首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An 8‐week feeding trial was conducted to evaluate the optimum dietary protein to lipid ratio (P/L) for Starry flounder Platichthys stellatus (30.7 ± 0.7 g initial weight). Nine fishmeal‐based diets with three protein levels (40%, 45% and 50%) and three lipid levels (8%, 11% and 14%) were fed to 30 fish in triplicate. Results showed that the growth performance was affected by dietary P/L ratio significantly, and the best weight gain rate, specific growth rate and feed conversion ratio were appeared at fish fed P45L14 and P50L11 diets. Apparent digestibility coefficient of protein was increased with increasing dietary lipid, but lipid digestibility was decreased by dietary lipid. Lipid deposition in tissues was increased with increasing dietary lipid at each protein level and was higher for the lower protein diets. In liver, the per cent of both eicosapentaenoic acid and docosahexaenoic acid were increased by dietary protein. High dietary protein level (50%) at high lipid level (14%) increased arachidonic acid significantly. Aspartate aminotransferase and alanine aminotransferase were affected significantly by dietary P/L ratios. High density lipoprotein cholesterol and total cholesterol of 45% protein groups were significantly higher than others. The study revealed that the optimum dietary protein to lipid ratio for starry flounder was P45L14 or P50L11, or P/E ratios were 25.49 and 27.70 mg protein kJ?1 gross energy respectively.  相似文献   

2.
本研究旨在探讨不同蛋白质和脂肪水平对细鳞鲑(Brachymystax lenok)幼鱼生长、体成分以及肌肉氨基酸含量的影响。采用蛋白质水平为40%、45%、50%和55%,脂肪水平为8%和16%,共8组实验饲料。在水温为(16±0.2)℃的循环流水水族箱系统内进行为期10周的养殖试验。采用常规生化分析方法对该鱼肌肉营养学组成及含量进行测定分析。研究结果表明,不同蛋白和脂肪水平对细鳞鲑幼鱼增重率、特定生长率、肥满度和肝体比等均有显著影响(P0.05)。随着蛋白水平增加,增重率、特定生长率、肥满度和肝体比率先升高后降低,其肌肉粗蛋白含量也随之显著升高(P0.05),而对粗脂肪和粗灰分不存在显著影响;随着脂肪水平增加,其肌肉粗脂肪含量也随之显著提高(P0.05),而对水分、粗蛋白和灰分含量不存在显著影响。肌肉中共测定出17种氨基酸(除色氨酸),不同蛋白和脂肪水平对氨基酸总量(WTAA)和必需氨基酸的构成比例(WEAA/WTAA)不存在显著影响。综合生长性能与氨基酸模式的实验结果,本研究认为细鳞鲑幼鱼最适蛋白质和脂肪水平分别为50%和8%,适宜蛋能比为29.36 g/MJ。  相似文献   

3.
The effects of six formulated diets containing different protein and lipid levels on growth performance and body composition of juvenile southern flounder were evaluated. Test diets were prepared with a combination of three crude protein (CP) levels (45, 50 and 55%) and two crude lipid (CL) levels (10 and 15%). Diets (CP/CL) were as follows: 45/10, 45/15, 50/10, 50/15, 55/10, 55/15 and a commercial diet (50/15). Southern flounder (1.10 g) were fed the respective diets for 42 d in triplicate recirculating tanks (20 fish/tank). Percent body weight gain (BWG) for fish fed diet 45/10 (413%) and the commercial diet (426%) were significantly (P < 0.05) lower than fish fed other diets (823–837%). Increasing protein level from 45 to 50% produced a significant increase in BWG for the 10% lipid diet (823%) but further increasing protein did not produce a significant effect on BWG irrespective of dietary lipid levels. Specific growth rate (SGR), feed intake, feed conversion efficiency (FCE), protein efficiency ratio (PER), and total lipid content in the whole body were significantly affected by different dietary protein and lipid levels. Results indicated that a combination of 50% protein and 10% lipid was optimal for the growth performance of southern flounder juveniles.  相似文献   

