首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The emergence of virulent root-knot nematode populations, able to overcome the resistance conferred by some of the resistance genes (R-genes) in Solanaceous crops, i.e., Mi(s) in tomato, Me(s) in pepper, may constitute a severe limitation to their use in the field. Research has been conducted to evaluate the durability of these R-genes, by comparing the reproduction of several laboratory-selected and wild virulent Meloidogyne incognita isolates, on both susceptible and resistant tomatoes and peppers. We first show that the Me1 R-gene in pepper behaves as a robust R-gene controlling avirulent and virulent Me3, Me7 or Mi-1 isolates. Although the reproductive potential of the virulent isolates was highly variable on susceptible and resistant plants, we also confirm that virulence is highly specific to a determined R-gene on which selection has occurred. Another significant experimental result is the observation that a reproductive fitness cost is associated with nematode virulence against Mi-1 in tomato and Me3 and Me7 in pepper. The adaptative significance of trade-offs between selected characters and fitness-related traits, suggests that, although the resistance can be broken, it may be preserved in some conditions if the virulent nematodes are counter-selected in susceptible plants. All these results have important consequences for the management of plant resistance in the field.  相似文献   

2.
南方根结线虫中国分离群体种内变异分析   总被引:1,自引:0,他引:1  
为调查我国不同地区和不同寄主上的根结线虫Meloidogyne spp.种类分布以及群体变异情况,基于酯酶和苹果酸脱氢酶同工酶图谱及SCAR分子标记技术对2017—2019年从6省19种植物根部组织分离到的40个根结线虫群体进行鉴定,针对南方根结线虫M.incognita群体分别通过寄主鉴别法进行生理小种鉴别,利用携带Mi抗性基因的番茄进行毒力测试,对2龄幼虫的口针长度和体长进行测量,并对核糖体ITS和线粒体Nad5基因序列进行比较分析。结果显示:根结线虫分离群体经鉴定包括38个南方根结线虫群体和2个象耳豆根结线虫M.erterolobii群体;38个南方根结线虫群体中有35个群体被鉴别为1号生理小种,其余3个群体被鉴别为2号生理小种;发现1个南方根结线虫群体CN19可在携带Mi抗性基因的番茄上侵染繁殖,为毒性群体,其余群体无法进行侵染和繁殖,为无毒群体。南方根结线虫群体2龄幼虫的口针长度和体长均差异较大,而不同寄主来源分离群体的ITS和Nad5基因序列也存在一定变异。基于ITS和Nad5基因序列构建的系统发育树将所有根结线虫群体归为南方根结线虫和象耳豆根结线虫组成的2个独立分支,但不能确定南方根结线虫不同群体的分子进化与其寄主来源和地理分布之间的相关性。  相似文献   

3.
Root‐knot nematodes (RKNs), Meloidogyne spp., are a major disease problem in solanaceous crops worldwide, including pepper (Capsicum spp.). Genetic control provides an economically and environmentally sustainable protection alternative to soil fumigants. In pepper, resistance to the main RKN species (M. incognita, M. javanica and M. arenaria) is conferred by the major genes (R genes) Me1, Me3 and N. However, RKNs are able to develop virulence, thus endangering the efficiency of R genes. Quantitative resistance (QR) against Meloidogyne spp. is expected to provide an alternative to R genes, or to be combined with R genes, to increase the resistance efficiency and durability in pepper. In order to explore the ability of QR to protect pepper against RKNs, five pepper inbred lines, differing in their QR level, were tested directly, or after combination with the Me1 and Me3 genes, for their resistance to a panel of M. arenaria, M. javanica and M. incognita isolates. The M. arenaria and M. javanica isolates showed low pathogenicity to pepper, unlike the M. incognita isolates. The QR, controlled by the pepper genetic background, displayed a high resistance level with a broad spectrum of action, protecting pepper against Me3‐virulent as well as avirulent M. incognita isolates. The QR was also expressed when combined with the Me1 and Me3 genes, but presented additive genetic effects so that heterozygous F1 hybrids proved less resistant than homozygous inbred lines. The discovery of this QR is expected to provide promising applications for preserving the efficiency and durability of nematode resistance.  相似文献   

