首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A nursery experiment was conducted to determine the effects of seed pretreatment methods on the germination of Faidherbia albida at ICRAF, Nairobi from six provenances consisting of Awassa, Taveta, Lake Koka, Maseno, Chinzombo and Wagingombe. Seeds were subjected to five pretreatment methods namely nicking, soaking in acid, hot water, cold water and control. Germination percentages (GP), mean germination time (MGT) and germination index (GI) were calculated and the data was subjected to ANOVA. The study revealed significant (p ≤ 0.05) differences in seed treatments among provenances in all studied parameters. Highest germination among pretreatments in Awassa (99 %) and Wagingombe (80 %) was observed in nicked seeds, Chinzombo (81 %) in nicked and acid treated seeds, Lake Koka (90 %) in acid treated seeds and Taveta (28 %) and Maseno (64 %) in cold water treated seeds. Nicking gave the highest cumulative GP (69.67) while lowest GP was observed in hot water treated seeds (23.17). Acid treatment exhibited lowest MGT (8.85 days) and highest GI (2.29) while highest MGT (24.35 days) and lowest GI (0.31) were observed in control and hot water treatment respectively. Although acid treatment gave a high GP and lowest MGT and GI, nicking and soaking in cold water for 24 h is being recommended as cheaper and less hazardous pretreatment methods to improve germination in F. albida since sulphuric acid is expensive and requires proper handling techniques. Significant correlation between geo-climatic data and germination parameters of seeds subjected to different pretreatments indicates that provenances are as important as pretreatments in germination of the species.  相似文献   

2.
Understanding the germination traits of plants is important not only for understanding natural regeneration processes but also for developing seedling production techniques for planting. Sabina vulgaris Ant. is a common species used for reforestation in semi-arid areas of the Mu-Us Desert, in Inner Mongolia, China, but its extremely low germination rate, both in situ and in vivo, is a bottleneck for seedling production. Sulfuric acid pretreatment was applied to improve germination, and the germination rate was compared for different soaking time (10, 30, 60, 90, and 120 min), different temperatures (10, 15, 20, 30, and 35°C) and under different lighting conditions (dark and light). Sulfuric acid treatment gave a high germination rate, reaching 60% at 30 days after sowing. However, the non-treated seeds produced no germination. The optimal treatment time in sulfuric acid was 120 min. Germination after sulfuric acid treatment increased at incubation temperatures from 10 to 30°C, but decreased at 35°C. Incubation at 25–30°C gave maximum germination of more than 50%. Light treatment had little effect on germination. Pretreatment with sulfuric acid improved water absorption by the embryo by creating cracks and cavities in the seed coat tissue. These results indicated that S. vulgaris seeds have physical dormancy caused by their hard seed coats, which prevents absorption of water into the embryo. A combination of pretreatment with sulfuric acid and incubation at 25–30°C was most effective in improving the germination of S. vulgaris seeds.  相似文献   

3.
The germination requirements of seeds of 20 leguminous species were studied in three experiments. In the first experiment, seeds were subjected to mechanical scarification, sulphuric acid and boiling water treatments. In the second experiment, they were treated with dry heat at 60, 80 and 100°C. In the third experiment, seeds were placed at different temperature regimes (10, 15, 20, 25 and 30°C) on a thermogradient. Sulphuric acid treatment improved germination in all the species while mechanical scarification improved germination in 18 out of 20 species. Boiling water treatment improved germination in 15 species but proved to be lethal to five species. Similarly, germination was significantly improved in 11 out of 16 species treated with dry heat. Germination was faster and higher at both 25°C and 30°C and the optimum temperature for germination was between 20°C and 30°C for all the species. Mechanical scarification, sulphuric acid and boiling water treatments as well as dry heat were effective to overcome seed coat imposed dormancy in the species studied. It was not possible to recommend a treatment which is equally effective for all the species. However, boiling water is a practical method for achieving rapid, uniform and high germination except in five of the species for which it proved to be lethal. In the latter case, either mechanical scarification or sulphuric acid treatment should be used. Seeds of Millettia ferruginea should be sown when they are fresh to get high germination as they tend to lose their viability during storage. Results from the present study show that once the dormancy in leguminous species with hard seed coats is broken, the seeds germinate in wide ranges of temperature.  相似文献   