4.
This experiment was conducted to determine the optimum dietary protein level for juvenile olive flounder Paralichthys olivaceus (Temminck et Schlegel) fed a white fish meal and casein‐based diets for 8 weeks. Olive flounder with an initial body weight of 4.1 ± 0.02 g (mean ± SD) were fed one of the six isocaloric diets containing 35%, 45%, 50%, 55% and 65% crude protein (CP) at a feeding rate of 4–5% of wet body weight on a dry‐matter basis to triplicate groups of 20 fish per aquarium. After 8 weeks of feeding, per cent weight gain (WG) and feed efficiency ratios of fish fed the 55% CP diet were not significantly higher than those from fish fed the 50% and 65% CP diets, but significantly higher than those from fish fed the 35% and 45% CP diets. Fish fed the 50%, 55% and 65% CP diets had significant higher specific growth rates than did fish fed the 35% and 45% CP diets; however, there was no significant difference among fish fed the 50%, 55% and 65% CP diets. The protein efficiency ratio was inversely related to the dietary protein level; that is, maximum efficiency occurred at the lowest dietary protein level. Broken‐line model analysis indicated that the optimum dietary protein level was 51.2 ± 1.8% for maximum weight gain in juvenile olive flounder. The second‐order polynomial regression analysis showed that the maximum WG occurred at 57.7% and it revealed that the minimum range of protein requirement was between 44.2% and 46.4%. These findings suggest that the optimum dietary protein level for maximum growth could be greater than 46.4%, but less than 51.2% CP in fish meal and casein‐based diets containing 17.0 kJ g?1 energy for juvenile olive flounder.  相似文献   

5.
An 8‐week feeding trial was conducted to investigate the optimum dietary protein and lipid levels for growth, feed utilization and body composition of Pseudobagrus ussuriensis fingerlings (initial weight: 3.40 ± 0.01 g). Twelve diets containing four protein levels (350, 400, 450 and 500 g kg?1 crude protein) and three lipid levels (50, 100 and 150 g kg?1 crude lipid) were formulated. Fish were randomly allotted to 36 aquaria (1.0 × 0.5 × 0.8 m) with 25 fish to each glass aquarium. Fish were fed twice daily (08:00 and 16:00) to apparent satiation. The results showed that weight gain and specific growth rate (SGR) decreased with increasing dietary lipid level from 50 to 150 g kg?1 at the same dietary protein level. Fish fed the diets containing 150 g kg?1 lipid exhibited higher feed conversion ratio (< 0.05), lower protein efficiency ratio (PER) and nitrogen retention efficiency (NRE) relative to fish fed the diet containing 50 and 100 g kg?1 lipid. Weight gain and SGR significantly increased with increasing dietary protein from 350 to 450 g kg?1 at the same dietary lipid level, and even a little decline in growth with the further increase in dietary protein to 500 g kg?1. Daily feed intake, NRE and PER were significantly affected by both dietary protein and lipid levels (P < 0.05) and tended to decrease with increasing dietary protein and lipid levels. Whole‐body protein content increased as protein levels increased and lipid levels decreased. Whole‐body lipid and muscle lipid content increased with increasing dietary lipid level, and decreased with increasing dietary protein at each lipid level. There was no significant difference in condition factor and viscerosomatic index among fish fed the diets. Hepatosomatic index was affected by dietary lipid level (P < 0.05), and increased with increasing dietary lipid level at the same protein level. These results suggest that the diet containing 450 g kg?1 protein and 50 g kg?1 lipid with a P/E ratio of 29.1 mg protein kJ?1 is optimal for growth and feed utilization of P. ussuriensis fingerlings under the experimental conditions used in the study.  相似文献   

6.
Pikeperch Sander lucioperca fingerlings were fed nine practical diets containing three levels of protein (P=34%, 43% and 50%), lipid (L=10%, 16% and 22%) and carbohydrate (C=10%, 15% and 20%) for 10 weeks in a recirculating water system at 23°C. Dietary treatments were distributed by orthogonal design with dietary energy content ranging from 15.5 to 23.1 MJ kg?1 diet. Significant differences (P<0.05) in weight gain (%) and feed efficiency (FE) were observed after feeding trial. Relatively low growth and FE were found in fish fed diets containing 34% dietary protein level compared with that of fish fed diets with 43–50% protein levels, suggesting that 34% dietary protein probably is below the protein requirements of pikeperch fingerlings. Fish fed diets containing P43L10C15, P43L22C20 and P50L16C20 had significantly (P<0.05) higher weight gain and FE than fish fed the diets containing other dietary P/L/C ratios. There was no significant difference in weight gain and FE between fish fed diets of P43L10C15, P43L22C20 and P50L16C20. These results may indicate that pikeperch require at least 43% of dietary protein for adequate growth and FE, and considering the fish growth and feed ingredient cost P43L10C15 diet is more cost‐effective formulation for pikeperch fingerling. However, protein efficiency was not significantly affected by dietary P/L/C ratio.  相似文献   