4.
Nine populations of Meloidogyne spp. from Greece have been identified as M. javanica or M. incognita using either isozyme phenotypes or the sequence characterized amplified region-polymerase chain reaction (SCAR-PCR) technique. Virulence against the Mi resistance gene was assayed by pot experiments in controlled conditions and revealed the ability of five populations of M. javanica and one population of M. incognita to reproduce on tomato cultivars containing that gene. A resistance-breaking population of M. incognita is reported for the first time in the country; the M. javanica populations constitute new records for the Greek mainland.  相似文献   

5.
Experiments were conducted to determine the effectiveness and profitability of the Mi-resistance gene in tomato in suppressing populations of Meloidogyne javanica in a plastic-house with a natural infestation of the nematode. Experiments were also conducted to test for virulence and durability of the resistance. Monika (Mi-gene resistant) and Durinta (susceptible) tomato cultivars were cropped for three consecutive seasons in non-fumigated or in soil fumigated with methyl bromide at 75 g m–2 and at a cost of 2.44 euros m–2. Nematode densities were determined at the beginning and end of each crop. Yield was assessed in eight plants per plot weekly for 6 weeks. The Pf/Pi values were 0.28 and 21.6 after three crops of resistant or susceptible cultivars, respectively. Growth of resistant as opposed to susceptible tomato cultivars in non-fumigated soil increased profits by 30,000 euros ha–1. The resistant Monika in non-fumigated soil yielded similarly (P > 0.05) to the susceptible Durinta in methyl bromide fumigated soil but the resistant tomato provided a benefit of 8800 euros ha–1 over the susceptible one because of the cost of fumigation. Selection for virulence did not occur, although the nematode population subjected to the resistant cultivar for three consecutive seasons produced four times more eggs than the population on the susceptible one. Such a difference was also shown when the resistant cultivar was subjected to high continuous inoculum pressure for 14 weeks. The Mi-resistance gene can be an effective and economic alternative to methyl bromide in plastic-houses infested with root-knot nematodes, but should be used in an integrated management context to preserve its durability and prevent the selection of virulent populations due to variability in isolate reproduction and environmental conditions.  相似文献   

6.
为探明长枝木霉Trichoderma longibrachiatum菌株TL16防治南方根结线虫Meloidogyne incognita的作用机理,采用原生质体转化法获得绿色荧光蛋白(green fluorescent protein,GFP)标记菌株GFP-TL16,通过测定菌株TL16和GFP-TL16对南方根结线虫卵和2龄幼虫(2nd-stage juvenile,J2)的寄生与致死作用,其发酵液对卵孵化的抑制作用和对J2的致死作用,以及菌株GFP-TL16在黄瓜根系的定殖情况和菌株TL16对番茄根结形成的抑制作用来综合分析其作用机理。结果显示:菌株TL16菌丝对南方根结线虫卵无寄生作用,处理19 d后卵降解率为26.33%,致死作用较低;菌株TL16分生孢子悬浮液处理南方根结线虫J2后72 h的致死率为1.65%,且无寄生作用。菌株TL16发酵液处理南方根结线虫J2后48 h的校正死亡率为10.71%,处理卵15 d后对卵孵化的相对抑制率为77.11%。菌株GFP-TL16可定殖于黄瓜根系中,经菌株TL16处理后接种南方根结线虫J2,番茄根结减退率为55.88%。表明长枝木霉菌株TL16可通过抑制根结线虫卵孵化和诱导番茄产生抗病性来防治根结线虫病。  相似文献   

7.
Resistant tomato cultivars are an important tool to control Meloidogyne spp., which cause the highest yield losses attributed to plant‐parasitic nematodes. However, the repeated cultivation of Mi resistant cultivars can select virulent populations. In the present study, the susceptible tomato cv. Durinta and the resistant cv. Monika were cultivated from March to July in a plastic greenhouse for 3 years to determine the maximum multiplication rate, maximum nematode density, equilibrium density, relative susceptibility and population growth rate of M. incognita; these were used as proxy indicators of virulence and yield losses. The values of population dynamics and growth rate on the resistant tomato increased year by year and were higher when it was repeatedly cultivated in the same plot compared to when it was alternated with the susceptible cultivar and the level of resistance decreased from very to moderately resistant. The relationship between the nematode density at transplanting (Pi) and the relative yield of tomato fitted to the Seinhorst damage model for susceptible, but not resistant, cultivars. The tolerance limit and the relative minimum yield were 2–4 J2 per 250 cm3 of soil and 0.44–0.48, respectively. The tomato yield did not differ between cultivars at low Pi, but it did at higher Pi values, at which the resistant yielded 50% more than the susceptible. This study demonstrates the utility of population dynamics parameters for the early detection of selection for virulence in Meloidogyne spp., and that three consecutive years were not sufficient to select for a completely virulent population.  相似文献   

