首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The field strain of Anopheles stephensi, the main malaria vector in south of Iran, was colonized in laboratory and selected with DDT and dieldrin in two separate lines for 3 generations to a level of 19.5- and 14-fold for DDT and dieldrin resistance, respectively. Synergist tests with chlorofenethol (DMC) and piperonyl butoxide (PBO) on the selected strains indicated that dehydrochlorination and oxidative detoxification might be the underlying mechanisms involved in the resistance to dieldrin and DDT in selected strains. DDT selection decreased susceptibility to DDT and pyrethroids including lambdacyhalothrin, permethrin deltamethrin and cyfluthrin. The result also showed that selection with dieldrin caused negative and positive cross-resistance to pyrethroid and fipronil, respectively. Based on these results, it can be concluded that besides metabolic resistance mechanisms, other factors such as mutation in γ aminobutyric acid (GABA) and voltage-gated sodium channels (Kdr) might be involved.  相似文献   

2.
Insecticide resistance in the bedbug Cimex hemipterus was investigated using 4211 bedbugs collected from three districts of Sri Lanka. Insecticide bioassays were carried out with discriminating dosages of deltamethrin, permethrin, DDT, malathion, and propoxur. Activity levels of insecticide metabolizing enzymes and the insecticide target site acetylcholinesterase were monitored using biochemical assays. Percentage survivals after DDT, malathion, and propoxur exposure were 41-88%, 18-64%, and 11-41%, respectively. For deltamethrin and permethrin, KT50/KT90 (time to knock-down 50%/90% of the population) values were 0.5-24/1.0-58 and 1.3-10/2.5-47 h, respectively. Both elevated esterase and malathion carboxylesterase mechanisms were present in bedbug populations. Monooxygenase levels were heterogeneous. Organophosphate and carbamate target site acetylcholinesterase, was insensitive in 29-44% of the populations. High DDT resistance was probably due to glutathione S-transferases. Malathion carboxylesterases are mainly responsible for high malathion resistance. High tolerance to both DDT and pyrethroids suggests the presence of ‘kdr’ type resistance mechanism in one population.  相似文献   

3.
Strains of Culex quinquefasciatus Say, selected with biopermethrin [(1R)-trans-permethrin] or with (1R)-cis-permethrin, were examined in the larval stage for crossresistance to 30 pyrethroids, DDT, dieldrin, temephos, propoxur, and two organotin compounds. The (1R)-trans-Permethrin-R strain [resistance factor (RF) = 4100-fold] and the (1R)-cis-Permethrin-R strain (RF= 450-fold) of C. quinquefasciutus were cross-resistant to all pyrethroids tested [RF= 12-fold for an allethrin isomer to about 6000-fold for (RS,RS)-fenvalerate] as well as to DDT (RF= about 2000-fold). However, they were not significantly Cross-resistant to dieldrin, temephos, propoxur, and the two organotin compounds. Changes in the alcohol moiety, structural isomerism, and susceptibility of the cyclopropane C-3 side chain to oxidative attack are important factors in determining the level of cross-resistance to various pyrethroids. Limited synergism of the pyrethroids by S,S,S-tributyl phosphorotrithioate and piperonyl butoxide (PB), and of DDT by chlorfenethol and PB, suggested that some non-metabolic mechanism, such as kdr, may be an important component of resistance to pyrethroids as well as to DDT in this mosquito.  相似文献   