7.
A study was undertaken to determine the dietary protein level for optimal growth performance and body composition of juvenile Senegalese sole. Five experimental extruded diets were formulated to contain increasing levels of protein [430, 480, 530, 570 and 600 g kg?1 dry matter (DM)] and a constant lipid level, ranging from 100 to 130 g kg?1 DM. Triplicate groups of 35 sole (initial body weight: 11.9 ± 0.5 g) were grown over 84 days in 60‐L tanks supplied with recirculated seawater. Fish were fed by means of automatic feeders in eight meals per day. At the start and end of the trial, whole‐body samples were withdrawn for proximate composition analysis. At the end of 84 days of experimental feeding, daily weight gain and specific growth rate in fish fed diets P43 and P48 were significantly lower than those found in fish fed higher protein level diets (P53, P57 and P59). Similarly, feed efficiency was also significantly lower in fish fed diet P43 than in fish fed all other dietary treatments. Sole juveniles fed lower protein level diets (P43 and P48) showed a significantly lower protein content than fish fed the higher dietary protein level treatments (P53, P57 and P60). Changes within the tested dietary protein levels did not affect significantly protein productive value or total nitrogen (N) losses in fish. However, daily N gain was significantly higher (P < 0.05) in fish fed diets P53 and P60 than in fish fed the lowest protein level diet (P43). Data from the present study indicate that diets for juvenile Senegalese sole should include at least 53% crude protein to maintain a good overall growth performance. Based on a second‐order polynomial regression model, the daily crude protein requirement for maximum whole‐body N gain as estimated here for Senegalese sole juveniles was 6.43 g kg?1 body weight day?1 which corresponds to a value of 1.03 g N intake kg?1 body weight day?1. If the present data are expressed on a dietary crude protein concentration basis, the allowance for maximum protein accretion (N gain) would be met by a diet containing a crude protein level of 600 g kg?1.  相似文献   

8.
A study was carried out to determine the effects of fish meal (FM) replacement by plant protein (PP) on growth, body composition and lipid metabolism of blackspot seabream fed different protein/lipid levels. Four experimental diets were formulated to contain two protein (P) and lipid (L) levels (60P/6L or 50P/10L), varying in their protein source (100% FM or 50% FM: 50% PP). Dietary inclusion of PP did not affect growth of fish fed 60P/6L, although fish fed 50P/10L exhibited lower final body weight and daily growth index. Fish fed 60P/6L presented the highest protein and the lowest lipid content. FM replacement by PP has decreased muscle n‐3 whereas the n‐6 fatty acids increased. Glucose‐6‐phosphate dehydrogenase and fatty acid synthetase (FAS) were depressed in fish fed 50P/10L. FAS was significantly increased with 60P/6L PP which was positively correlated with lipid retention data. Those results suggest the conversion of other nutrient than lipid (protein and/or carbohydrates) into corporal fat. Hepatic lipoprotein lipase activity was lowest in fish fed PP diets. Plasma glucose peaked 1–2 h postfeeding, in all groups and was generally higher with 60P/6L FM. This work shown that besides dietary P/L level, protein source has a strong effect on species lipogenesis and lipid retention. Hence, the 50P/10L FM diet was the most cost‐effective for blackspot seabream juveniles.  相似文献   

9.
A 74‐day trial was undertaken to evaluate the effects of temperature (16 and 22 °C) and dietary protein/lipid ratio on the performance of juvenile Senegalese sole (mean body weight: 6.4 g). Four experimental diets were formulated to contain two protein levels (550 g kg?1 and 450 g kg?1) combined with two lipid levels (80 g kg?1 and 160 g kg?1). Growth was higher at 22 °C and within each temperature in fish fed diets 55P8L and 45P16L. Feed efficiency, N retention (% NI) and energy retention (% EI) were higher at 22 and at both temperatures in fish fed diet 55P8L. Temperature affected whole‐body composition, with dry matter, protein, lipid and energy being higher and ash lower in fish kept at higher temperature. Independently of temperature, whole‐body lipid, energy and ash were higher and protein was lower in fish fed the high‐lipid diets. Visceral and hepatosomatic indices were not affected by diet composition but were higher in fish kept at 16 °C. Liver glycogen and lipid contents and activities of glutamate dehydrogenase, alanine and aspartate aminotransferases were not affected by diet or water temperature. Malic enzyme (ME) and glucose 6‐phosphate dehydrogenase activities were higher in fish fed the low‐lipid diets. ME activity was higher at lower temperature. In conclusion, increasing water temperature from 16 to 22 °C improves growth and feed efficiency of Senegalese sole juveniles; regardless of water temperature, the diet with 550 g kg?1 protein and 80 g kg?1 lipid promoted the best growth and feed efficiency.  相似文献   

