首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 577 毫秒
1.
2.
An avian metapneumovirus (aMPV) virosome vaccine was prepared and tested for protection of turkeys by aMPV challenge. The vaccine was produced using a detergent-based (Triton X-100) extraction of aMPV subtype C followed by detergent removal with SM2 Bio-Beads. Western blot and virus-neutralization analysis confirmed that the aMPV virosomes contained both the fusion and attachment glycoproteins. Specific-pathogen-free turkeys were immunized either intranasally (i.n.) or intramuscularly (i.m.) with two doses of the aMPV virosome vaccine. Vaccination decreased clinical signs of disease following virulent challenge, and IN vaccination was superior to i.m. vaccination in reducing clinical signs. Decreases in viral load in the respiratory tract were observed in turkeys receiving i.n. vaccination with aMPV virosomes compared to unvaccinated poults. Increased virus-neutralizing antibody levels against aMPV were observed in birds vaccinated with virosomes. These results demonstrate that immunization of turkeys with aMPV virosomes can be an effective strategy for control of disease.  相似文献   

3.
The objective of this work was to develop and evaluate the immunomodular effect of a DNA vaccine based on the fusion (F) gene of avian metapneumoviruses (aMPV) and to study its protection against field virus challenge, as this will help to better control the disease in turkeys. In this study, the F protein of the Egyptian isolate (Giza-turkey rhinotracheitis-4) of the B-subtype of aMPV isolated in 2009 was expressed from a DNA plasmid in Vero cells. After 1 i.m. injection of turkey poults with this plasmid, the antibody response was detected by ELISA. The turkey poults inoculated with locally prepared DNA aMPV vaccine had highly significant phagocytic activity, as measured by phagocytic percent and index of macrophage activation, in comparison to those inoculated with inactivated and live attenuated vaccines and with the noninfected control group. Intratracheal challenge of turkey poults at 21 d postvaccination by a dose of 100 uL of field Egyptian Giza-turkey rhinotracheitis-4 virus of a titer 6 log10 tissue culture infective dose 50 resulted in 100% protection in poults that received locally prepared DNA aMPV vaccine, whereas those that received commercial aMPV vaccines experienced 80 and 90% protection; typical clinical signs of aMPV infection were seen in control nonvaccinated poults. Therefore, a high success rate was noted when using F gene DNA plasmid vaccine by the induction of a potent immunomodular effect for both cell-mediated and humoral immune response. The use of the F gene DNA plasmid vaccine developed in this study provided 100% protection in vaccinated poults, which can help in controlling aMPV infections in turkeys.  相似文献   

4.
We evaluated protection conferred by mucosal vaccination with replication-competent adenovirus-free recombinant adenovirus expressing a codon-optimized avian influenza (AI) H5 gene from A/turkey/WI/68 (AdTW68.H5ck). Commercial, layer-type chicken groups were either singly vaccinated ocularly at 5 days of age, singly vaccinated via spray at 5 days of age, or ocularly primed at 5 days and ocularly boosted at 15 days of age. Only chickens primed and boosted via the ocular route developed AI systemic antibodies with maximum hemagglutination inhibition mean titers of 3.9 log2 at 32 days of age. In contrast, single vaccination via the ocular or spray routes maintained an antibody status similar to unvaccinated controls. All chickens (16/16) subjected to ocular priming and boosting with AdTW68.H5ck survived challenge with highly pathogenic AI virus A/chicken/Queretaro/14588-19/95 (H5N2). Single ocular vaccination resulted in 63% (10/16) of birds surviving the challenge followed by a 44% (7/16) survival of single-sprayed vaccinated birds. Birds vaccinated twice via the ocular route also showed significantly lower (P < 0.05) AI virus RNA concentrations in oropharyngeal swabs compared to unvaccinated-challenged controls.  相似文献   