4.
In May 2001 a sample of Culex pipiens pipiens variety molestus Forskål from Marin County, California, collected as larvae and reared to adults, was found to show reduced resmethrin and permethrin knock‐down responses in bottle bioassays relative to a standard susceptible Cx pipiens quinquefasciatus Say colony (CQ1). Larval susceptibility tests, using CQ1 as standard susceptible, indicated that the Marin mosquitoes had LC50 resistance ratios of 18.3 for permethrin, 12 for deltamethrin and 3.3 for pyrethrum. A colony of Marin was established and rapidly developed higher levels of resistance in a few generations after exposure to permethrin as larvae. These selected larvae were shown to cross‐resist to lambda‐cyhalothrin as well as to DDT. However, adult knock‐down time in the presence of permethrin, resmethrin and pyrethrum was not increased after increase in tolerance to pyrethroids as larvae. Partial and almost complete reversion to susceptibility as larvae was achieved with S, S, S‐tributylphosphorotrithioate and piperonyl butoxide (PBO), respectively, suggesting the presence of carboxylesterase and P450 monooxygenase mediated resistance. Insensitive target site resistance (kdr) was also detected in some Marin mosquitoes by use of an existing PCR‐based diagnostic assay designed for Cx p pipiens L mosquitoes. Carboxylesterase mediated resistance was supported by use of newly synthesized novel pyrethroid‐selective substrates in activity assays. Bottle bioassays gave underestimates of the levels of tolerance to pyrethroids of Marin mosquitoes when compared with mortality rates in field trials using registered pyrethroid adulticides with and without PBO. This study represents the first report of resistance to pyrethroids in a feral population of a mosquito species in the USA. Copyright © 2003 Society of Chemical Industry  相似文献   

5.
The variation in tolerance to diflubenzuron [1-(4-chlorophenyl)-3-(2,6-difluorobenzoyl)urea] was examined in fourth instar larvae of seven strains of Aedes aegypti, some of which were resistant to DDT and permethrin. The difference between the least and the most tolerant to diflubenzuron was approximately two-fold. There was no correlation with resistance to the other insecticides. A DDT-resistant strain (T8) was selected 10 times (during 12 generations) with diflubenzuron. The LC50 to diflubenzuron had increased 3.3 times by the S8 generation but there was no further increase in later generations despite further selection. Associated with this increase, a marked decrease in resistance to DDT was observed but no change in permethrin tolerance. A genetically enriched strain (Hotchpotch) was synthesised from 35 strains of different geographic origin and crossed to the selected T8 strain before subsequent generations were selected five times with diflubenzuron. This procedure resulted in an 8 to 12-fold increase in the LC50 value over that for unselected T8, accompanied by a decrease in the slope of the log dose against probit mortality line.  相似文献   

6.
Adult mosquitoes from two strains of Anopheles gambiae and from three strains of Anopheles stephensi were exposed to 0.25% fipronil‐treated papers in WHO test kits or to 500 mg fipronil m−2 impregnated mosquito netting in bioassay spheres. For comparison, tests were also carried out with the pyrethroid permethrin, using the same methods and doses, and on papers treated with 0.4 and 4% of the cyclodiene insecticide dieldrin. Compared with the same doses of permethrin, fipronil showed less and delayed activity. Two of the An stephensi strains were resistant to fipronil and dieldrin. To investigate whether this was due to a resistance mechanism in the An stephensi strains acting against both insecticides, the most fipronil‐ and dieldrin‐tolerant strain was further selected in two separate lines with one of the insecticides, followed by tests with the insecticide that the line had not been selected with. This indicated a concomitant rise of resistance to dieldrin in the fipronil‐selected line and vice versa. Repeated back‐crossing of the two lines with a susceptible strain and re‐selection with either dieldrin or fipronil gave evidence for the involvement of a single resistance mechanism to both insecticides. Permethrin resistance in both lines declined with selection for dieldrin or fipronil and confirms the absence of cross‐resistance between fipronil and pyrethroids. © 2001 Society of Chemical Industry  相似文献   

