首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Urbanization transforms landscape structure and profoundly affects biodiversity and ecological processes. To understand and solve these ecological problems, at least three aspects of spatiotemporal patterns of urbanization need to be quantified: the speed, urban growth modes, and resultant changes in landscape pattern. In this study, we quantified these spatiotemporal patterns of urbanization in the central Yangtze River Delta region, China from 1979 to 2008, based on a hierarchical patch dynamics framework that guided the research design and the analysis with landscape metrics. Our results show that the urbanized area in the study region increased exponentially during the 30 years at the county, prefectural, and regional levels, with increasing speed down the urban hierarchy. Three growth modes—infilling, edge-expanding, and leapfrogging—operated concurrently and their relative dominance shifted over time. As urbanization progressed, patch density and edge density generally increased, and the connectivity of urban patches in terms of the average nearest neighbor distance also increased. While landscape-level structural complexity also tended to increase, the shape of individual patches became increasingly regular. Our results suggest that whether urban landscapes are becoming more homogenous or heterogeneous may be dependent on scale in time and space as well as landscape metrics used. The speed, growth modes, and landscape pattern are related to each other in complicated fashions. This complex relationship can be better understood by conceptualizing urbanization not simply as a dichotomous diffusion-coalescence switching process, but as a spiraling process of shifting dominance among multiple growth modes: the wax and wane of infilling, edge-expansion, and leapfrog across the landscape.  相似文献   

3.
Quantifying the spatiotemporal pattern of urbanization is necessary to understand urban morphology and its impacts on biodiversity and ecological processes, and thus can provide essential information for improving landscape and urban planning. Recent studies have suggested that, as cities evolve, certain general patterns emerge along the urban–rural gradient although individual cities always differ in details. To help better understand these generalities and idiosyncrasies in urbanization patterns, we analyzed the spatiotemporal dynamics of the Shanghai metropolitan area from 1989 to 2005, based on landscape metrics and remote sensing data. Specifically, the main objectives of our study were to quantitatively characterize the spatiotemporal patterns of urbanization in Shanghai in recent decades, identify possible spatial signatures of different land use types, and test the diffusion coalescence hypotheses of urban growth. We found that, similar to numerous cities around the world reported in previous studies, urbanization increased the diversity, fragmentation, and configurational complexity of the urban landscape of Shanghai. In the same time, however, the urban–rural patterns of several land use types in Shanghai seem unique—quite different from previously reported patterns. For most land use types, each showed a distinctive spatial pattern along a rural–urban transect, as indicated by landscape metrics. Furthermore, the urban expansion of Shanghai exhibited an outward wave-like pattern. Our results suggest that the urbanization of Shanghai followed a complex diffusion–coalescence pattern along the rural–urban transect and in time.  相似文献   