5.
The role of cell-mediated immunity (CMI) in protection of birds from Newcastle disease was investigated by two different strategies in which only Newcastle disease virus (NDV)-specific CMI was conveyed without neutralizing antibodies. In the first strategy, selected 3-wk-old specific-pathogen-free (SPF) birds were vaccinated with either live NDV (LNDV), ultraviolet-inactivated NDV (UVNDV), sodium dodecyl sulfate-treated NDV (SDSNDV), or phosphate-buffered saline (PBS) (negative control) by the subcutaneous route. Birds were booster vaccinated 2 wk later and challenged with the velogenic Texas GB strain of NDV 1 wk after booster. All vaccinated birds had specific CMI responses to NDV as measured by a blastogenesis microassay. NDV neutralizing (VN) and hemagglutination inhibition (HI) antibody responses were detected in birds vaccinated with LNDV and UVNDV. However, birds vaccinated with SDSNDV developed antibodies that were detected by western blot analysis but not by the VN or HI test. Protection from challenge was observed only in those birds that had VN or HI antibody response. That is, birds with demonstrable CMI and VN or HI antibody response were protected, whereas birds with demonstrable CMI but no VN or HI antibody response were not protected. In the second strategy, birds from SPF embryos were treated in ovo with cyclophosphamide (CY) to deplete immune cells. The birds were monitored and, at 2 wk of age, were selected for the presence of T-cell activity and the absence of B-cell activity. Birds that had a significant T-cell response, but not a B-cell response, were vaccinated with either LNDV, UVNDV, or PBS at 3 wk of age along with the corresponding CY-untreated control birds. The birds were booster vaccinated at 5 wk of age and were challenged with Texas GB strain of NDV at 6 wk of age. All birds vaccinated with LNDV or UVNDV had a specific CMI response to NDV, VN or HI NDV antibodies were detected in all CY-nontreated vaccinated birds and some of the CY-treated vaccinated birds that were found to have regenerated their B-cell function at 1 wk postbooster. The challenge results clearly revealed that CY-treated birds that had NDV-specific CMI and VN or HI antibody responses to LNDV or UVNDV were protected, as were the CY-nontreated vaccinated birds. However, birds that had NDV-specific CMI response but did not have VN or HI antibodies were not protected from challenge. The results from both strategies indicate that specific CMI to NDV by itself is not protective against virulent NDV challenge. The presence of VN or HI antibodies is necessary in providing protection from Newcastle disease.  相似文献   

6.
Studies were performed to determine if mucosal vaccination with inactivated avian metapneumovirus (aMPV) subtype C protected turkey poults from clinical disease and virus replication following mucosal challenge. Decreases in clinical disease were not observed in vaccinated groups, and the vaccine failed to inhibit virus replication in the tracheas of 96% of vaccinated birds. Histopathologically, enhancement of pulmonary lesions following virus challenge was associated with birds receiving the inactivated aMPV vaccine compared to unvaccinated birds. As determined by an enzyme-linked immunosorbent assay (ELISA), all virus-challenged groups increased serum immunoglobulin (Ig) G and IgA antibody production against the virus following challenge; however, the unvaccinated aMPV-challenged group displayed the highest increases in virus-neutralizing antibody. On the basis of these results it is concluded that intranasal vaccination with inactivated aMPV does not induce protective immunity, reduce virus shedding, or result in decreased histopathologic lesions.  相似文献   

7.
The duration of immunity after a single dose of a cold-adapted strain of Avian pneumovirus (APV) was studied. Turkeys were vaccinated at 1 wk of age and challenged with virulent virus 3, 7, 10, and 14 wk later. Nonvaccinated groups were also challenged at the same times. No clinical signs were observed in the vaccinated birds after vaccination or after any challenge. No viral RNA was shed by the vaccinated birds after any challenge. The nonvaccinated birds shed viral RNA after all challenges. Avian pneumovirus-specific humoral antibodies were detected in the vaccinated birds until 14 wk after vaccination. The results of this preliminary study indicate that inoculation with a single dose of a cold-adapted strain of APV at 1 wk of age provides protection until 15 wk of age.  相似文献   

8.
To determine the optimum route of vaccination, we inoculated 1-day-old turkeys with a cold-adapted strain of avian pneumovirus (APV) by oculonasal, oral, or aerosol route. Another two groups served as nonvaccinated-challenged and nonvaccinated-nonchallenged groups. Birds in all vaccinated and nonvaccinated-challenged groups were challenged with virulent APV 3 wk postvaccination. After challenge, no vaccinated bird developed clinical signs or virus shedding, whereas nonvaccinated-challenged birds developed clinical signs (clinical score = 11.2/bird) and shed virus from their choanal cleft. Birds in all three vaccinated groups seroconverted at 3 wk postvaccination. The nonvaccinated-nonchallenged group remained free of clinical signs and virus shedding and did not develop APV antibodies throughout the course of the study. These results suggest that this cold-adapted strain of APV is safe and effective in 1-day-old turkeys when given by any of the three routes.  相似文献   