8.
BACKGROUND: The root‐knot nematode, Meloidogyne incognita (Kofoid & White) Chitwood, is an important plant pathogen damaging to tomato. Continuous use of resistant tomato cultivars and nematicides for its effective management might lead to resistance break‐up or nematicide failure. Genetic variability and virulence in M. incognita on susceptible Pusa Ruby tomato were analysed by bioassay, esterase and DNA polymorphism after a 5 year weekly exposure to carbofuran, carbosulfan, cadusafos and triazophos at 0.0125, 0.0250 and 0.0500 µg g?1. Virulence in M. incognita after a 5 year multiplication on resistant tomatoes was assessed. RESULTS: The nematicidal treatments resulted in the development of virulent M. incognita populations. Their invasion potential increased significantly after continuous exposure to low concentrations of the nematicides. Also, growing resistant tomato cultivars for ten successive seasons resulted in a 6.6% increase in the invasion potential. These virulent populations exhibited 1–3 additional esterase and DNA bands compared with untreated populations. CONCLUSION: A 5 year exposure of M. incognita to sublethal concentrations of nematicides or resistant tomato cultivars exerted enough selection pressure to cause genomic alterations for virulence development. Isozyme markers can be used for rapid and precise diagnostics of field populations by advisory services, enabling judicious remedial management decisions. Copyright © 2009 Society of Chemical Industry  相似文献   

9.
A series of selection experiments on potato cyst nematode Globodera pallida, pathotype Pa1, tested the virulence response of the nematode to a range of resistant potato Solanum genotypes. Alleles conferring virulence against all four Solanum sources used in the study (i.e. Solanum vernei, S. multidissectum, S. sanctae-rosae and S. tuberosum ssp. andigena) were detected. Selection for multiple virulence against a combination of resistant sources resulted in the originally-selected virulence genes being retained or lost. The mechanism, or basis, of potato cyst nematode resistance differs between the Solanum species. The appropriate use of resistance cultivars produced from a range of Solanum-resistant species offers a management tool for controlling potato cyst nematode levels in infested land.  相似文献   

10.
The response of four Mi-resistance gene tomato rootstocks to seven populations of Meloidogyne was determined in pot tests conducted in a glasshouse. Rootstocks PG76 (Solanum lycopersicum × Solanum sp.) and Brigeor (S. lycopersicum × S. habrochaites) and resistant cv. Monika (S. lycopersicum) were assessed against one population of M. arenaria, three of M. incognita, and three of M. javanica. Rootstocks Beaufort and Maxifort were assessed against one population of M. arenaria, two of M. incognita and two of M. javanica. Rootstock PG76 was highly resistant (reproduction index <10%) to all the populations, whereas rootstock Brigeor and cv. Monika were highly to moderate resistant. Rootstocks Beaufort and Maxifort showed reduced resistance or inability to suppress nematode reproduction, and their responses varied according to the population tested. Beaufort and Maxifort were susceptible to the two populations of M. javanica as Maxifort was to one of M. incognita. The reproduction index of the nematode was higher (P < 0.05) on Maxifort than Beaufort for all root-knot nematode populations.  相似文献   

11.
Organic amendments and green manure are potential alternatives to the harmful chemical control means currently used against plant-parasitic nematodes. In this work, Chrysanthemum coronarium was applied to the soil as a green manure to control the root-knot nematodes Meloidogyne incognita and M. javanica. Chrysanthemum coronarium significantly reduced nematode infection of tomato roots and improved plant-top fresh weight, both in the greenhouse and in microplots. Other green manures, derived from Anthemis pseudocotula, wild chickpea (Cicer pinnatifidum), Geranium spp. and wheat, were not as effective as C. coronarium. Chrysanthemum coronarium, retained its nematicidal activity even when applied as a dried material. Only mature C. coronarium plants, in their flowering stage, exhibited nematode control activity, but the green plant parts were more effective than the flowers. An aqueous extract of C. coronarium exhibited in vitro, nematostatic activity towards M. incognita and M. javanica second-stage juveniles and inhibited their hatching from eggs and egg-masses; its nematostatic activity was expressed also against other phytonematode species such as Heterodera avenae and Pratylenchus mediterraneus, but did not affect the beneficial entomopathogenic nematode Steinernema feltiae.  相似文献   

