首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
 A new race of Phytophthora vignae f. sp. adzukicola, designated race 4, is reported from central and western Hokkaido, Japan. The isolates obtained from diseased plants of a new cultivar, cv. Syumari, which is resistant to races 1, 2, and 3, were determined to be a new race by the pathogenic reaction on a set of differential adzuki bean cultivars (cv. Erimo-shozu, cv. Kotobuki-shozu, cv. Noto-shozu, cv. Urasa-shimane, and cv. Syumari). Received: March 7, 2002 / Accepted: August 13, 2002  相似文献   

2.
Thirty-four isolates ofFusarium oxysporum f.sp.melonis (F.o.m.) obtained from 205 fields in melon-producing areas in the southeastern Anatolia Region of Turkey were identified on the basis of colony morphology and pathogenicity by the root dip method. In this region the mean prevalence of wilt disease was 88.1% and the mean incidence of disease was 47.5%. Physiologic races 0, 1, 2, and 1,2 of the pathogen were determined by their reactions on differential melon cultivars ‘Charentais T,’ ‘Isoblon’, ‘Isovac’ and ‘Margot’ in the greenhouse. Race 1,2, representating 58.8% (20/34) of all isolates, was widely distributed. Of the other pathogenic isolates, eight were identified as race 0, five as race 1, and one as race 2. This is the first report of physiologic races ofF.o.m. in Turkey. Of 44 melon cultivars tested in the greenhouse for resistance toF.o.m. races, 36 were found to be moderately resistant to race 0, 17 were susceptible to race 1,2, 34.1% were highly resistant to race 1, and 52.2% had moderate resistance to race 2. http://www.phytoparasitica.org posting July 16, 2002.  相似文献   

3.
为探寻非寄主和寄主种子分泌物中抗病信号分子,通过显微观察,采用菌丝生长速率法和离体接种法对不同种子分泌物处理后大豆疫霉Phytophthora sojae的游动孢子数、孢子囊数、游动孢子释放后残留的空囊数、成囊和未成囊的游动孢子数、萌发和未萌发的胞囊数、菌落直径、卵孢子数进行测量,并计算抑制率,明确非寄主菜豆和寄主大豆抗病品种、感病品种种子分泌物对大豆疫霉游动孢子趋化性、生长发育和侵袭力的影响。结果显示,非寄主菜豆种子分泌物不吸引大豆疫霉游动孢子,显著抑制大豆疫霉孢子囊形成、胞囊萌发和卵孢子产生,抑制率依次为97.3%、73.0%和17.5%,然后溶解胞囊,最终导致游动孢子对下胚轴侵袭力降低,抑制率为67.1%。寄主大豆种子分泌物能吸引大豆疫霉游动孢子,感病品种种子分泌物吸引力高于抗病品种。感病品种种子分泌物对大豆疫霉生长发育无显著影响,但促进大豆疫霉游动孢子侵袭力;抗病品种种子分泌物显著抑制大豆疫霉孢子囊形成、胞囊萌发和卵孢子产生,抑制率依次为86.6%、34.3%和12.8%,然后溶解胞囊,但作用强度小于非寄主菜豆种子分泌物,最终导致游动孢子对下胚轴的侵袭力降低,抑制率为24.2%。表明非寄主菜豆和寄主大豆抗病品种的种子分泌物对大豆疫霉有抑菌活性,大豆疫霉的非寄主和寄主抗病性与种子分泌物有关。  相似文献   

4.
蒙城大豆疫霉菌的鉴定及其生理小种   总被引:14,自引:2,他引:14  
 在安徽省蒙城县对大豆疫霉根腐病的发生情况进行调查。应用选择性培养基对类似大豆疫霉根腐病症状的病株进行病原菌分离,在春大豆蒙城早熟青豆病株上分离到2株疫霉菌PMC1、PMC2和一些Fusarium spp.,在夏大豆上分离到的主要病原菌为Pythium spp.和Fusarium spp.,未分离到疫霉菌。根据疫霉菌分离物PMC1和PMC2形态和生理学特征以及对大豆的专化致病性,2个分离物被鉴定为大豆疫霉菌(Phytophthora sojae Kaufmann&Gerdemann)。应用国际通用鉴别寄主进行生理小种鉴定,PMC1和PMC2的毒力公式分别为1b,1d,3a,3c,5,7和1b,1d,4,5,为新的小种类型,定名为中国6号小种、中国7号小种(CNR-6和CNR-7)。这是首次报道大豆疫霉菌在我国淮北地区存在。  相似文献   