9.
Two types of vaccines, chicken embryo adapted (VacCE) and cell culture adapted (VacCC), were tested for their efficacy to elicite the immune response in birds vaccinated at 2 and 8 wk of age. The cell-mediated immune response studied by blastogenesis assay showed that birds vaccinated at the second week of age by both VacCE and VacCC vaccines had significant increase in T-lymphocyte count at 21 days postvaccination (PV) and 7 days postchallenge (PC), whereas in birds vaccinated at 8 wk of age, a significant increase was seen at 21 days PV and 7 days PC with the VacCC vaccine. The rise in passive hemagglutination titers was observed up to 21 days PV and 7 days PC in birds vaccinated at 2 wk of age. However, only the birds vaccinated with VacCC at 8 wk of age showed rise in titers at days 21 PV and 7 PC. Birds were challenged 90 days PV by scarification on the thigh region, and the birds vaccinated with VacCC showed 90% and 70% protection when vaccinated at 2 and 8 wk, respectively. The birds vaccinated with VacCE showed only 60% and 20% protection at the corresponding levels, respectively.  相似文献   

10.
Protection by recombinant avian metapneumovirus (aMPV) N or M proteins against a respiratory challenge with virulent aMPV was examined. N, M or N+M proteins were administered intramuscularly (IM) with incomplete Freund's adjuvant (IFA) or by the oculonasal (ON) route with cholera toxin-B (CTB). Each turkey received 40 or 80 microg of each recombinant protein. Birds were considered protected against challenge if the challenge virus was not detectable in the choanal swabs by RT-PCR. At a dose of 40 microg/bird, N protein given with IFA by the IM route protected eight out of nine birds. M protein at the same dose protected three out of seven birds, while a combination of N+M proteins (40 microg each) protected three out of four birds. At a dose of 80 microg of each of N and M proteins per bird given with IFA by the IM route, 100% protection was achieved. ON immunization with a mixture of N and M proteins induced partial protection when the proteins were given with CTB; no detectable protection was noted without CTB. N and M proteins induced anti-aMPV antibodies, although protection against virulent virus challenge did not appear to be associated with the level or presence of antibodies.  相似文献   

11.
Commercial egg-laying chickens were vaccinated for infectious laryngotracheitis (ILT) with one of five commercially available vaccines (designated A, B, C, D, and E) on five separate farms by either eyedrop (e), spray (s), or double dose in the water (w) method. Groups were identified by the vaccine designation and the method of vaccination. Birds from the test groups were transferred to an isolation facility and challenged intratracheally 3 wk after vaccination. The remaining birds were given a second vaccination with the original chicken embryo origin vaccine by spray or a chicken embryo origin vaccine if the first vaccine was of tissue culture origin. After challenge, birds were monitored for clinical signs. Those surviving were euthanatized on day 6 postchallenge, and tissues and blood were collected for histopathology, virus isolation, and serology. On the basis of histopathology and enzyme-linked immunosorbent assay (ELISA) results, after one vaccination, all chickens given vaccines by eyedrop were provided better protection than nonvaccinated controls (CTLs). Birds in groups Bs and Ds had lower microscopic lesion scores whereas only birds given Bs had higher ELISA titers than CTLs. Birds in groups As and Cs and groups Bw birds taken from the rear of the barn (r) had microscopic lesion scores that were no different from those of CTLs. These same birds in addition to vaccine Ds had ELISA titers no different from those of CTLs. Of all vaccines, only A given by eyedrop or spray produced higher virus isolation titers than those of CTLs. The remainder of the vaccines produced virus isolation titers that were no different from those of CTLs. After two vaccinations, all groups had lower microscopic lesion scores than CTLs. Only Bw birds from the middle of the barn Bs, EeDs, and AsAs had virus isolation results that were higher than those of CTLs. Only groups BwrBs, CsCs, and DsDs had ELISA titers no different from those of controls. These results suggest that a priming vaccination followed by a booster dose offers better protection against ILT than a single vaccination alone. Vaccine application by eyedrop provides more uniform protection if only one vaccination is given, whereas spray vaccination may serve as an alternative method of vaccination for birds receiving two doses of vaccine.  相似文献   