12.
During the process of breeding programmes, several resistance genes have been introgressed into tomato (Solanum lycopersicum) cultivars from different wild tomato relatives. A number of these resistance genes have been mapped to chromosome 6. Among them, Ty-1 and Mi, which confer resistance to Tomato yellow leaf curl disease and to Meloidogyne spp., respectively, are in most cases incorporated in commercial hybrids. Several molecular markers tightly linked to Mi have been identified. This study was conducted in order to find an informative molecular marker linked to Ty-1. Six markers mapped in the same region as Ty-1 were analysed in plant material carrying different combinations of Ty-1 and Mi alleles. Three of the six markers revealed polymorphism among the assayed accessions. One allele of JB-1 marker showed association with Ty-1. Furthermore, the presence of Mi did not interfere with the results. The analysis of several accessions of wild tomato relatives with the three polymorphic markers allowed the establishment of the origin of the alleles found in cultivated plant material, showing that introgressions from S. lycopersicum, S. pimpinellifolium and S. habrochaites will not interfere with the results of this marker which tags Ty-1. Furthermore this analysis enabled the location of CT21, the RFLP marker from which JB-1 was designed.  相似文献   

13.
The eggplant Solanum melongena cv. Cristal, either ungrafted or grafted onto the Solanum torvum rootstock cv. Brutus, was cultivated for two consecutive years in the same plots in a plastic greenhouse to assess the level of resistance to Meloidogyne incognita and crop yield. At the end of the second crop, the putative selection for virulence of the nematode subpopulations coming from infected ungrafted and grafted eggplant was assessed in the eggplant and in S. torvum in a pot experiment. Nematode population densities at transplantation in 2017 ranged from 2 to 378 per 100 cm3 of soil and did not differ between ungrafted and grafted eggplant. At the end of each crop, a higher galling index and number of nematodes in soil and in roots was registered in ungrafted compared to grafted eggplant. The grafted eggplant was categorized as resistant in 2017 and as highly resistant in 2018. Eggplant yield did not differ irrespective of grafting in 2017 after being cultivated for 135 days, but it differed after 251 days of cultivation in 2018. In the pot experiment, S. torvum was categorized as resistant to both M. incognita subpopulations. However, the M. incognita subpopulation obtained from roots of S. torvum produced 49.4% fewer egg masses and 56% fewer eggs per plant in the eggplant than the nematode subpopulation obtained from roots of the eggplant cv. Cristal. The results of this study revealed that the infective and reproductive fitness of the nematode decreased without having been selected for virulence.  相似文献   

14.
Agrobacterium tumefaciens (AT) is the causal agent of crown gall, a major problem in the family Rosaceae and particularly for Prunus spp. Crown gall symptoms result from the bacterial infection of the cells damaged mechanically at the collar or by root parasitic nematodes. Myrobalan plum (P. cerasifera) is susceptible to AT and is not a host for the root-knot nematode (RKN), M. hapla. Some clones of this plum carry single Ma resistance genes that control M. arenaria, M. incognita and M. javanica. The four above mentioned RKN and Myrobalan progenies segregating for Ma were used in experiments aimed at obtaining a better knowledge of the interaction between AT and RKN in relation to the RKN resistance genes. Prunus rooted cuttings, naturally infected with the bacterium were repotted, grown and inoculated individually with RKN. In a first experiment, Prunus plants were (i) either inoculated with 10,000 juveniles (J2s) of M. arenaria to provide a short inoculum pressure (SIP) or (ii) inoculated by association with one M. arenaria-galled tomato root system that produced a high and durable inoculum pressure of the same nematode species. Four months after RKN inoculation, plants were rated for nematode and bacterial root galling symptoms. RKN and AT galls were more numerous and more homogenous under DIP than under SIP. Nevertheless, for both inoculum regimes, AT galls were present in the RKN-susceptible clones (= carrying none of the Ma genes) and absent in the RKN-resistant clones. Subsequent experiments, conducted under DIP with M. arenaria, M. incognita, M. javanica and M. hapla, also showed, for the three first species, the presence of AT galls only in RKN-susceptible clones whereas Prunus plants inoculated with M. hapla and nematode-free controls were free of AT galls. Consequently RKN act as a wound agent in the AT infection process of Myrobalan plum only when the plant develops a compatible reaction (i.e. when it lacks the Ma resistance genes). Considering that J2s do penetrate the roots of resistant plants, the absence of crown gall symptoms on this material even under durable inoculum pressure strengthens the hypothesis that this nematode stage has a very weak effect on plant cells during the infection process. This is the first evidence of the protective effect of a RKN resistance gene against the expression of root crown gall consecutive to RKN infection. The protective effect of Ma and presumably of other RKN resistance genes against AT is a strong argument for their introgression into Prunus and other Rosaceae or bacterium-susceptible crops.  相似文献   