4.
Recent research shows that land use history is an important determinant of current ecosystem function. In the United States, characterization of land use change following European settlement requires reconstruction of the original property mosaic. However, this task is difficult in unsystematically surveyed areas east of the Appalachian Mountains. The Gwynns Falls watershed (Baltimore, MD) was originally surveyed in the 1600-1700s under a system of warrants and patents (commonly known as ‘metes and bounds’). A method for the reconstruction and mapping of warrant and patent properties is presented and used to map the original property mosaic in the Gwynns Falls watershed. Using the mapped mosaic, the persistence of properties and property lines in the current Gwynns Falls landscape is considered. The results of this research indicate that as in agricultural areas, the original property lines in the Gwynns Falls watershed are persistent. At the same time, the results suggest that the property mosaic in heavily urbanized/suburbanized areas is generally ‘reset.’ Further, trends in surveying technique, parcel size, and settlement patterns cause property line density and property shape complexity to increase in the less urbanized upper watershed. The persistence of original patterns may be damping expression of heterogeneity gradients in this urban landscape. This spatial pattern of complexity in the original mosaic is directly opposite of hypothesized patterns of landscape heterogeneity arising from urbanization. The technique reported here and the resulting observations are important for landscape pattern studies in areas settled under unsystematic survey systems, especially the heavily urbanized areas of the eastern United States. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Bain  Daniel J.  Brush  Grace S. 《Landscape Ecology》2004,19(8):843-856
Recent research shows that land use history is an important determinant of current ecosystem function. In the United States, characterization of land use change following European settlement requires reconstruction of the original property mosaic. However, this task is difficult in unsystematically surveyed areas east of the Appalachian Mountains. The Gwynns Falls watershed (Baltimore, MD) was originally surveyed in the 1600-1700s under a system of warrants and patents (commonly known as ‘metes and bounds’). A method for the reconstruction and mapping of warrant and patent properties is presented and used to map the original property mosaic in the Gwynns Falls watershed. Using the mapped mosaic, the persistence of properties and property lines in the current Gwynns Falls landscape is considered. The results of this research indicate that as in agricultural areas, the original property lines in the Gwynns Falls watershed are persistent. At the same time, the results suggest that the property mosaic in heavily urbanized/suburbanized areas is generally ‘reset.’ Further, trends in surveying technique, parcel size, and settlement patterns cause property line density and property shape complexity to increase in the less urbanized upper watershed. The persistence of original patterns may be damping expression of heterogeneity gradients in this urban landscape. This spatial pattern of complexity in the original mosaic is directly opposite of hypothesized patterns of landscape heterogeneity arising from urbanization. The technique reported here and the resulting observations are important for landscape pattern studies in areas settled under unsystematic survey systems, especially the heavily urbanized areas of the eastern United States. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Spatial patterns of tree structure and composition were studied to assess the effects of land tenure, management regimes, and the environment on a coastal, subtropical urban forest. A total of 229 plots in remnant natural areas, private residential, public non-residential, and private non-residential land tenures were analyzed in a 1273 km2 study area encompassing the urbanized portion of Miami-Dade County, USA. Statistical mixed models of structure, composition, location, and land tenure data were used to analyze spatial patterns across the study area. A total of 1200 trees were measured of which 593 trees (49%) were located in residential areas, 67 (6%) in public non-residential areas, 135 trees (11%) in private non-residential areas, and 405 (34%) in remnant, natural areas. A total of 107 different tree species belonging to 90 genera were sampled. Basal area in residential land tenures increased towards the coast while private residential land tenures and natural areas had higher species diversity than non-residential areas. Tree height, crown light exposure, and crown area might indicate the effects of past hurricane impacts on urban forest structure. Land tenure, soil types, and urban morphology influenced composition and structure. Broadleaf evergreen trees are the most common growth form, followed by broadleaf deciduous, palms, and conifers. Exotic tree species originated mainly from Asia and 15% of all trees measured were considered exotic-highly invasive species. We discuss the use of these results as an ecological basis for management and resilience towards hurricane damage and identifying occurrence of invasive, exotic trees.  相似文献   

7.
8.
Carbon emissions are increasing in the world because of human activities associated with the energy consumptions for social and economic development. Thus, attention has been paid towards restraining the growth of carbon emissions and minimizing potential impact on the global climate. Currently there has also been increasing recognition that the urban forms, which refer to the spatial structure of urban land use as well as transport system within a metropolitan area, can have a wide variety of implications for the carbon emissions of a city. However, studies are limited in analyzing quantitatively the impacts of different urban forms on carbon emissions. In this study, we quantify the relationships between urban forms and carbon emissions for the panel of the four fastest-growing cities in China (i.e., Beijing, Shanghai, Tianjin, and Guangzhou) using time series data from 1990 to 2010. Firstly, the spatial distribution data of urban land use and transportation network in each city are obtained from the land use classification of remote sensing images and the digitization of transportation maps. Then, the urban forms are quantified using a series of spatial metrics which further used as explanatory variables in the estimation. Finally, we implement the panel data analysis to estimate the impacts of urban forms on carbon emission. The results show that, (1) in addition to the growth of urban areas that accelerate the carbon emissions, the increase of fragmentation or irregularity of urban forms could also result in more carbon emissions; (2) a compact development pattern of urban land would help reduce carbon emissions; (3) increases in the coupling degree between urban spatial structure and traffic organization can contribute to the reduction of carbon emissions; (4) urban development with a mononuclear pattern may accelerate carbon emissions. In order to reduce carbon emissions, urban forms in China should transform from the pattern of disperse, single-nuclei development to the pattern of compact, multiple-nuclei development.  相似文献   