7.
Dengue is one of the most important vector-borne diseases worldwide and is a public health problem in Mexico. Most programs in dengue endemic countries rely on insecticides for Aedes control. In Mexico, pyrethroid insecticides (mainly permethrin and deltamethrin) have been extensively used over a decade as adulticides and represented a strong selection for insecticide resistance for dengue vectors in several parts of the country. We studied the type, frequency and distribution of insecticide resistance mechanisms in Aedes aegypti from six municipalities in the state of Guerrero selected on the basis of historically intense chemical control and a high risk for dengue transmission. Ae. aegypti eggs were collected from October 2009 to January 2010 using ovitraps. F1 adults, emerged from these collections, were exposed to permethrin, deltamethrin and DDT in WHO diagnostic tests and showed high resistance levels to both pyrethroids and DDT. This was consistent with the presence of increased metabolic enzyme activities and target site insensitivity due to kdr mutations. Biochemical assays showed elevated esterase and glutathione S-transferase activities in the six municipalities. The V1016I kdr mutation on the IIS6 domain of the sodium channel gene was present in an overall frequency of 0.80. A second mutation, F1534C on the IIIS6 domain of the same gene was also detected, being the first report of this mutation in Guerrero. The multiple resistance mechanisms present in Ae. aegypti from Guerrero state represent a warning for the efficacy of the pyrethroid usage and consequently for the success of the dengue control program.  相似文献   

8.
The cecropia juvenile hormone and three of its analogs were compared as inducers of microsomal epoxidase, O-demethylase, and DDT dehydrochlorinase in the housefly, Musca domestica L. The compounds were the cecropia juvenile hormone, methoprene, hydroprene, 6,7-epoxy-3,7-diethyl-1-[3,4-(methylenedioxy)phenoxy]-2-octene, and piperonyl butoxide, a well known insecticide synergist. The compounds were administered by feeding at levels up to 1% in the diet for 3 days to 1-day-old female adults. Enzymes were then prepared and assayed for their activity using heptachlor, p-nitroanisole, and DDT as substrates.There was approximately a twofold increase in the microsomal oxidases and a 50% increase in DDT dehydrochlorinase after the treatment with the cecropia juvenile hormone, while methoprene had some activity as an inducer of the epoxidase (30% increase) but no activity in the case of the O-demethylase or the dehydrochlorinase. Hydroprene had no effect on any of the enzyme systems, while 6,7-epoxy-3,7-diethyl-1-[3,4-(methylenedioxy)phenoxy]-2-octene was an inhibitor of the two microsomal oxidases. The latter compound and piperonyl butoxide were strong inducers of DDT dehydrochlorinase, causing approximately twofold increases in the activity of this enzyme.There was evidence that the microsomal preparations were able to metabolize and inactivate methoprene and hydroprene, the action being oxidative in the case of methoprene and both oxidative and hydrolytic in the case of hydroprene. The oxidative metabolism of the two juvenile hormone analogs by the microsomal preparations was inducible by the cecropia juvenile hormone and by phenobarbital and dieldrin.  相似文献   

9.
Samples of 24 house fly (Musca domestica L.) populations were collected from animal farms in Hungary in 1990 and kept in the laboratory to determine their susceptibility to different types of insecticide: organochlorines, organophosphates, carbamates, pyrethroids, macrocyclic lactone and insect growth regulators. The adulticides were tested with topical bioassay in all 24 populations, the larvicides were studied with treated larval medium in 16 populations. The data were expressed as LD50 and LC50 values (ng fly ?1 and mg kg ?1 larval medium respectively). The percentages of populations which had resistance ratios > 10 at LD50 or LC50 were: 63% to DDT, 50% to methoxychlor, 13% to lindane, 83% to malathion, 63% to trichlorfon, 4% to propetamphos, 96% to dioxacarb, 46% to propoxur, 4% to methomyl, 13% to pyrethrum, 96% to bioresmethrin, 63% to permethrin, 58% to cypermethrin, 79% to SK-80, 79% to deltamethrin, 38% to invermectin, 0% to diflubenzuron, 0% to cyromazine. Correlation analysis showed a high degree of positive correlation among the adulticides except for ivermectin, bioresmethrin and SK-80. No cross-resistance was found between the larvicides and the conventional adulticides. Differences of insecticide resistance levels among the populations surveyed were studied by principal component and factor analysis. A fairly good relationship between resistance status and control practices used on farms was revealed. The populations originating from those farms where the application of adulticides had been frequent or regular and where high resistance was shown to most chemicals could be separated from the others.  相似文献   