12.
Newcastle disease (ND) is a highly contagious disease of chickens causing significant economic losses worldwide. Due to the limitation in their efficacy, current vaccination strategies against ND need improvements. This study aimed to evaluate a new-generation ND vaccine for its efficacy in providing clinical protection and reducing virus shedding after challenge. Broiler chickens were vaccinated in ovo or subcutaneously at hatch with a turkey herpesvirus-based recombinant vaccine (rHVT) expressing a key protective antigen (F glycoprotein) of Newcastle disease virus (NDV). Groups of birds were challenged at 20, 27, and 40 days of age with a genotype V viscerotropic velogenic NDV strain. Protection was 57% and 81%, 100% and 95%, and 100% and 100% after the subsequent challenges in the in ovo and subcutaneously vaccinated chickens, respectively. Humoral immune response to vaccination could be detected from 3-4 wk of age. Challenge virus shedding was lower and gradually decreased over time in the vaccinated birds compared to the unvaccinated control chickens. In spite of the phylogenetic distance between the NDV F gene inserted into the vector vaccine and the challenge virus (genotype I and V, respectively), the rHVT NDV vaccine provided good clinical protection and significantly reduced challenge virus shedding.  相似文献   

13.
A live attenuated Mycoplasma gallisepticum vaccine, ts-11, has been used for control of M gallisepticum in several countries. The rapid serum agglutination test is usually used as an indicator of flock response to vaccination; however, in some flocks, the detected response may be weak or absent. We investigated whether the low level, or lack, of systemic antibodies in ts-11-vaccinated flocks is correlated with susceptibility to infection after challenge with a virulent M. gallisepticum strain. Birds from 2 separate ts-11-vaccinated commercial flocks with no, or weak, rapid serum agglutination responses (at 11 or 14 wk postvaccination) were randomly selected and subjected to aerosol challenge with either M gallisepticum strain Ap3AS or sterile mycoplasma broth. A group of nonvaccinated specific-pathogen-free chickens at similar age were also exposed to aerosolization with M. gallisepticum strain Ap3AS and used as positive controls. Postmortem examination of the birds, performed 2 wk after challenge, revealed no significant difference in microscopic tracheal lesions or mucosal thicknesses between the ts-11-vaccinated field birds irrespective of their aerosolization treatment. However, both microscopic tracheal lesions and tracheal mucosal thicknesses of nonvaccinated challenged birds were significantly greater than those of ts-11 vaccinates. Hence, broiler breeders vaccinated in the field showed significant protection against virulent M. gallisepticum challenge even when no serum antibody was detected by rapid serum agglutination test. These results reveal that seroconversion detected by rapid serum agglutination test after ts-11 vaccination is not a reliable predictor of protection against M. gallisepticum infection. The possible significance of local antibody response and cell-mediated immunity against M. gallisepticum infection is discussed.  相似文献   

14.
In contrast to chickens, there is a paucity of information on the potency of H5 vaccines to protect turkeys against the highly pathogenic avian influenza (HPAI) H5N1 virus infections. In this study, 4 groups, 10 turkey poults each, were vaccinated at seven days old with one of H5N2 or H5N1 commercial vaccines or one of two prepared H5N1 vaccines from a local Egyptian variant HPAI H5N1 (EGYvar/H5N1) strain. At 35 days age, all vaccinated and 10 non vaccinated birds were challenged intranasal with 10(6) EID(50)/0.1 ml of EGYvar/H5N1. All vaccines used in this study were immunogenic in turkeys. There was no cross reaction between the commercial vaccines and the Egyptian variant H5N1 antigen as obtained by the hemagglutination inhibition test. Birds vaccinated with H5N2 vaccine were died, while other H5N1 vaccinated groups have had 20-40% mortality. The highest virus excretion was found in non-vaccinated infected and H5N2 vaccinated birds. Eleven peculiar amino acid substitutions in H5 protein of the variant strain were existed neither in the vaccine strains nor in the earliest H5N1 virus introduced into Egypt in 2006. In conclusion, single vaccination at seven days old is inadequate for protection of meat turkeys against variant HPAI H5N1 challenge and multi-dose vaccination at older age is recommended. For the foreseeable future, continuous evaluation of the current vaccines in H5N1 endemic countries in the face of virus evolution is a paramount challenge to mitigate the socio-economic impact of the virus.  相似文献   