10.
In order to evaluate the effects of dietary protein and lipid levels on the growth, feed utilization and body composition of Heterotis niloticus fingerlings, a factorial experiment with three replicates was conducted. Six experimental diets containing three crude protein levels (28%, 32% and 36%) and two crude lipid levels (6% and 13%) were tested. Heterotis niloticus (2.34 g) were fed with the diets to apparent satiation, twice a day. For 56 days, weight gain (WG), specific growth rate (SGR), feed efficiency (FE) and protein retention (PR) were significantly affected by dietary protein and dietary lipid levels respectively (P<0.01). The highest WG, SGR and FE were observed for fingerlings fed the diet containing 36% protein and 6% lipid, but no significance difference was found between groups fed with the following diets: P28L13 (28% protein and 13% lipid), P32L6, P32L13 and P36L13. A significant interaction between dietary protein and lipid was observed for WG, SGR, FE and PR. The whole‐body protein, lipid, moisture and ash content were not significantly affected by dietary lipid levels, but body protein and lipid content were significantly affected by dietary protein. The dietary protein‐sparing effect was clearly demonstrated when the dietary energy of lipid increased from 17 to 19.6 kJ g?1 at 28% crude protein on H. niloticus.  相似文献   

11.
The influence of four formulated practical diets, with different protein and lipid levels, on the growth and body composition of black sea bass ( Centropristis striata L.) pre-adults was evaluated in a pilot-scale marine recirculating system. Four test diets were prepared with a combination of two protein levels (44% and 54%) and two lipid levels (10% and 15%). The diets were as follows: low protein and low lipid (LP:LL; 44:10), low protein and high lipid (LP:HL; 44:15), high protein and low lipid (HP:LL; 54:10) and high protein and high lipid (HP:HL; 54:15). Fish (mean weight=75.5 g) were fed the respective diets for 90 days. For fish fed LP:HL, body weight gain was significantly ( P <0.05) higher than fish fed LP:LL. Increasing the protein level from 44% to 54% did not produce a significant effect on weight gain at high lipid level. A significant ( P <0.01) interactive effect between dietary protein and lipid levels on the growth and feed utilization was observed. Total lipid content in the whole body, muscle and liver was significantly affected by the dietary lipid levels. The results suggested that a combination of 44% dietary protein and 15% lipid was optimal for the growth of black sea bass.  相似文献   

12.
Nine experimental diets at three protein (35%, 40% and 45% crude protein) and lipid (5%, 8% and 11% crude lipid) levels with variable digestible protein to digestible energy (DP/DE) ratios ranged from 21.9 to 27.8 g protein MJ?1 were fed to topmouth culter (Culter alburnus Basilewsky) fingerlings (initial weight 6.5 ± 0.9 g) in triplicated groups (30 fish per replicated) for a period of 10 week to assess the optimum dietary DP/DE ratio and the protein sparing effect by utilizing dietary lipid. 27 cages of 1.5 m3 capacity placed in a lake located in Wuhan were used for rearing the fish. At the end of the experiment, maximum weight gain and thermal‐unit growth coefficient was found in fish fed diet D4 with 45% protein, 8% lipid and P/E ratio of 26.2 g protein MJ?1, but without a significant difference compared to fish fed diet D5 with 40% protein, 8% lipid and DP/DE ratio of 25.3 g protein MJ?1. The best flesh quality evaluated by muscle collagen content was found in fish fed D5. High fat accumulation with increasing dietary lipid levels was observed in whole body but not in muscle tissue. Hence, it may be concluded that the optimum formulation for maximum growth and quality of topmouth culter is a diet containing 40% protein and 8% lipid with a resultant DP/DE ratio of 25.3 g protein MJ?1. In addition, the protein sparing effect by inclusion lipid was observed but limited.  相似文献   