10.
Comparisons of the susceptibility of several strains of adult Aedes aegypti were made. Mosquitoes from Bangkok and Jakarta were found to be highly resistant to DDT and resistant to pyrethroids relative to a laboratory strain. A strain from Singapore, where less DDT has been used, was susceptible to DDT and pyrethroids. Two strains from the Caribbean had LC50 values to DDT 3 times that of the reference strain while the LC50 values against bioresmethrin synergised with piperonyl butoxide were 1 1/2 times raised. Another two strains from central Africa were 2 times tolerant of DDT and 1 1/2 times tolerant of bioresmethrin plus piperonyl butoxide. Agents which block DDT-dehydrochlorinase, esterases and oxidases each caused small increases in the mortality of the Bangkok strain due to DDT and bioresmethrin as well as augmenting toxicity to the susceptible reference strain. It is tentatively suggested that resistance in the Bangkok strain is due to a combination of the actions of these and perhaps other resistance mechanisms.  相似文献   

11.
Susceptibility to acephate, methomyl, and permethrin was determined with laboratory bioassays for adults of greenhouse whitefly, Trialeurodes vaporariorum Westwood, from 12 to 14 sites in Hawaii. Comparisons at LC50 showed up to 42-fold resistance to acephate, 36-fold resistance to methomyl, and 8-fold resistance to permethrin. Higher levels of resistance to acephate and methomyl than to permethrin are consistent with greater use of organophosphates and carbamates than pyrethroids by growers. Insecticide use varied from 1 to 98 insecticide sprays per site per season. Significant positive associations between LC50 for each insecticide and frequency of application of the same insecticide were found across sites. This finding suggests that local variation in insecticide use was an important cause of variation in susceptibility.  相似文献   

12.
BACKGROUND: The housefly, Musca domestica L., continues to be a major pest of confined livestock operations. Houseflies have developed resistance to most chemical classes, and new chemistries for use in animal agriculture are increasingly slow to emerge. Five adult housefly strains from four Florida dairy farms were evaluated for resistance to four insecticides (beta‐cyfluthrin, permethrin, imidacloprid and nithiazine). RESULTS: Significant levels of tolerance were found in most field strains to all insecticides, and in some cases substantial resistance was apparent (as deduced from comparison with prior published results). At the LC90 level, greater than 20‐fold resistance was found in two of the fly strains for permethrin and one fly strain for imidacloprid. Beta‐cyfluthrin LC90 resistance ratios exceeded tenfold resistance in three fly strains. The relatively underutilized insecticide nithiazine had the lowest resistance ratios; however, fourfold LC90 resistance was observed in one southern Florida fly strain. Farm insecticide use and its impact on resistance selection in Florida housefly populations are discussed. CONCLUSION: Housefly resistance to pyrethroids is widespread in Florida. Imidacloprid resistance is emerging, and tolerance was observed to both imidacloprid and nithiazine. If these insecticides are to retain efficacy, producer use must be restrained. Copyright © 2009 Society of Chemical Industry  相似文献   

13.
The efficacy of insecticide mixtures of permethrin (pyrethroid) and propoxur (carbamate) was tested by larval bioassays on two strains of Culex quinquefasciatus (Say), one resistant to pyrethroids and the other resistant to carbamates. The method consisted in combining one insecticide at the highest concentration causing no mortality (LC0) with increasing concentrations of the second one. The concentration-mortality regression lines were determined for permethrin and propoxur alone and in combination, and synergism ratios (SR) were calculated in order to determine the magnitude of an increase or decrease in efficacy with use of the mixtures. With the pyrethroid-resistant strain (BK-PER), the results showed that propoxur at LC0 significantly enhanced the insecticidal activity of permethrin (SR50 = 1.54), especially on the upper range of the concentration-mortality regression. Conversely, when permethrin at LC0 was tested with propoxur against the carbamate resistant strain (R-LAB), an antagonistic effect was observed (SR50 = 0.67). With the BK-PER strain, an increased oxidative detoxification (MFO) appeared to be the main mechanism responsible for the synergistic interaction. Nevertheless, antagonism in the R-LAB strain is probably due to a physiological perturbation implying different target sites for pyrethroid (ie sodium channel) and carbamate insecticides [ie acetylcholinesterase (EC 3.3.3.7) and choline acetyltransferase (EC 2.3.1.6)].  相似文献   