9.
Landscape structure in the Eastern US experienced great changes in the last century with the expansion of forest cover into abandoned agricultural land and the clearing of secondary forest cover for urban development. In this paper, the spatial and temporal patterns of forest cover from 1914 to 2004 in the Gwynns Falls watershed in Baltimore, Maryland were quantified from historic maps and aerial photographs. Using a database of forest patches from six times—1914, 1938, 1957, 1971, 1999, and 2004—we found that forest cover changed, both temporally and spatially. While total forest area remained essentially constant, turnover in forest cover was very substantial. Less than 20% of initial forest cover remained unchanged. Forest cover became increasingly fragmented as the number, size, shape, and spatial distribution of forest patches within the watershed changed greatly. Forest patch change was also analyzed within 3-km distance bands extending from the urban core to the more suburban end of the watershed. This analysis showed that, over time, the location of high rates of forest cover change shifted from urban to suburban bands which coincides with the spatial shift of urbanization. Forest cover tended to be more stable in and near the urban center, whereas forest cover changed more in areas where urbanization was still in process. These results may have critical implications for the ecological functioning of forest patches and underscore the need to integrate multi-temporal data layers to investigate the spatial pattern of forest cover and the temporal variations of that spatial pattern.  相似文献   

10.
Understanding patterns of natural forest expansion in rural regions under the influence of urbanization processes is crucial for integrated spatial planning across the urban-to-rural gradient. As a matter of fact, forest expansion is the only natural process that may counteract the consumption of the ecosystem capital and ecosystems services of rural lands due to uncontrolled urban sprawl. The paper addresses this topic in the paradigmatic case study of the countryside of Rome (Italy), characterized by counter dynamics of forest expansion and suburbanization. Morphological Spatial Pattern Analysis (MSPA) is applied to classify the forest landscape structure twice (1974 and 2008) according to seven categories (core, islet, perforation, edge, loop, bridge, branch) with different potential functional role as elements of a green infrastructure. Main findings are: (i) forest cover increased from 11% to 16% between 1974 and 2008; forest land uptake exceeds 4% of total study area, but shows a slower pace than the growth of built-up areas (10%); (ii) forest expansion has been to a large extent achieved by “sprawling” of islets (1.6% of the study area) along the stream network; (iii) more compact forest expansion has taken place on 0.2% of the study area in the form of additions to existing core areas or creation of new ones and (iv) the establishment of a network of protected areas nearby Rome has played a key role for the conservation and further expansion of core areas; yet, local loss of 1974 core areas stocks in a few protected areas indicates need of further law enforcement to ensure effective protection of the natural capital from degradation processes or even land conversion into built-up areas.Results calls for future in-depth investigations on the quality of newly created or maintained forest resource stocks associated to different spatial pattern structures. Integrated spatial planning strategies are outlined for the conservation of ecosystem capital and ecosystems services provided by forests, as major components of Rome's green infrastructure.  相似文献   

11.
Urbanized land is characterized by the dominance of paved surfaces. Increasing tree canopy in urbanized areas has been identified as an effective way to reduce stormwater runoff, sequester carbon, improve air and water quality, and otherwise mitigate the environmental impacts and increase the livability of cities. However, attaining sufficient tree canopy in urban areas remains an elusive goal. Site design characteristics such as cutout size may limit urban tree growth and complicate efforts to predict future canopy, especially in highly paved systems such as parking lots. We studied 25 silver lindens (Tilia tomentosa Moench) grown for 14 years at one site, in pavement cutouts of various sizes. Regression analysis, even on these limited data, indicated a strong relationship between tree size and canopy projection area and unpaved soil surface area, but not soil depth. Cutout size explained 70% of the variability in tree canopy projection area and 77% of the variability in trunk cross-sectional area. The addition of other variables, such as soil bulk density, did not improve the model. Trees growing in parking lot cutouts <5.3 m2 attained only limited size, regardless of the level of soil compaction. In larger cutouts, however, increases in soil bulk density from 1.1 to 1.5 Mg/m3 were associated with a 70% reduction in trunk cross-sectional area. In order to create urban sites with a sustainable tree canopy, site design must provide large areas of uncompacted soil for trees and protect this soil from compaction during use. Urban tree growth models that incorporate cutout characteristics are needed to predict future canopy area with confidence.  相似文献   