13.
An 8‐week feeding trial was conducted to estimate the optimum dietary protein to energy (P/E) ratio in juvenile olive flounder Paralichthys olivaceus. Eight experimental diets were formulated with two energy levels and four protein levels at each energy level. Two energy levels of 12.5 and 16.7 kJ g?1 diets were included at crude protein (CP) levels of 25%, 30%, 35% and 45% with 12.5 kJ g?1, and CP levels of 35%, 45%, 50% and 60% with 16.7 kJ g?1. After 1 week of the conditioning period, fish initially averaging 8.1±0.08 g (mean±SD) were randomly distributed into the aquarium as groups of 15 fish. Each diet was fed on a dry‐matter basis to fish in three randomly selected aquariums at a rate of 3–5% of total wet body weight per day for 8 weeks. After 8 weeks of the feeding trial, weight gain (WG), feed efficiency ratio and specific growth rate of fish fed 45% CP with 16.7 kJ g?1 energy diet were significantly higher than those from the other dietary treatments (P<0.05). WG of fish fed 12.5 kJ g?1 energy diets increased with the increase of dietary protein levels. However, WG of fish fed 16.7 kJ g?1 energy diets increased with the increase of dietary protein levels up to 45% CP and then decreased when fish fed 50% and 60% CP diets. Both dietary protein and energy affected protein retention efficiency and energy retention efficiency. Haemoglobin (Hb) of fish fed 35% and 45% CP diets with 12.5 kJ g?1 energy were significantly high and not different from Hb of fish fed 45% and 50% CP diets with 16.7 kJ g?1 energy. Haematocrit of fish fed 45% CP diet with 16.7 kJ g?1 energy was significantly higher than those from fish fed 25% and 30% CP diets with 12.5 kJ g?1 energy (P< 0.05). Based on the results of this experiment, we concluded that the optimum dietary P/E ratio was 27.5 mg protein kJ?1 with diet containing 45% CP and 16.7 kJ g?1 energy in juvenile olive flounder.  相似文献   

14.
A feeding trial was conducted to investigate the influence of dietary protein levels on growth performance, carcass proximate composition and liver lipid classes of juvenile Spinibarbus hollandi (Oshima), a cyprinid fish. White fish meal was the primary protein source in the study. Eight experimental diets containing 13–55% crude protein were fed to three replicate groups of six fish weighing nearly 8.5 g each for 10 weeks. Both percentage weight gain and feed efficiency ratio increased significantly with increasing dietary protein levels up to 31%, but there was no further increase for protein levels from 31% to 55%. Application of broken‐line regression analysis to the percentage weight gain provided an estimate of 32.7±1.5% dietary protein for maximum growth. The protein efficiency ratio and productive lipid value were inversely correlated with dietary protein level. The hepatosomatic index and the viscerosomatic index were also inversely related to dietary protein level. The carcass protein of fish fed lower protein diets was significantly lower than that of the fish fed higher protein diets. Carcass lipid content decreased with increasing dietary protein levels, whereas moisture was inversely related to lipid content. Both liver glycogen and liver lipid contents decreased with increasing dietary protein levels. Triglyceride was the major component in the liver lipid, and the amount of triglyceride deposited in the liver also decreased with dietary protein levels. The results indicated that both carcass proximate composition and liver lipid class of juvenile Spinibarbus hollandi were affected by dietary treatments.  相似文献   

15.
A 3 × 4 factorial design was used to evaluate the dietary protein requirement and to determine the optimum dietary protein to energy (P/DE) ratio in sub‐yearling Persian sturgeon, Acipenser persicus, reared in the indoor system. Twelve experimental diets (40P16, 40P17, 40P18, 40P19, 45P19, 45P17, 45P18, 45P19, 50P16, 50P17, 50P18 and 50P19) were formulated and prepared to contain three protein levels (40%, 45% and 50%) and four digestible energy levels (16, 17, 18 and 19 kJ g?1 diet) at each protein level. Fish averaging 103.3 ± 3.5 (mean ± SD) were fed one of the experimental diets for 14 weeks. At the end of the experimental period, there were significant energy effects (P < 0.05) on weight gain (WG) and specific growth rate (SGR). Weight gain and SGR tended to decrease, although non‐significantly, with increase in dietary protein levels. Furthermore, there were significant protein and energy interaction effects on WG, SGR, hepatosomatic index and protein efficiency ratio. However, there were no significant dietary protein, energy or their interaction effects on feed efficiency for fish fed all diets. Weight gain and SGR of fish fed 40P19 were significantly higher than those of fish fed 40P16, 45P16, 45P17, 50P16 and 50P17 diets (P < 0.05). There were no significant differences in WG and SGR among fish fed 40P17, 40P18, 40P19, 45P18, 45P19, 50P18 and 50P19 diets. These results may indicate that the optimum dietary protein requirement and the P/DE ratio could be 40% protein and 22.0 mg protein kJ?1 (40P18), respectively, in Persian sturgeon, based on growth performance and feed utilization.  相似文献   