5.
Phytophthora root and stem rot has developed in commercial soybean fields since 2006 in Brazil, and cultivars with resistance to this disease have not been targeted for this region. Thus, the Phytophthora sojae pathotypes are expected to have virulence to few if any of the Rps genes. The objectives of this study were to characterize the pathotype diversity of P. sojae in Brazil, determine the distribution of the pathogen and predict which Rps genes will be effective and should be used in breeding programs. Isolates were collected in six states (Rio Grande do Sul, Santa Catarina, Paraná, Mato Grosso do Sul, Minas Gerais, and Goiás). The virulence formulae were based on the response of a differential set with 14 Rps genes (1a, 1b, 1c, 1d, 1k, 2, 3a, 3b, 3c, 4, 5, 6, 7, and 8). None of the 17 pathotypes found was reported previously. The most common virulence formulas were: 1d, 2, 3c, 4, 5, 6, 7 (octal code 05471, representing 24 % of the occurrences); 1d, 2, 3b, 3c, 4, 5, 6, 7 (05671, 13 %); 1b, 1d, 2, 3a, 3c, 4, 5, 6, 7 (25571, 8 %); and 1d, 3a, 5, 7, 8 (01123, 8 %). Percentages of isolates with a susceptible interaction with each Rps gene was Rps1a (3 %), Rps1b (11 %), Rps1c (3 %), Rps1d (100 %), Rps1k (3 %), Rps2 (86 %), Rps3a (32 %), Rps3b (19 %), Rps3c (73 %), Rps4 (70 %), Rps5 (89 %), Rps6 (59 %), Rps7 (100 %), and Rps8 (22 %). There was apparently no relationship between pathotypes and origin. Stacking resistance genes Rps1a, Rps1b, Rps1c, and Rps1k with Rps3b or Rps8 would be highly effective for soybean cultivars targeted for Brazil.  相似文献   

6.
 Pathogenic variation among 26 Japanese isolates of Fusarium oxysporum f. sp. lactucae (FOL) was tested using 21 lettuce cultivars to select commercial lettuce cultivars as race differential indicators. Cultivar Costa Rica No. 4 was resistant to race 1 but susceptible to race 2, consistent with the conventional standard differential line VP1010. Cultivar Banchu Red Fire was susceptible to race 1 but resistant to race 2, which showed an opposite type of reaction as another differential line VP1013. Cultivar Patriot was susceptible to both races. The resistance reactions of the three cultivars under field conditions were identical with that observed in the seedlings. Thus cv. Costa Rica No. 4 and cv. Banchu Red Fire can be used as differential hosts to identify pathogenic races of FOL. This differential system showed that all FOL isolates obtained from diseased butterhead lettuce in Fukuoka, Japan were new races (i.e., pathogenic to three cultivars). We propose that the new race be designated race 3. Isolates of FOL, the pathogen of Fusarium wilt in lettuce, obtained from California showed the same reaction as that of race 1. Furthermore, the Japanese isolate SB1-1 (race 1) and California isolate HL-2 belonged to the same vegetative compatibility group. Our results suggest that both of the fungi are the same forma specialis. Received: March 25, 2002 / Accepted: August 26, 2002  相似文献   

7.
Two diseases of adzuki bean, brown stem rot (BSR, caused by Cadophora gregata f. sp. adzukicola) and adzuki bean Fusarium wilt (AFW, caused by Fusarium oxysporum f. sp. adzukicola), are serious problems in Hokkaido and have been controlled using cultivars with multiple resistance. However, because a new race of BSR, designated race 3, was identified, sources of parental adzuki bean for resistance to race 3 were needed. Therefore, we examined 67 cultivars and lines of cultivated and wild adzuki bean maintained at the Tokachi Agricultural Experiment Station using a root-dip inoculation method. Consequently, nine adzuki bean cultivars, one wild adzuki bean accession and 30 lines (including two lines resistant to all the three races of BSR and AFW) were confirmed to be resistant or tolerant to race 3 of BSR, and we found a cultivar Akamame as well as a wild adzuki bean Acc2515 to be a new source for a resistance gene to the race 3. This cultivar also holds promise as a source of resistance against other races of BSR and AFW.  相似文献   