14.
A resistant laboratory strain of the German cockroach, Blattella germanica, was developed from a normal laboratory strain by selection with propoxur. Resistance to all insecticides except chlordane began increasing after 15 generations of selection and reached a plateau for most insecticides by generation 27. The resistant colony, designated B-strain, developed significant resistance to carbamates, organophosphorus compounds, pyrethrins and DDT, developed low resistance to gamma-BHC and no resistance to chlordane. The resistance spectrum, effect of synergists and inheritance of resistance of this propoxur resistant strain are similar to a diazinon resistant strain. Therefore, diazinon and propoxur may select for the same resistance mechanism(s) in this species. The practical implications of this research are discussed.  相似文献   

15.
Insecticide resistance in the German cockroach can be mediated by a number of mechanisms, the most common being enhanced enzymatic metabolism. Seven field-collected strains of German cockroach, Blattella germanica (L.) with various levels of resistance to pyrethroids, five out of which were also cross-resistant to DDT were used in this study. The investigation of possible mechanisms responsible for permethrin resistance was carried out using the synergists PBO, DEF and DMC and biochemical assays, including general esterases, glutathione S-transeferases and monooxygenases assays, using an automated microtitre plate reader. PBO and DEF, the inhibitors of cytochrome p450 monooxygenases and general esterases, respectively, affected permethrin resistance to varying degrees depending on the strain. DDT resistance in five strains were not completely eliminated by the synergist DMC, an inhibitor of glutathione S-transferase enzymes, suggesting that a further non-metabolic resistance mechanism such as kdr-type may be present. This suggestion was further supported by GST assay data, where a little elevation in GST activity was detected in only two strains. The synergist data supported by biochemical assays implicated that cytochrome p450 monooxygenases or hydrolases are involved in permethrin resistance in some strains. However, these results implicated both enhanced oxidative and hydrolytic metabolism of permethrin as resistance mechanism in the other strains. The results of synergist and biochemical studies implicated that all the field-collected permethrin resistant strains have developed diverse mechanisms of resistance, although these strains have been collected from the same geographic area. The change in resistance ratios of some strains by using PBO or DEF is discussed. It is of interest to note that because resistance to permethrin was not completely eliminated by DEF and PBO, it is likely that one or more additional mechanisms are involved in permethrin resistance in every strain studied.  相似文献   

16.
Relative potency of eight compounds (four pairs of similar types) to adults and old larvae of three species of cyclorhaphous diptera was determined by injection, oral or topical application. The following points emerged from comparisons of equitoxic doses: (a) C. putoria was consistently more susceptible than L. sericata. M. domestica was more susceptible to organochlorines than either of the blowflies, but less susceptible to organophosphorus, carbamate or pyrethroid insecticides; (b) the most potent insecticides (bioresmethrin, diazinon) were about equally toxic to adults and larvae of all species; but some compounds (especially DDT, gamma-BHC and propoxur) were relatively much less effective against larvae; (c) LD50 values for oral treatments were higher than by injection, and those for contact treatments higher still. These “penetration factors” were highly correlated within each of the stages. This could be due to similarity in the cuticular barrier and (or) detoxication; (d) experiments with various synergistic compounds showed higher synergistic factors for larvae than adults (with DDT, bioresmethrin and propoxur). This probably indicates a more efficient detoxication system in the larvae, which is consistent with findings (b) and (c).  相似文献   