4.
Pre-sowing treatments are expected to increase seed germination. This evaluates response to pre-sowing treatments and the growth performance of two native and rare tree species, Garuga pinnata Roxb. and Vitex glabrata R. Br. The hard seed coats were treated by rubbing with sand paper, nail clipping, and immersion in water and acid (H2SO4). Results indicate that G. pinnata showed a 90% germination rate and 30% germination energy when seed coats were nicked with a nail clipper. Rubbing with sand paper was the best pre-sowing treatment for V. glabrata, resulting a 80% germination rate and 30% germination energy. G. pinnata and V. glabrata seedlings from seeds soaked 24 h in water resulted in maximum heights and collar diameters. These were significantly higher (at p < 0.05) than those of other treatments. The results indicate that scarification or nicking of seeds may have some negative impacts on seedling growth. Therefore, it is difficult to recommend a pre-sowing treatment of seeds for achieving both maximum germination and good early seedling growth.  相似文献   

5.
The aim of this research was to evaluate the effects of osmopriming and different hydropriming treatments on the vigour and germination of China aster (Callistephus chinensis) seeds. Seed vigour and germination tests were conducted at 10, 20 and 30°C in darkness for untreated, osmoprimed and hydroprimed seeds. The following parameters and categories of seeds and seedlings were evaluated: the mean germination time (MGT), T10, T50, U75–25, U90–10, the percentage of germinating seeds (Gmax), germination capacity, percentage of abnormal seedlings and dead seeds. The results showed that osmopriming accelerated seed germination to the largest extent and improved the uniformity of germination at 10 and 30°C. Among the hydropriming treatments the highest speed of germination was observed for seeds hydrated in 500 μL of water per 1 g of seeds for 48 h at 15°C. This treatment accelerated seed germination at 10°C compared with the control. Osmopriming increased seed germination capacity at 30°C. None of the applied hydropriming treatments improved this parameter.  相似文献   

6.
Demel Teketay 《New Forests》1996,11(2):155-171
The germination requirements of five Senna species: S. bicapsularis, S. didymobotrya, S. multiglandulosa, S. occidentalis and S. septemtrionalis have been investigated. Seeds possess dormancy which is caused by their hard seed coats hampering maximum, uniform and rapid germination. To overcome this dormancy, seeds of the five species were pre-treated with (a) mechanical scarification, (b) concentrated sulphuric acid for 15, 30, 45 and 60 minutes and (c) boiling water for 15, 30, 45 and 60 seconds. To determine the effects of temperature on the germination of seeds, pre-treated seeds from each species were incubated at 10, 15, 20, 25 and 30°C. Germination was also tested in the dark. Both acid treatment and mechanical scarification resulted in fast and uniform germination. The highest germination (95–100%) for all species was obtained from seeds treated with sulphuric acid for 60 minutes. Mechanical scarification resulted in 100% germination in all the species except S. septemtrionalis (59%). Boiling water improved germination significantly in S. didymobotrya (98%), S. occidentalis (82%) and S. septemtrionalis (97%), but had very little effect on S. multiglandulosa and reduced germination in S. bicapsularis. Senna seeds germinated over a wide range of temperatures with the optimum temperatures for germination falling around 20–25°C. Germination was either completely inhibited or very low at 10°C. Seeds of all species germinated both in light and dark conditions.  相似文献   

7.
We characterized the effects of KNO3 pretreatment and germination temperature on dormancy breaking and germination of mature mountain ash seeds. Seeds treated with KNO3 and germinated at 25 ℃ followed by 5 ℃ had significantly higher germination percentages and germination potentials (51% and 49%, respectively), compared with controls. These treated seeds also exhibited reduced germination initiation times (minimum of 48 days), and elevated germination rate indices (up to 97). The germination of seeds subjected to long-term cold storage (2 years at 0-5 ℃) was also significantly improved by 3 days of 4% KNO3 pretreatment before germinating under a variable temperature regimen (5 ℃ followed by 25 ℃, and followed by 5 ℃). Germination percentages and germination potentials for these cold-stored seeds reached 67% and 54%, respectively, and the germination rate index increased to 126.99. Pretreatment of mountain ash seeds with KNO3 represents a practical, effective, and pollution-free method for improving germination, and can be implemented easily within a variety of nursery settings.  相似文献   