15.
为筛选对南方根结线虫具有致死效果的生防细菌,从山东省10个县市蔬菜主产区番茄根际土壤中分离可培养细菌,采用离体杀线虫试验测定分离菌株对南方根结线虫Meloidogyne incognita的致死活性,结合生理生化特征及分子生物学方法对高效杀线虫菌株进行分类鉴定,同时对其杀线虫特性进行表征,并通过盆栽试验进一步验证其生防潜力。结果显示,从山东省蔬菜主产区番茄根际土中分离到1株高效杀线虫菌株AMCC 100218,结合生理生化试验与16S rRNA序列分析,鉴定此菌株为和田鞘氨醇杆菌Sphingobacterium hotanense;该菌株对南方根结线虫2龄幼虫的致死效果可达88.87%,其杀线虫活性物质具有较好的热稳定性和储存稳定性,且耐碱不耐酸;盆栽试验结果表明,该菌能够显著减少土壤中的虫口密度,降低番茄发病率。表明和田鞘氨醇杆菌AMCC 100218菌株是1株具有防治根结线虫病潜力的生防细菌。  相似文献   

16.
Nematode reproduction on the nematode-susceptible tomato cv. Durinta grafted onto the Mi-resistance gene tomato rootstock SC 6301 was compared to the Mi-resistance gene tomato cv. Monika in a plastic house infested with Meloidogyne javanica. The ungrafted susceptible cv. Durinta was included as a control for reference. Final soil population densities were lower (P ≤ 0.05) on the resistant than susceptible cultivar but intermediate values were recorded on the rootstock SC 6301. The lowest numbers of eggs per gram root were recorded on the resistant cultivar followed by those on the rootstock; in both cases, they were lower (P < 0.05) than on the susceptible control. Cumulative yield (kilogram per square meter) was higher (P < 0.05) on the resistant than susceptible cultivar whether or not it had been grafted. The rootstock SC 6301 provided an intermediate resistance response to M. javanica and was less effective than the resistant cultivar in suppressing nematode populations and plant damage under the experimental conditions of this study.  相似文献   

17.
Field trials were conducted in a plastic house artificially infested with an avirulent population of Meloidogyne javanica to determine the durability of the resistance mediated by the Mi gene in tomato rootstocks after repeated cultivation for three consecutive years. Treatments included an experimental rootstock cv. PG76 ( Solanum lycopersicum  ×  Solanum sp.), a commercial rootstock cv. Brigeor ( S. lycopersicum  ×  S. habrochaites ), a resistant tomato cv. Monika ( S. lycopersicum ), and a susceptible cv. Durinta ( S. lycopersicum ). Based on the reproduction index (RI: number of eggs per g root on the resistant cultivar divided by number of eggs per g root on the susceptible cultivar × 100), rootstock cv. PG76 responded as highly resistant (RI = 7%) after the first cropping cycle (3·4 nematode generations), showed intermediated resistance (RI = 33%) after the second cropping cycle (3·3 generations), and was fully susceptible (RI = 94%) after the third cycle (3·3 generations). In contrast, rootstock cv. Brigeor and resistant cv. Monika retained intermediate resistance levels (RI = 41 and 25%, respectively) after the third cropping cycle. Virulent nematode populations were rapidly selected from an avirulent one after repeated cultivation of resistant tomatoes under field conditions. Bioassays conducted under controlled conditions confirmed that selection for virulence occurred more rapidly in plots with cv. PG76 followed by Brigeor and Monika. The nematode population in the field not exposed to Mi resistance remained avirulent to Mi genotypes. The genetic background of the resistant rootstocks and the frequency of cropping were critical factors for the appearance of virulent nematode populations. Irrespective of nematode infection, all resistant tomatoes yielded more than the susceptible cultivar.  相似文献   