17.
Abstract

Toxicities o1 12 chemical insecticides to wild‐caught tsetse flies, Glossina palpalis palpalis in Nigeria were measured by topical application. Median lethal doses (as ng per fly) at 48 h after application for older flies, males (females), were: DDT 331 (700), dieldrin 14 (46), endosulfan 8 (15), malathion 193 (273), fenitrothion 47, pirimiphos methyl 31 (45), tetrachlorvinphos 14 (33), sumicidin 28 (58), neopynamin 12 (15), sumithrin 10 (8), permethrin 4.4 (5.9), deltamethrin 0.45 (0.94). Lethality expressed as dose per whole fly can be termed effective toxicity/tolerance and those expressed as dose per weight unit of fly can be termed intrinsic (or true) toxicity/tolerance. Generally, effective tolerance was greater for females than males, especially for older flies. However, intrinsic tolerance was often about equal for the sexes or greater for males. Regardless of sex, effective tolerance increased with increasing fly age and intrinsic tolerance increased during later ageing but not during early ageing. This suggested that protecting mechanisms developed during ageing. Flies fed a few hours before treatment in 1979–1982 were more tolerant of three organochlorines and three organophosphates than flies fed the day before treatment in 1974–1975, probably due to diversion of poisons from sites of action into inert undigested blood. However, results and statistical analysis suggested a slight increase in true tolerance of males to DDT during the intervening years. Continued monitoring of tolerance in the fly populations is recommended.  相似文献   

18.
The effect of sublethal concentrations (LC1 and LC50) of permethrin, fenvalerate, methamidophos and carbaryl on diamondback moth development, female fecundity and insect behaviour was investigated. All the insecticides had deleterious effects on the number of larvae surviving to pupae, the duration of the pupal period, the number of pupae surviving to adulthood, and cocoon formation in pupae. Prolonged duration of the larval period, from third instar to pupation, and deformed pupae were also observed. Permethrin, fenvalerate and carbaryl caused latent toxicity and deformed wings in the adults. Pyrethroids and methamidophos reduced the longevity of the adults whereas carbaryl increased it. Except for permethrin, the insecticides inhibited female fecundity. At LC1 and LC50 concentrations, the pyrethroids showed both repellent and antifeedant activity against larvae, and female moths preferred to oviposit on untreated leaf discs rather than on those treated with the pyrethroids at concentrations equal to their LC50 values.  相似文献   

19.
A fenthion-resistant strain of the house fly (Musca domestica L.) was selected with bioresmethrin resulting in ca. 90-fold resistance to the selecting agent. This strain was subsequently selected with (1R)-trans-permethrin producing ca. 140-fold resistance to this latter insecticide. The permethrin-resistant (147-R) strain was highly cross-resistant to several other pyrethroids and demonstrated resistance to knockdown by these insecticides as well as by DDT. The sensitivity of the central nervous system to four pyrethroids was investigated. The 147-R strain was 2.6-fold less sensitive to (1R)-trans-ethanoresmethrin than the susceptible (NAIDM-S) strain, and >43-fold and >67-fold less sensitive to (1R,S)-cis, trans-tetramethrin and (1R)-trans-permethrin, respectively. It also displayed decreased penetration of (1R,S)-trans-[14C]permethrin when compared to the NAIDM-S strain. Lower nerve sensitivity and decreased cuticular penetration are potential mechanisms of resistance to pyrethroids in house flies in the United States.  相似文献   

20.
Resistances of 33- and 27-fold to the pyrethroids fenvalerate and deltamethrin, respectively, have been induced in larvae of the Egyptian cotton leafworm Spodoptera littoralis (Boisd.) by selection of two subcolonies of a field population in the laboratory. Selected strains showed relatively high levels of resistance (11- to 36-fold) to all the tested pyrethroids, moderate levels of cross-resistance (3- to 13-fold) to DDT and the carbamate aminocarb, and a slight increase in tolerance levels to endrin and lindane. The pyrethroid-resistant strains, by contrast, manifested no cross-resistance to the organophosphorus compounds that were tested. Moreover, a negative crossresistance was observed in the pyrethroid-resistant strains to dicrotophos, methamidophos and the carbamate methomyl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号