12.
Freshwater research and management efforts could be greatly enhanced by a better understanding of the relationship between landscape-scale factors and water quality indicators. This is particularly true in urban areas, where land transformation impacts stream systems at a variety of scales. Despite advances in landscape quantification methods, several studies attempting to elucidate the relationship between land use/land cover (LULC) and water quality have resulted in mixed conclusions. However, these studies have largely relied on compositional landscape metrics. For urban and urbanizing watersheds in particular, the use of metrics that capture spatial pattern may further aid in distinguishing the effects of various urban growth patterns, as well as exploring the interplay between environmental and socioeconomic variables. However, to be truly useful for freshwater applications, pattern metrics must be optimized based on characteristic watershed properties and common water quality point sampling methods. Using a freely available LULC data set for the Santa Clara Basin, California, USA, we quantified landscape composition and configuration for subwatershed areas upstream of individual sampling sites, reducing the number of metrics based on: (1) sensitivity to changes in extent and (2) redundancy, as determined by a multivariate factor analysis. The first two factors, interpreted as (1) patch density and distribution and (2) patch shape and landscape subdivision, explained approximately 85% of the variation in the data set, and are highly reflective of the heterogeneous urban development pattern found in the study area. Although offering slightly less explanatory power, compositional metrics can provide important contextual information.  相似文献   

13.
The urban heat island (UHI) phenomenon is a common environmental problem in urban landscapes which affects both climatic and ecological processes. Here we examined the diurnal and seasonal characteristics of the Surface UHI in relation to land-cover properties in the Phoenix metropolitan region, located in the northern Sonoran desert, Arizona, USA. Surface temperature patterns derived from the Advanced Spaceborne Thermal Emission and Reflection Radiometer for two day-night pairs of imagery from the summer (June) and the autumn (October) seasons were analyzed. Although the urban core was generally warmer than the rest of the area (especially at night), no consistent trends were found along the urbanization gradient. October daytime data showed that most of the urbanized area acted as a heat sink. Temperature patterns also revealed intra-urban temperature differences that were as large as, or even larger than, urban–rural differences. Regression analyses confirmed the important role of vegetation (daytime) and pavements (nighttime) in explaining spatio-temporal variation of surface temperatures. While these variables appear to be the main drivers of surface temperatures, their effects on surface temperatures are mediated considerably by humans as suggested by the high correlation between daytime temperatures and median family income. At night, however, the neighborhood socio-economic status was a much less controlling factor of surface temperatures. Finally, this study utilized geographically weighted regression which accounts for spatially varying relationships, and as such it is a more appropriate analytical framework for conducting research involving multiple spatial data layers with autocorrelated structures.  相似文献   

14.
The rapid and unplanned expansion of urban areas is a common pattern in neotropical developing countries. Urbanization has eliminated or drastically altered large areas of natural habitats used by the rich neotropical avifauna. In our study area, in Costa Rica’s Central Valley, urbanization increased 72% in 33 years with the consequent destruction, fragmentation, and isolation of forest tracts, shade plantations, and other semi-natural habitats used by a rich avifauna. We show that over the last 16 years 32 resident species of birds have disappeared from this area. Species with specialized habitat requirements or particular life history traits (e.g., altitudinal migrants) are disproportionately represented among those birds that have disappeared from the region. Another 34 latitudinal migrants have gone undetected as nearly all habitats these species used as a stopover site during the autumn migration have disappeared; many of these migrants were very abundant 16 years earlier. Relative abundance has also decreased for most resident and migratory species that remained or visited the area. If uncontrolled urban expansion continues, we predict that the rate of extinction of the avifauna that originally inhabited this region would continue possibly increasing.  相似文献   