16.
The effects of various dietary protein levels on growth performance, whole body composition and nutrient utilization were studied in two-banded sea bream ( Diplodus vulgaris ), a candidate species for aquaculture. Fish (initial weight 6.1 g) were fed to satiety six iso-energetic diets, containing 5%, 12.5%, 25%, 35%, 45% or 55% of crude protein during 72 days. Fish fed 35% and 45% protein attained better growth and feed utilization than the other groups ( P  < 0.05). Daily growth index and feed conversion ratio were the poorest for fish fed 5% and 12.5% protein ( P  < 0.001), while the 25% and 55% protein groups had intermediate performance. Lipid retention increased significantly from 13.7% to 30.1% ( P  < 0.0001) and protein retention decreased from 35.5% to 21.3% ( P  < 0.01) with increasing protein levels from 12.5% to 45%. Muscle protein, lipid and energy concentrations were not significantly affected by dietary protein level. The estimated protein requirement for maintenance and maximum growth of two-banded seabream growing from 6 to 20 g were 7.5% and 35.7%, respectively. Protein requirements as calculated from body protein gain were 2.3 and 6.5 g of protein intake per kilogram body weight per day.  相似文献   

17.
An 83‐day feeding trial was carried out to determine the effect of different dietary protein and lipid levels on the growth performances and carcass composition of white seabream. Juveniles (10.7±0.2 g) were fed to satiation on four diets, varying in protein (15% and 28%) and lipid (12% and 16%) levels. The best growth performance was observed in fish fed on diets with higher protein level. Dietary lipids did not affect growth performance. Voluntary feed intake decreased with a increasing dietary protein level at both dietary lipid levels. Feed conversion ratio improved with the increase in dietary protein and lipid levels. Carcass composition remained unaltered by dietary protein levels (P>0.05). Carcass protein content tended to decrease, while lipid content tended to increase in groups fed on 16% lipid, compared with the 12% lipid groups. Additionally, protein retention was higher in fish fed on low‐protein and low‐lipid levels, compared with the high‐protein and high‐lipid group (29% vs. 19%). Lipid retention increased significantly with dietary protein level (P<0.001). Energy retention improved with dietary protein, but was not affected by dietary lipid levels. On the basis of our results, feeding white seabream on 15% dietary protein had a negative effect on growth and feed utilization. Dietary lipid did not induce a protein‐sparing action in Diplodus sargus juveniles.  相似文献   

18.
The effect of dietary digestible protein/digestible energy (DP/DE) ratios and feeding level on growth, feed efficiency, nutrient and energy usage by Atlantic salmon ( Salmo salar ; initial body weight, 7.0 g/fish) at 15°C was investigated in a 16-week feeding trial. Three diets, differing in their DP and DE contents, namely 37/18 (regular diet, RD), 37/21 (high fat diet, HF) and 44/ 22 (high nutrient-dense diet, HND) g/MJ of dry feed were formulated. DP/DE ratios were 20, 18 and 20 g/MJ for the RD, HF and HND diets, respectively. Salmon were hand-fed three times a day at either 100% or 85% of the feed requirement estimated by a bioenergetics model. At each feeding level, DE intake (kJ/fish) was similar for all three diets. Diet composition did not affect growth rate. However, increasing the digestible energy density from 18 to 22 MJ/kg of dry feed resulted in a significant increase ( P  < 0.05) in feed efficiency. Restricting feed intake significantly decreased live body weight gains for all diets. However, feed efficiency was not affected by feeding level. Diet composition and feeding level did not affect carcass composition and nutrient and energy usage, with the exception of a higher ( P  < 0.05) carcass lipid of fish fed the HF100 diet compared with the fish fed the RD and HND diets and a higher ( P  < 0.05) lipid gain (g/fish) of fish fed the HF100 diet compared with fish fed all the diets at the restricted feeding level. Restricting feeding resulted in significantly lower ( P  < 0.05) energy gain (kJ/fish) compared with fish fed at 100%. Increasing the DE and nutrient density of the diet had no effect on growth but improved feed efficiency and lowered solid wastes (g of solid wastes per kg of fish produced) while dissolved wastes were not affected by dietary ormulation.  相似文献   