15.
To determine the Mycoplasma gallisepticum (MG) rapid serum plate agglutination (RSPA) test response of broiler breeders after ts-11 strain vaccination, 55 Cobb pullets derived from a nonvaccinated, MG-negative, commercial, broiler breeder grandparent flock were monitored from 8 to 20 wk of age (over a 12-wk trial period). To evaluate the effect of lateral spread of the ts-11 vaccine strain on RSPA test results from commingled and adjacently penned birds, treatment groups included (A) birds vaccinated with ts-11strain MG at 8 wk of age, (B) commingled nonvaccinates in the same pen as the vaccinated birds, (C) nonvaccinates in a second pen separated from the first pen by a distance of 2 m, and (D) birds vaccinated with ts-11 strain MG at 8 wk of age and kept in a separate room. Rapid serum plate agglutination tests were performed once a week for 6 wk and then every 2 wk for 6 more wk, postvaccination. A polymerase chain reaction (PCR) assay specific fbr ts-11 strain MG was used to confirm vaccination, and a second PCR specific for non-ts-11 strain MG was used to confirm the absence of field infection. Seroconversion was first detected by the RSPA test 2 wk postvaccination and attained maximum positive rates of 58% at 12 wk postvaccination in treatment A and 60% at 8 wk postvaccination in treatment D. Seroconversion rates in nonvaccinated, commingled pullets was 10% at 5 wk and 30% at 12 wk after the vaccination of pen mates. The ts-11-specific PCR detected the vaccine strain in 80%-100% of the vaccinated birds 2 wk after vaccination. One of 15 nonvaccinated birds penned 2 m from vaccinated birds yielded ts-11 by PCR assay 12 wk after vaccination, which indicates that the spread of ts-11 over short distances may be possible in situations in which there is a common caretaker. PCR on tracheal swabs taken 12 wk postvaccination detected ts-l1 in 50% and 60% of the vaccinated birds in treatments A and D, respectively; in 30% of the commingled nonvaccinates; and in 6.6% of the separately penned nonvaccinates. In contrast, choanal swabs collected from vaccinated birds at 12 wk were 21% and 40% PCR positive for ts-11 strain MG, while those from nonvaccinates were negative. All samples were PCR negative for field strain MG. The pattern of seroconversion as measured by RSPA test in small groups of broiler breeders was different from that previously reported for leghorns. Lateral spread of the ts-11 strain to commingled pen mates occurred rapidly, causing RSPA seroconversion patterns that mimicked those of the vaccinated pen mates.  相似文献   

16.
Mice were intranasally inoculated at various times to optimize the vaccination strategy with a new live candidate vaccine expressing the antigens CP39, FimA, PtfA, and ToxA of Pasteurella multocida and F1P2 of Bordetella bronchiseptica in an attenuated live Salmonella system to protect against progressive atrophic rhinitis (PAR). Sixty BALB/c mice were divided equally into 4 groups. The group A mice were vaccinated only at 12 wk of age, the group B mice received a primary vaccination at 9 wk of age and a booster at 12 wk of age, the group C mice received a primary vaccination at 6 wk of age and boosters at 9 and 12 wk of age, and the group D mice were inoculated intranasally with sterile phosphate-buffered saline as a control. The humoral and mucosal immune responses of groups A, B, and C increased significantly compared with those of the control group. Expression of the cytokines interleukin-4 and interferon-γ in splenocytes also increased significantly. In addition, the group B mice exhibited significantly fewer gross lesions in lung tissue compared with the other vaccinated groups after challenge with a virulent P. multocida strain. These results indicate that a strategy of double intranasal vaccination can optimize protection against PAR.  相似文献   

17.
The effect of the infectious bursal disease (IBD) live virus vaccine on the immune response of chicken was evaluated by the assessment of antibody response following vaccination as well as resistance to challenge with virulent virus. Birds were vaccinated at various ages and later challenged with a heterologous vaccine (NDV) or wild-type IBD virus. The BF was examined for histological changes at regular intervals. Antibody levels to NDV were monitored.