8.
The effects of seed moisture content (MC), gibberellic acid (GA3) concentration, chilling and priming pretreatments on the germination of common alder (Alnus glutinosa) and downey birch (Betula pubescens) seeds were examined. After treatment, the seeds were allowed to germinate for 42 days at 15 °C or 20 °C (dark)/30 °C (light). Treatment responses were similar at both temperatures and in both species. GA3 treatment of seeds in fully imbibed (FI) state for 30 days, or at the lower, target moisture content (TMC) for 30–90 days, significantly improved germination, but longer treatment periods reduced it (FI seeds) or had no effect (TMC seeds). Priming for two days improved germination in the FI seeds, but more than 4 days reduced it. Priming for up to 14 days had little effect on the germination of the TMC seeds.  相似文献   

9.
对喜马拉雅长叶松种子进行24小时GA3和H2O2浸泡预处理和15d的2-3℃低温预处理后,研究了在20℃,25℃和30℃萌发条件下,21个不同种源的喜马拉雅长叶松种子的萌发情况。结果表明,H2O2(1%v/v)和GA3(10mg/L)浸泡预处理,种子萌发率分别是82.39%和78.19%,而未经预处理的种子平均萌发率为70.79%。GA3和H2O2浸泡预处理分别使种子萌发时间缩短了8d和10d。在超过21天的20℃萌发条件下,湿冷处理提高了种子萌发率和缩短了萌发时间 而在25℃和30℃萌发条件下,总的萌发率未受到影响。喜马拉雅长叶松种子因缺少休眠而表现出很好的萌发,但是因为越来越多的造林项目需要大量的种子,播种预处理有利于提高种子萌发率和萌发速率,有助于满足种子需求。  相似文献   

10.
Natural forest succession takes a long time to accumulate sufficient nutrients to support plant growth and enhance soil microbial activity. Human intervention in selecting native pioneer plant species is therefore required to accelerate sustainable restoration. Trema orientalis (L.) Blume, a fast growing pioneer plant species, has the ability to grow in nutrient deficient soils and proves to have reclamation potential in mine wastelands. However, its use has been limited due to low germination percentages and nonsynchronous seed germination. In the present study we tested the effect of sulphuric acid (H2SO4), hydrochloric acid (HCl), gibberellic acid (GA3), and potassium nitrate (KNO3) in varying concentrations and time durations on germination percentages and seed germination synchrony. We found that all treatments had a significant effect in predicting seed germination probabilities. Logistic regression analysis revealed that treatment solution and concentration had a significant effect on seed germination. Treatment with concentrated H2SO4 for 15 min increased germination up to 92% within 20 days with the least imbibition time (8 days) and highest Seedling Vigor Index (491). The scanning electron microscope images of seeds treated with H2SO4 showed complete dissolution of the honeycomb-like network of deposits on the seed coat surface removing the physical barrier and enhancing germination.  相似文献   

11.
The study assessed the effects of seed sources and pretreatments on the germination of Dialium guineense Willd. Seeds were collected from four sources in Nigeria: Ijebu-Ode, Iperu, Odogbolu, and Moniya. Six hundred seeds from each progeny were weighed to determine differences in seed weight. Seeds were pretreated using six treatments: control, soaking in water at 90°C and allowing to cool overnight, soaking in water at room temperature, soaking in concentrated sulphuric acid (H2SO4) for 5 min, 10 min, and 15 min represented as T1, T2, T3, T4, T5, and T6, respectively. Thirty seeds were assigned to each treatment with three replicates for all the seed sources studied. Seeds were sown in germination trays containing washed-sterilized river sand and set under high humidity propagator. Germination counts were taken daily until no further germination took place for 7 d. In all the progeny sources studied, T6 gave the highest mean germination percentage of 59.2 followed by T5 (57.5), T4 (35.8), T2 (21.7), T1 (8.3), while T3 gave the lowest value of 6.7. Analysis of variance revealed significant differences at p ≤ .05 in seed weight, mean germination percentage among seed sources, and treatments. Velvet tamarind has inherent seed coat dormancy that can be removed by pretreatment with concentrated H2SO4 for 10 and 15 min.  相似文献   