19.
A 10‐week feeding trial was carried out to evaluate the optimum dietary protein level for the maximum growth of juvenile beluga, Huso huso. Fish averaging 1.34 ± 0.07 g (mean ± SD) was randomly distributed into 18 circular fibreglass tanks of 500 L capacity (20 fish per tank). Six iso‐caloric diets were formulated to contain 30 (CP30), 35 (CP35), 40 (CP40), 45 (CP45), 50 (CP50) and 55% (CP55) crude protein (CP). Fish were fed each of the six experimental diets in triplicate groups. At the end of feeding trial, weight gain (WG) and specific growth rate (SGR) in fish fed CP40 and CP45 diets were significantly higher than those of fish fed CP30, CP35, CP50 and CP55 diets (< 0.05). Lipid retention increased significantly from 24.7% to 31.6%, but protein retention decreased from 54.6% to 35.6% with increasing protein levels from 30% to 50%. Muscle total essential and non‐essential amino acid (EAA & NEAA) concentrations increased with the dietary protein level up to CP45 diets. Muscle total EAA concentrations (%) of fish fed CP45 were significantly higher than those of fish fed CP30, CP35, CP50 and CP55, but there was no significantly different between those of fish fed CP40 and CP45. Muscle total NEAA concentration (%) of fish fed CP45 were significantly higher than those of fish fed CP30 and CP35 diets. Broken‐line analysis of WG suggested that the optimum dietary protein level could be 38.9% for maximum growth performance in juvenile beluga (1.3–77 g).  相似文献   

20.
黄岩  李建  王学习  王琨  叶继丹 《水产学报》2017,41(5):746-756
为了探讨饲料蛋白质和碳水化合物对斜带石斑鱼的互作效应,实验采用3×3因子设计,配制蛋白质水平(P)为38%、45%和52%,淀粉水平(S)为10%、20%和30%的9种实验饲料,分别饲喂斜带石斑鱼56 d。结果显示,38%粗蛋白与10%淀粉饲料组(38P/10S饲料组)增重率显著低于其他各组,52P/10S组增重率最高,但与45P/20S、45P/30S、52P/20S组差异不显著。增加饲料蛋白质或淀粉水平显著增加饲料效率、鱼体蛋白质与脂肪含量及肝糖原肝脂含量,而降低摄食率和鱼体水分含量。增加饲料蛋白质水平降低蛋白质效率,但增加淀粉水平却增加蛋白质效率及肝体比与脏体比。饲料蛋白质水平和淀粉水平对鱼体灰分含量无明显影响。肝中肝酯酶、脂蛋白酯酶、脂肪酸合成酶、谷丙转氨酶和谷草转氨酶活性均随蛋白质或淀粉水平的升高呈显著上升趋势。增加饲料蛋白质水平显著降低肝中葡萄糖-6-磷酸酶活性,而增加肝中苹果酸酶活性,但对肝中葡萄糖激酶、丙酮酸激酶、磷酸果糖激酶、磷酸烯醇式丙酮酸羧激酶和葡萄糖-6-磷酸脱氢酶活性没有明显影响。增加饲料淀粉水平显著增加肝中葡萄糖激酶、丙酮酸激酶、磷酸果糖激酶、葡萄糖-6-磷酸脱氢酶和苹果酸酶活性,但显著降低磷酸烯醇式丙酮酸羧激酶和葡萄糖-6-磷酸酶活性。上述结果显示,斜带石斑鱼的生长和肝脏代谢明显受饲料蛋白质和淀粉水平的影响,其中,糖代谢酶活性受淀粉水平的影响较大,而受饲料蛋白质水平的影响较小,斜带石斑鱼生长适宜的饲料蛋白质和淀粉水平分别为45%和20%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号