8.
Soybean (Glycine max (L.) Merill, cv. Williams 82) plants and cell cultures respond to avirulent pathogens with a hypersensitive reaction. After inoculation of soybean with Pseudomonas syringae pv. glycinea, carrying the avirulence gene avrA, or zoospores from the fungus Phytophthora sojae Race 1, a resistance-gene-dependent cell death programme is activated. A new gene was identified by differential display of mRNAs that is specifically activated during the early phase of incompatible pathogen-soybean interactions but does not respond to compatible pathogens. The gene is strongly induced within 2h after addition of P. sojae zoospores. A similar kinetic pattern was observed for P. syringae (avrA) inoculated soybean cell cultures. The gene encodes a deduced protein of 368 amino acids with a very high content of asparagine and was therefore termed N-rich protein (NRP). The protein is composed of two distinct domains, of which only the C-terminal domain has striking homology to proteins of unknown function from other plants. An antibody raised against the recombinant NRP recognizes a protein of 42kDa. The protein is located in the cell wall as indicated by cell fractionation studies. Comparison of the genomic DNA-sequence with the cDNA, identified two introns within the open reading frame. The NRP-gene is not directly induced by salicylic acid or hydrogen peroxide, indicating a distinct and specific signal transduction pathway which is only activated during programmed cell death. The NRP-gene appears to be a new marker in soybean activated early in plant disease resistance.  相似文献   

9.
安徽省大豆疫霉根腐病菌的鉴定及rDNA-ITS序列分析   总被引:1,自引:0,他引:1  
为明确安徽省夏大豆疫霉根腐病的病原菌种类,对采集自涡阳、怀远、固镇3个县的夏大豆病株及土样分离纯化后获得28株菌株,选取6株代表性菌株,通过形态学观察及核糖体DNA-ITS序列分析对其进行鉴定,并测定了其致病型。结果表明,6株菌株在利马豆培养基上菌落白色,质地均匀;菌丝无隔,致密,具近直角分枝;在10%V8C培养液中,游动孢子囊顶生,不脱落,卵形至椭圆形,无明显乳突,有内层出现象,长宽比大于1.6∶1;同宗配合,在利马豆培养基上单株培养产生大量卵孢子,藏卵器球形,雄器大多侧生;接种合丰35大豆品种后出现典型的大豆疫霉根腐病症状。r DNA-ITS序列分析表明,6株菌株与Gen Bank中大豆疫霉Phytophthora sojae的ITS序列同源性高达100%;菌株GY4、GY8、HY11、HY16、GZ10、GZ21的毒力公式分别为1b,2,3a,3b,4,5,6,7;1b,1d,3a,3b;1d,3a,3b,3c,4,5,6,7;2,3c,4,5,6,7;1b,3a,3c,5,8;3a,3b,5,6,7,8;属于6个不同的致病型。研究表明,这6株菌株均为大豆疫霉。  相似文献   

10.
The relation between diversity of pathogenicity on clubroot-resistant (CR) cultivars of Chinese cabbage (Brassica rapa subsp. pekinensis) bred in Japan and DNA polymorphisms in 17 populations of Plasmodiophora brassicae from cruciferous plants was examined by inoculation tests and random amplified polymorphic DNA (RAPD) analysis using 18 arbitrary primers. Four pathotypes (A–D) were identified after inoculation of six CR cultivars of Chinese cabbage in the 17 populations from cruciferous crops. A relatively high level of genetic diversity was also detected among these populations in the RAPD analysis. Although the four pathotypes could not be clearly differentiated using the RAPD data, most populations of three pathotypes had a consistent location on the dendrogram. All pathotype B (virulent on five cultivars except Utage 70) and D (avirulent on all cultivars) populations, which were common in incompatible interactions with cv. Utage 70, were located in a single subcluster. All five pathotype C populations (virulent only on cv. Utage 70) except for one population grouped in another single subcluster. Because four pathotype A populations (virulent on all six cultivars, races 4 and 9) fell in different subclusters, the populations may be genetically polyphyletic. Populations from cruciferous weed Cardamine flexuosa differed remarkably from those from cruciferous crops in pathogenicity on common cultivars of Chinese cabbage and turnip and C. flexuosa, but they grouped in a single cluster with all race 9 populations from crops. Race 9 populations from crops may thus be closely related to populations from the weed rather than to races 1 and 4 from crops.  相似文献   