12.
Albizia saman (Jacq.) F. Muell. commonly known as rain tree seeds were treated with five pre-sowing treatments to study the effect of pre-sowing treatments on germination and initial seedling development in the nursery.The experiment was established in the nursery of the Institute of Forestry and Environmental Sciences.University of Chittagong, Chittagong, Bangladesh. Results revealed that Nail clipping in one side of the seed (at the distal end of the seed) (T4) provides the highest (50%) seed germination. The second highest germination (42%) was obtained for the seeds treated with immersion in cold water for 24 h (T1). Germination was completely inhibited when the seeds immersed in boiled water for 30 s followed in cold water soaking for 24 h. Other germination parameter and initial morphological growth and biomass production of the seedlings was also higher for the treatments T4and Ti in comparison to the control (Ta)treatment. Pre-sowing treatments of T4 e.g. Nail clipping in one side of the seed (at the distal end of the seed) and T1 (Seeds immersed in cold water for 24 h) may be recommended for maximum germination and initial vigorous seedlings growth of Albizia sarnan in the nursery.  相似文献   

13.
The effects of seed pretreatment and harvest date on the germination of European rowan (Sorbus aucuparia L) seeds were examined. In one experiment, seeds were subjected to drying, storage, soaking, warm and chilling treatments after harvesting in mid- and late August. In another experiment, fully imbibed (FI) seeds were given warm treatment for six weeks and then various durations of chilling (4?±?1°C) for up to 24 weeks. Thereafter, the seeds were adjusted to target moisture content of 35% and 30% or remained in the FI state and were then subjected to either subsequent chilling or freezing (?3°C) for up to 32 weeks. The treated seeds were allowed to germinate at a constant 15°C with 8 hours of lighting per day. Treatment effects were generally consistent for each harvest date. Seeds did not germinate unless they were chilled and germination rates were low unless the seeds were soaked. Warm treatment applied before chilling appeared to induce dormancy. The effect of storage varied with harvest date and storage treatment, with germination being highest for seeds harvested in late August. Mild freezing of ≥16 weeks duration following 16–24 weeks initial chilling resulted in >80% germination, more than could be achieved using chilling alone.  相似文献   

14.
Peltophorum dubium seeds provided by Anhembi, SP were scarified in 98% H2SO4 for 15 rain to overcome mechanical dormancy. Seeds were primed in solutions of 0.2% Captan at 10℃ and 27℃, PEG 6000 -1.0 MPa at 10℃ and 27℃, 0.5 mol KNO3, 0.75 Mol KNO3, 1.0 Mol KNO3. Eight treatments including the primed seeds and nonprimed seeds, five replicates with 100 seeds for each treatment, were set to 15-cm-Petri dish with double filter paper moistened with testing solution PEG in refrigerator at 27℃. For the experiments of all the groups, osmotic potential were 0.0, -0.2, -0.4, -0.6, -0.8, -1.0, -1.2, and -1.4 MPa. P. dubium seeds were also set to water stress experiment in rolled paper with PEG solutions from 0.0 to -1.0 MPa.Germination percentage decreased with the increase of PEG concentration. Control group had a better germination percentage than other groups. Germination hardly occurred in PEG -1.4 MPa.  相似文献   

15.
Abstract

The response of common alder [Alnus glutinosa (L.) Gaertn.] and downy birch (Betula pubescens Ehrh.) seeds to germination temperature was examined following chilling and priming. Seeds of two seed lots of each species were subjected to combinations of chilling (4±1°C) and priming (20°C) treatments in fully imbibed (FI) state or a lower target seed moisture content (TMC) level (30% and 35% in alder and birch, respectively). After treatment, the seeds were allowed to germinate for 56 days at constant temperatures of 7.5, 10, 15, 20, 25 or 30°C. The response to temperature and pretreatment differed between species, but the effect was consistent in each seed lot within each species. In alder, the TMC seeds germinated well across the full range of temperatures, whereas there was an optimum temperature (22–23°C) for seeds given the FI pretreatment. Priming had no significant effect on the germination response of the TMC seeds in alder, but priming greatly improved germination in the FI seeds, especially at the lower germination temperatures (optimum 18–19°C). In contrast, in birch, the TMC seeds germinated better across the full temperature range, but the optimal germination temperature (15°C) was the same for all seed pretreatments. Priming improved germination in both the FI and TMC seeds in birch.  相似文献   