Significantly higher mortality rates were observed in birds vaccinated with IBD vaccine than unvaccinated birds (P < 0.01) following challenge, BF from vaccinated birds showed marked lymphocyte depletion and cellular infiltration with mononuclear cells.

Intraocular NDV (NDV-i/o) vaccine given at day old largely prevented the immunodepressive effect of IBD vaccination on NDV vaccine. Groups that received IBD vaccine on day 14 but no NDV i/o suffered higher mortality (41.2%) and showed lower antibody response than those vaccinated on day 1 (0%) or controls which did not receive IBDV (11.8%).  相似文献   


18.
Broiler minibreeder hens were vaccinated for protection against fowl cholera at 12 and 21 weeks of age using several vaccination schemes, which included a live Pasteurella multocida (CU strain) vaccine, two commercial polyvalent fowl cholera oil-based bacterins, and two experimentally prepared polyvalent oil-based bacterins. Some treatment groups received only live or killed vaccines, whereas others received a live vaccine at 12 weeks followed by a killed product at 21 weeks. At 42 weeks of age, all birds that received the live CU vaccine twice or once followed by a bacterin survived challenge. Birds that received killed vaccines only were significantly less protected but still showed a respectable survival rate of 86%. All unvaccinated controls died within 72 hr after challenge. At 72 weeks of age, overall protection was lower than that at 42 weeks, regardless of vaccination treatment. Antibody titers were usually higher in birds that received bacterins than in those receiving live vaccines, yet overall protection was still greater in those birds that received the live cholera vaccine twice.  相似文献   

19.
Two recombinant fowlpox viruses containing the avian influenza H5 hemaglutinin (HA) gene were evaluated for their ability to protect chickens against challenge with a highly pathogenic isolate of avian influenza virus (H5N2). Susceptible chickens were vaccinated with the parent fowlpox vaccine virus or recombinant viruses either by wing-web puncture or comb scarification. Following challenge 4 weeks later with highly pathogenic avian influenza virus, all birds vaccinated by the wing-web method were protected by both recombinants, while 50% and 70% mortality occurred in the two groups of birds vaccinated by comb scarification. Birds vaccinated with the unaltered parent fowlpox vaccine virus or unvaccinated controls experienced 90% and 100% mortality, respectively, following challenge. Hemagglutination-inhibition (HI) antibody levels were low, and agar-gel precipitin results were negative before challenge. Very high HI titers and positive precipitating antibody responses were observed in all survivors following challenge.  相似文献   

20.
In this study, two highly pathogenic avian influenza (HPAI) H5N8 viruses were isolated from chicken and geese in 2018 and 2019 (Chicken/ME-2018 and Geese/Egypt/MG4/2019). The hemagglutinin and neuraminidase gene analyses revealed their close relatedness to the clade-2.3.4.4b H5N8 viruses isolated from Egypt and Eurasian countries. A monovalent inactivated oil-emulsion vaccine containing a reassortant virus with HA gene of the Chicken/ME-2018/H5N8 strain and a bivalent vaccine containing same reassortant virus plus a previously generated reassortant H5N1 strain (CK/Eg/RG-173CAL/17). The safety of both vaccines was evaluated in specific-pathogen-free (SPF) chickens. To evaluate the efficacy of the prepared vaccines, 2-week-old SPF chickens were vaccinated with 0.5 mL of a vaccine formula containing 108/EID50 /dose from each strain via the subcutaneous route. Vaccinated birds were challenged with either wild-type HPAI-H5N8 or H5N1 viruses separately at 3 weeks post-vaccine. Results revealed that both vaccines induced protective hemagglutination-inhibiting (HI) antibody titers as early as 2 weeks PV (≥5.0 log2). Vaccinated birds were protected clinically against both subtypes (100 % protection). HPAI-H5N1 virus shedding was significantly reduced in birds that were vaccinated with the bivalent vaccine; meanwhile, HPAI-H5N8 virus shedding was completely neutralized in both tracheal and cloacal swabs after 3 days post-infection in birds that had been vaccinated with either vaccine. In conclusion, the developed bivalent vaccine proved to be efficient in protecting chickens clinically and reduced virus shedding via the respiratory and digestive tracts. The applicability of the multivalent avian influenza vaccines further supported their value to facilitate vaccination programs in endemic countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号