18.
The effect of root-knot nematode (RKN) (Meloidogyne incognita) onVerticillium dahliae andFusarium oxysporum f.sp.vasinfectum in cotton (Gossypium hirsutum) was investigated. Two different inoculation methods were used, one in which inoculum was added to the soil, so that nematode and fungal inoculum were in close proximity; the other, inoculation into the stem, whereby the two inocula were spatially separated. Invasion of the roots by RKN enhanced disease severity, as measured by the height of vascular browning in the stem, following inoculation with either wilt pathogen. The effect of RKN on Fusarium wilt was more pronounced than that on Verticillium wilt. Nematode-enhanced infection byF. oxysporum is a well known effect but there are few reports of enhanced infection byVerticillium due to RKN. Relative resistance of a number of cotton cultivars to both wilt diseases, as measured by height of vascular browning, was similar to the known field performance of the cultivars. The use of vascular browning as an estimate of disease severity was therefore validated. http://www.phytoparasitica.org posting Feb. 3, 2003.  相似文献   

19.
BACKGROUND: Fluensulfone, a new nematicide of the fluoroalkenyl group, has proved to be very effective in controlling root‐knot nematodes, Meloidogyne spp., by soil application. The systemic activity of this compound against M. incognita on peppers via soil drenching and foliar spray was evaluated. RESULTS: Root application of fluensulfone via soil drenching showed slight and no nematode control activity when applied 4 and 10 days, respectively, after inoculation. A single foliar spray of peppers with a fluensulfone solution at 3.0 g L?1 prior to inoculation reduced the galling index by 80% and the number of nematode eggs by 73–82% of controls. The reduction in these parameters by fluensulfone was much higher than that obtained with oxamyl or fenamiphos at the same concentration. This activity was also observed when the plants were sprayed 21 days before inoculation. A series of experiments suggested that foliar spray with fluensulfone prior to inoculation reduces nematode invasion. However, foliar spray after inoculation did not inhibit nematode development inside roots. CONCLUSION: Fluensulfone showed relatively high nematode control activity when sprayed on the foliage before inoculation. Fluensulfone may be used as a foliar application, in addition to soil application, for root‐knot nematode control. Copyright © 2011 Society of Chemical Industry  相似文献   

20.
The response of 10 commercial or experimental tomato rootstocks with the Mi resistance gene to an initial inoculum of a Mi‐avirulent population of Meloidogyne javanica was determined in pot tests conducted in spring and summer. In a field test, the rootstocks were subjected to continuous exposure to high initial population densities (2050 ± 900 second‐stage juveniles (J2) per 250 cm3 soil) of the nematode. The presence of the Mi locus in the resistant rootstocks and cultivars was confirmed using the PCR co‐dominant markers REX‐1 and Mi23. Nematode infectivity (egg masses) and reproduction (eggs g?1 root) were highly variable in the spring tests. Rootstocks PG76, Gladiator and MKT‐410 consistently responded as highly resistant, with nematode multiplication rate (Pf/Pi) < 1 and reproduction index (RI) < 10%, and they were as efficient as standard resistant tomato cultivars at nematode suppression. The relative resistance levels of rootstocks Brigeor, 42851, 43965, Big Power and He‐Man varied depending on the susceptible standard used for reference or the duration of the test. Rootstocks Beaufort and Maxifort were susceptible to M. javanica (Pf/Pi > 50 and RI > 50%). Rootstocks PG76 and He‐Man, and the resistant tomato cv. Caramba showed high levels of resistance in the test conducted in summer, whereas MKT‐410 and 42851 and the resistant tomato cv. Monika were moderately resistant. In the field, seven rootstocks showed high levels of resistance and one (He‐Man) showed an intermediate level, whereas Beaufort and Maxifort were susceptible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号