11.
Adzuki bean cultivar Acc259, which is resistant to races 1 and 2 of Phialophora gregata f. sp. adzukicola, was used as a breeding resource for resistance to brown stem rot (BSR). During the third year after two successive cultivations of Acc259, a severe outbreak of BSR occurred in an experimental plot at the Tokachi Agricultural Experiment Station, Hokkaido, Japan. The isolates obtained from diseased plants were virulent to Erimo-shozu (susceptible to all races) and Acc259 but avirulent to Kita-no-otome (resistant to race 1 but susceptible to race 2). The existence of a new race of P. gregata f. sp. adzukicola, designated race 3, was determined; and its frequency in the plot soil was shown to increase from 16.7% before planting Acc259 to 100% after the third year. Of 140 isolates from the commercial production area that were formerly identified as race 1, 13 were actually race 3 and were restricted to certain limited fields.  相似文献   

12.
The races for the causal agent of spinach downy mildew Peronospora farinosa f. sp. spinaciae were identified by inoculation of race-differential cultivars. One isolate was identified as Pfs:5s and the others belonged to a new race. This is the first report of race Pfs:5 and another new race in Japan.  相似文献   

13.
In 1994, Fusarium wilt of melon cultivars which are resistant to races 0 and 2 of Fusarium oxysporum f. sp. melonis was observed in southern area of the Lake Biwa region, Shiga prefecture. In commercial fields, mature plants of cv. Amus which were grafted onto cv. Enken Daigi 2, and of cv. FR Amus showed yellowing, wilting and finally death before harvesting of fruits. Diseased plants had vascular and root discolorations, and their stem sections yielded typical colonies of F. oxysporum. When the Shiga strains were tested for their pathogenicity to 12 species of cucurbits, they caused wilts only on melon. Using race differential cultivars of melon, the Shiga strains were classified as race 1 of F. oxysporum f. sp. melonis, which has not been reported in Japan. To further characterize their pathogenicity, the strains were used to inoculate 46 additional cultivars of melon, oriental melon and oriental pickling melon. All the race 1 strains were pathogenic to the cultivars tested, and their host range was apparently different from those of strains belonging to other races (races 0, 2 and 1,2y). DNA fingerprinting with a repetitive DNA sequence, FOLR3, differentiated race 1 strains from strains of races 0 and 2, but not from race 1,2y strains. Received 2 July 1999/ Accepted in revised form 30 September 1999  相似文献   

14.
The inheritance of resistance toFusarium oxysporum f.sp.cucumerinum race 1 was determined in the cucumber cv. WIS-248 by analyzing segregation of F1, F2, and BC populations of crosses with the susceptible cv. Straight-8. Resistance was conferred by a single dominant gene. In an allelism test, it was proven that theFcu-1 gene, which confers resistance toF. oxysporum f.sp.cucumerinum races 1 and 2 in cucumber cv. SMR-18 and theFoc gene, which confers resistance toF. oxysporum f.sp.cucumerinum race 2 in cucumber cv. WIS-248, are indistinguishable.  相似文献   

15.
By random amplified polymorphic DNA (RAPD) analysis of the representative isolates of each race of Fusarium oxysporum f. sp. lactucae, RAPD fragments of 0.6, 1.6, and 2.9kb were obtained. The 0.6-kb RAPD fragment was common to the representative isolates of all three races. Amplification of the 1.6- and 2.9-kb fragments were unique to the isolates of races 1 and 2, respectively. Sequence tagged site (STS) marker FLA0001, FLA0101, and FLA0201 were generated from the 0.6-, 1.6-, and 2.9-kb RAPD fragments, respectively. Polymerase chain reaction (PCR) analysis showed that FLA0001 was common to all 49 isolates of F. oxysporum f. sp. lactucae. FLA0101 was specifically generated from all 23 isolates of race 1 but not from races 2 or 3. FLA0201 was specifically amplified from all 12 isolates of race 2 but not from races 1 or 3. In two isolates of F. oxysporum f. sp. lactucum, PCR amplified FLA0001 and FLA0101 but not FLA0201. On the other hand, these STS markers were not detected from isolates of five other formae speciales. Because these STS markers were not generated from isolates of other plant pathogenic fungi, bacteria, or plant materials examined in this study, PCR analysis combined with the three STS markers should be a useful means for rapid identification of races of F. oxysporum f. sp. lactucae.  相似文献   