15.
Urbanization has transformed the world’s landscapes, resulting in a series of ecological and environmental problems. To assess urbanization impacts and improve sustainability, one of the first questions that we must address is: how much of the world’s land has been urbanized? Unfortunately, the estimates of the global urban land reported in the literature vary widely from less than 1–3 % primarily because different definitions of urban land were used. To evade confusion, here we propose a hierarchical framework for representing and communicating the spatial extent of the world’s urbanized land at the global, regional, and more local levels. The hierarchical framework consists of three spatially nested definitions: “urban area” that is delineated by administrative boundaries, “built-up area” that is dominated by artificial surfaces, and “impervious surface area” that is devoid of life. These are really three different measures of urbanization. In 2010, the global urban land was close to 3 %, the global built-up area was about 0.65 %, and the global impervious surface area was merely 0.45 %, of the word’s total land area (excluding Antarctica and Greenland). We argue that this hierarchy of urban land measures, in particular the ratios between them, can also facilitate better understanding the biophysical and socioeconomic processes and impacts of urbanization.  相似文献   

16.
Mapping and analyzing landscape patterns   总被引:5,自引:0,他引:5  
Landscapes were mapped as clusters of 2 or 3 land cover** types, based on their pattern within the clusters and tendency for a single type to dominate. These landscapes, called Landscape Pattern Types (LPTs), were combined with other earth surface feature data in a Geographic Information System (GIS) to test their utility as analysis units. Road segment density increased significantly as residential and urbanized land cover components increased from absent, to present as patch, to present as matrix (i.e., the dominant land cover type). Stream segment density was significantly lower in LPTs with an urbanized or residential matrix than in LPTs with either a forest or agriculture matrix, suggesting an inverse relationship between stream network density and the prevalence of human development other than agriculture in the landscape. The ratio of average forest patch size to total forest in the LPT unit decreased as agriculture replaced forest, then increased as residential and urban components dominated. Wetland fractal dimension increased as agriculture and residential land cover components of LPTs increased. Comparison of LPT and LUDA land cover area statistics in ecoregions suggested that land cover data alone does not provide information as to its spatial arrangement.  相似文献   

17.
In densely urbanized areas, small pockets of vegetated areas such as street verges, vacant lots, and walls can be rich in biodiversity. In spite of their small size, these ‘informal urban greenspaces’ can provide critical ecosystem services to urban residents. Maintaining and enhancing the provisioning of ecosystem services requires a systematic understanding of biodiversity patterns and drivers in informal urban green spaces. The ‘environmental filtering’ (a process of certain species selected by specific environmental conditions) concept in community ecology theory may serve as a useful tool for this goal. We tested a multi-scale filtering framework by examining the spontaneous plant diversity patterns (from 83 surveyed sites) on the vertical surfaces of the ancient city wall of Nanjing, China. We found that the variables representing local-habitat filtering (e.g., wall substrates and aspect) and landscape filtering (including spatial configuration of urban land cover, and nighttime light intensity surrounding the local habitats) can jointly explain substantial fractions of variations in taxonomic diversity (up to ca. 60%) and functional diversity (up to ca. 40%). The explanatory power was stronger in the repaired wall habitats than in the unrepaired counterparts, in line with the prediction that environmental filtering is more pronounced during the early stages of community assembly. While the strength of landscape filtering showed clear scale-dependency, its relative importance consistently outweighs local-habitat filtering across all study scales of 200–1600 m, suggesting that configuration of neighboring landscape context can play an important role in shaping local-scale biodiversity of informal urban green spaces. Our results have useful implications for the study, design, and management of informal urban green spaces. Well-tailored multi-scale filtering frameworks may contribute to understanding urban biodiversity patterns in a systematic way.  相似文献   

