km2和11.01 km2;受气候变暖的影响,流域附近的冰川面积也在加速退缩。对1975-2009年普兰县气象资料统计分析可知,降水量减少是导致湖泊面积缩小的主要原因,蒸发量不显著的增加及雪冰消融也是近几年湖泊面积波动变化的原因之一。  相似文献   

18.
Lakes play important roles in sustaining the ecosystem and economic development in Inner Mongolia Autonomous Region of China, but the spatial patterns and driving mechanisms of water quality in lakes so far remain unclear. This study aimed to identify the spatial changes in water quality and the driving factors of seven lakes (Juyanhai Lake, Ulansuhai Lake, Hongjiannao Lake, Daihai Lake, Chagannaoer Lake, Hulun Lake, and Wulannuoer Lake) across the longitudinal axis (from the west to the east) of Inner Mongolia. Large-scale research was conducted using the comprehensive trophic level index (TLI (Σ)), multivariate statistics, and spatial analysis methods. The results showed that most lakes in Inner Mongolia were weakly alkaline. Total dissolved solids and salinity of lake water showed obvious zonation characteristics. Nitrogen and phosphorus were identified as the main pollutants in lakes, with high average concentrations of total nitrogen and total phosphorus being of 4.05 and 0.21 mg/L, respectively. The values of TLI (Σ) ranged from 49.14 to 71.77, indicating varying degrees of lake eutrophication, and phosphorus was the main driver of lake eutrophication. The lakes of Inner Mongolia could be categorized into lakes to the west of Daihai Lake and lakes to the east of Daihai Lake in terms of salinity and TLI (Σ). The salinity levels of lakes to the west of Daihai Lake exceeded those of lakes to the east of Daihai Lake, whereas the opposite trend was observed for lake trophic level. The intensity and mode of anthropogenic activities were the driving factors of the spatial patterns of lake water quality. It is recommended to control the impact of anthropogenic activities on the water quality of lakes in Inner Mongolia to improve lake ecological environment. These findings provide a more thorough understanding of the driving mechanism of the spatial patterns of water quality in lakes of Inner Mongolia, which can be used to develop strategies for lake ecosystem protection and water resources management in this region.  相似文献   

19.
Qinghai Lake is the largest saline lake in China.The change in the lake volume is an indicator of the variation in water resources and their response to climate change on the Qinghai-Tibetan Plateau(QTP)in China.The present study quantitatively evaluated the effects of climate change and land use/cover change(LUCC)on the lake volume of the Qinghai Lake in China from 1958 to 2018,which is crucial for water resources management in the Qinghai Lake Basin.To explore the effects of climate change and LUCC on the Qinghai Lake volume,we analyzed the lake level observation data and multi-period land use/land cover(LULC)data by using an improved lake volume estimation method and Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.Our results showed that the lake level decreased at the rate of 0.08 m/a from 1958 to 2004 and increased at the rate of 0.16 m/a from 2004 to 2018.The lake volume decreased by 105.40×108 m3 from 1958 to 2004,with the rate of 2.24×108 m3/a,whereas it increased by 74.02×108 m3 from 2004 to 2018,with the rate of 4.66×108 m3/a.Further,the climate of the Qinghai Lake Basin changed from warm-dry to warm-humid.From 1958 to 2018,the increase in precipitation and the decrease in evaporation controlled the change of the lake volume,which were the main climatic factors affecting the lake volume change.From 1977 to 2018,the measured water yield showed an"increase-decrease-increase"fluctuation in the Qinghai Lake Basin.The effects of climate change and LUCC on the measured water yield were obviously different.From 1977 to 2018,the contribution rate of LUCC was -0.76% and that of climate change was 100.76%;the corresponding rates were 8.57% and 91.43% from 1977 to 2004,respectively,and -4.25% and 104.25% from 2004 to 2018,respectively.Quantitative analysis of the effects and contribution rates of climate change and LUCC on the Qinghai Lake volume revealed the scientific significance of climate change and LUCC,as well as their individual and combined effects in the Qinghai Lake Basin and on the QTP.This study can contribute to the water resources management and regional sustainable development of the Qinghai Lake Basin.  相似文献   

20.
Owing to global climatic changes and human activities,the lakes have changed dramatically in the Junggar Basin of Xinjiang in recent 50 years. Based on the remote sensing images from Beijing Satellite No.1 in 2006 together with the measured topographical data in 1999 and other data since the 1950s,this paper analyzes mainly the features of landforms around the Manas Lake and the changes of feeding sources of the lake. The results are as follows:(1) Tectonic movement brought about the fundamental geomorphological basis for lacustrine evolution,and the Manas Lake is one of small lakes broken up from the Old Manas Lake due to tectonic movement and drought climate; the Manas Lake had existed before the Manas River flowed into it in 1915. The geomorphologic evidences for evolution of the Manas Lake include:(a) Diluvial fans and old channels at the north of the lake indicate that the rivers originating from the north mountains of the Junggar Basin had fed the Old Manas Lake and now still feed the lake as seasonal rivers; (b) The Old Manas Lake was fed by many rivers originating from the mountains,except for the Manas River,from the evidence of small lakes around the Manas Lake,old channels,alluvial fans,etc.; (c) The elevations of the alluvial and diluvial fans are near to the 280 m a.s.l. and all of the small lakes and lacustrine plains are within the range of the 280 m a.s.l.,which may prove that the elevation of the Old Manas Lake was about 280 m a.s.l.; (d) Core analysis of the Manas Lake area also indicates that the Manas Lake has existed since Late Pleistocene epoch. (2) Analysis on the feeding relations between the lakes and the lacustrine evolution shows that human activities are one of main driving forces of the lacustrine evolution in recent 50 years,and it is the precondition of restoring and maintaining the lacutrine wetlands in the study area to satisfy the feeding of the Baiyang and Manas rivers to the Manas Lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号