16.
Bacterial canker is one of the most important diseases of cherry (Prunus avium). This disease can be caused by two pathovars of Pseudomonas syringae: pv. morsprunorum and pv. syringae. Repetitive DNA polymerase chain reaction-based fingerprinting (rep-PCR) was investigated as a method to distinguish pathovars, races and isolates of P. syringae from sweet and wild cherry. After amplification of total genomic DNA from 87 isolates using the REP (repetitive extragenic palindromic), ERIC (enterobacterial repetitive intergenic consensus) and BOX primers, followed by agarose gel electrophoresis, groups of isolates showed specific patterns of PCR products. Pseudomonas syringae pv. syringae isolates were highly variable. The differences amongst the fingerprints of P. syringae pv. morsprunorum race 1 isolates were small. The patterns of P. syringae pv. morsprunorum race 2 isolates were also very uniform, with one exception, and distinct from the race 1 isolates. rep-PCR is a rapid and simple method to identify isolates of the two races of P. syringae pv. morsprunorum; this method can also assist in the identification of P. syringae pv. syringae isolates, although it cannot replace inoculation on susceptible hosts such as cherry and lilac.  相似文献   

17.
Pepper cultivars from diverse geographic origins were evaluated for resistance to different isolates ofPhytophthora capsici under controlled environmental conditions. All accessions tested were susceptible at the four-leaf stage to the six isolates ofP. capsici. Inoculation at the eight-leaf stage resulted in significantly different interactions among the accessions andP. capsici isolates. The Korean and U.S. cultivars tested were highly susceptible to the isolates ofP. capsici at this stage. In contrast, PI 201234 and PI 201238 had a differential interaction with someP. capsici isolates. At the twelve-leaf stage, Phytophthora blight developed slowly in the Korean and U.S. cultivars that were highly susceptible at the eight-leaf stage. Furthermore, the accessions from the Asian Vegetable Research and Development Center (AVRDC) became highly resistant toP. capsici at this stage.  相似文献   

18.
Sequences of the internal transcribed spacer (ITS) region 1 were used to examine the phylogenetic relationships among races of 19 isolates of Phytophthora vignae f. sp. adzukicola and between this forma specialis and three isolates of the closely related P. vignae f. sp. vignae. The ITS 1 sequences were highly conserved (> 98.7% similarity) among representatives of both formae speciales groups. The results of this study indicate that P. vignae is a monophyletic group. The nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under the accession nos. AB120062–AB120080 and AB120122  相似文献   

19.
本研究根据大豆与疫霉互作的基因芯片数据,筛选了一个受疫霉诱导表达的大豆抗病相关基因(Gm DRRP,glycine max disease resistance response protein),并对其启动子响应疫霉侵染的功能进行了研究。序列分析表明该基因编码一个大豆抗病相关蛋白。分别用SA、Me JA、ABA、ETH和GA3五种激素处理后,发现该基因的表达受激素的抑制。克隆其转录起始位点上游1 590 bp的启动子区,生物信息学分析发现该区域包含多个已知与逆境响应相关的顺式元件。进一步将启动子构建在融合Gus报告基因的植物表达载体上,分别瞬时转化烟草和稳定转化大豆根毛,并检测了Gus报告基因的表达情况。结果表明,Gm DRRP启动子均能在两种体系中不同程度的受疫霉诱导,其表达模式为接种后0.5 h被快速诱导,并在2 h时显著提高。根据生物信息学对顺式元件的预测结果,对启动子进行了分段分析,获得了一个222 bp的小片段,其疫霉诱导表达能力是全长启动子的34%。以上结果表明大豆的Gm DRRP启动子能被疫霉快速诱导。  相似文献   

20.
The causal agent of cucurbit powdery mildew in southeastern Spain has been investigated since 1996. Of the 139 single-spore isolates obtained, all were identified asSphaerotheca fusca. Four physiological races (1, 2, 4 and 5) of the pathogen were detected. During the survey, a population shift ofS. fusca was observed: race 1 was progressively replaced by other races. In addition, race coexistence was observed in several cucurbit greenhouses. Four host range patterns or pathotypes were distinguished among the isolates ofS. fusca. All isolates were highly aggressive on melon and especially on zucchini cultivars. No clear relationships between races and pathotypes could be established, although isolates virulent on watermelon were preferentially associated with race 1. These data show an apparent heterogeneity ofS. fusca populations in southeastern Spain that should be analyzed further. http://www.phytoparasitica.org posting Aug. 9, 2002.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号