18.
A combination of rapid population growth and an accelerating demographic shift from rural to urbanized habitats has resulted in urbanization becoming an increasingly global phenomenon. Two alternate hypotheses describing urban landscape trajectories suggest urbanization is either leading to more homogeneous global patterns or urbanization has dichotomous trajectories of increasing dispersal or coalescence. To better understand the global variation in urban land-cover patterns and trajectories we described the variation in urban landscape structure for 120 cities distributed throughout the world assessed at circa 1990 and 2000. We coupled these data to a low-dimensional neighborhood based model of urban growth using a data-model fusion approach. Trajectories of urban growth were assessed using both the original data and model projections to 2030. The patterns of landscape change were related to both the rate of growth and income. The historical patterns of change showed a trend of increasing landscape complexity and this trend was projected to continue. Urban rate of growth was closely related to the change in several landscape metrics. Income was associated with landscape dynamics and this effect interacted with city size. Large cities were less sensitive to the income effect than small cities. Along with changes to the magnitude of each metric, the overall variation in metrics between years generally exhibited a decrease in variability and this variability was projected to continue decreasing. These findings supported the hypothesis that urban landscapes are becoming more homogeneous and that the dispersal-coalescing dichotomy represent endpoints rather than alternate states of urban growth.  相似文献   

19.
Widespread and increasing urbanization has resulted in the need to assess, monitor, and understand its effects on stream water quality. Identifying relations between stream ecological condition and urban intensity indicators such as impervious surface provides important, but insufficient information to effectively address planning and management needs in such areas. In this study we investigate those specific landscape metrics which are functionally linked to indicators of stream ecological condition, and in particular, identify those characteristics that exacerbate or mitigate changes in ecological condition over and above impervious surface. The approach used addresses challenges associated with redundancy of landscape metrics, and links landscape pattern and composition to an indicator of stream ecological condition across a broad area of the eastern United States. Macroinvertebrate samples were collected during 2000–2001 from forty-two sites in the Delaware River Basin, and landscape data of high spatial and thematic resolution were obtained from photointerpretation of 1999 imagery. An ordination-derived ‘biotic score’ was positively correlated with assemblage tolerance, and with urban-related chemical characteristics such as chloride concentration and an index of potential pesticide toxicity. Impervious surface explained 56% of the variation in biotic score, but the variation explained increased to as high as 83% with the incorporation of a second land use, cover, or configuration metric at catchment or riparian scales. These include land use class-specific cover metrics such as percent of urban land with tree cover, forest fragmentation metrics such as aggregation index, riparian metrics such as percent tree cover, and metrics related to urban aggregation. Study results indicate that these metrics will be important to monitor in urbanizing areas in addition to impervious surface.  相似文献   

20.
Urban trees provide numerous ecosystem goods and services by providing shade, habitat for wildlife, removal of air pollutants and the removal and storage of atmospheric CO2. Carbon removal services provided by Canadian urban trees have previously been assessed using an IPCC 2006 guidelines approach based on the percentage of urban area covered by tree canopy (UTC) for the 2012 time period (Pasher et al., 2014). That work however provided only a single point in time assessment of the national scale UTC and carbon removal services. The research undertaken for this study was a continuation of this earlier work focusing on a 1990 national scale UTC assessment and carbon sequestration estimates for 1990. UTC estimates for 1990 were developed using a point sampling approach with circa 1990 air photos covering a large portion of Canadian urban areas. In total almost 179,000 points were sampled for the 1990 time period, reassessing 83% of the points used for the previous 2012 assessment. Based on the urban area boundary layers for 1991 and 2011, Canada’s urban areas grew by an estimated 6% for this time period. Most of this growth occurred through conversion of agricultural and forested lands to urban. At the national scale the UTC for 1990 was estimated to be 27.6%, as compared to the 2012 UTC estimate of 26.1%, the difference between estimates for the two time periods fell within the uncertainty range. Carbon removal estimates based on the UTC estimates were also very similar for the two dates with 660.2 kt C removed in 1990 and 662.8 kt C removed in 2012. It was noted that urban development in the Prairie regions resulted in an increase in tree cover as compared to the pre-conversion agricultural and natural landscapes and also that in most urban areas across the country UTC increases through time as tree cover matured in newly developed urban areas. These two assessments provide a time series of urban trees for 22 year time period, which will be useful for further studies and analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号