16.
Predispersal seed predation among individual Acacia macrostachya trees over two sites in Burkina Faso was assessed. In addition, the effects of seed predation on seed viability; germination responses to scarification (mechanical, hot water at 60, 70 and 80°C, and sulphuric acid for 10, 20 and 30 min) and dry heat (at 60, 70 and 80°C for 15, 30 and 60 min each) treatments were investigated under laboratory conditions. The results indicated a large difference in predation intensity among individual trees, as well as between sites. Predispersal predation significantly decreased seed germination, particularly when the number of insect larvae per seed increased. Scarified and unscarified seeds germinated equally well, except for hot water treatments of high temperature. This indicates lack of physical dormancy and dispersed seeds can readily germinate provided that conditions for germination are conducive. Seeds exposed to dry heat treatments also germinated close to 97% under low intensity and short exposure times. This suggests that fire, under natural condition, plays a key role in triggering germination of A. macrostachya seeds.  相似文献   

17.
Seeds of Strychnos nux-vomica have slow and erratic germination; thus different presowing treatments were applied to enhance the germination of its seeds collected from Tamaraikulam, Tamil Nadu, India. In addition, the effects of desiccation and different storage conditions on the germination of S. nux-vomica seeds were investigated. The results show that soaking in 500 ppm gibberellic acid (GA3) for 24 h, incubation of seeds at 40 °C for 3 days and alternate water soaking (16 h) and drying (8 h) for 14 days significantly increased the percentage germination compared to the control. Desiccation of seeds down to 10% moisture content resulted in better germination. Germination of S. nux-vomica seeds differed significantly between different storage periods, moisture contents of the seed and for first and second order interactions (p<0.001). The highest germination (92%) was achieved when seeds with 10% moisture content were stored at ambient temperature for 30 weeks. Evidence from the present study indicates that S. nux-vomica seeds possess physiological dormancy that can be broken effectively by after-ripening. As seeds of S. nux-vomica are found to be desiccation tolerant, dry seed (10% moisture content) can be hermitically stored at ambient temperature for 30 weeks without losing their viability.  相似文献   

18.
Seeds of many woody plant species have one of several types of dormancy. They do not germinate unless specific environmental signals are in place or events occur. This study was conducted to evaluate the effects of scarification treatments on seed dormancy and germination of Acacia nilotica (L.) Willd. ex Del., Prosopis juliflora (Sw.) DC. and Dodonaea viscosa (L.) Jacq. The following treatments were applied: T1, untreated seed (control); T2, sulphuric acid (97%) for 45 min; T3, boiling water for 5 min. The seeds were cultured on a Murashige and Skoog (MS) medium after sterilization. The responses of seeds to treatments were compared with each other and with the control treatment. Germination was observed daily for a 30-day period. Results indicated positive responses to treatments, while impermeable seed coats may be responsible for low germination rates in intact seeds as seen experimentally in the untreated control. The highest germination was obtained for P. juliflora and D. viscosa acid-scarified seeds (80.8%-90.8%) and for scarified seeds of A. nilotica (50.2%) boiled in water. The germination indices, i.e., final germination percentage (FG), mean daily germination (MDG) and germination rate (GR), were significantly affected by treatments and species (p<0.01).  相似文献   

19.
研究赤霉素(GA3),冷湿和温度 对五个种源的印度冷杉(Abies pindrow)和长叶云杉(Picea smithiana)种子萌发的影响.种子被浸泡在GA3 (10 mg(L-1)中24小时,然后在3(5(C温度的条件下冷藏15天.设计4个温度(10(C, 15(C, 20(C 和 25(C)条件来促进种子的萌发.结果表明,浸泡和冷湿处理明显增加种子的萌发率.在10 (C时种子的萌发率最高.总体结果表明,种子被浸泡在GA3 (10 mg(L-1)中24小时,冷湿藏15天,可以有效地促进印度冷杉和长叶云杉的种子萌发.统计数据表明,浸泡处理、温度和种源以及与温度的相互作用都对种子的萌发有明显的影响.  相似文献   

20.
Laurel (Laurus nobilis L.) seeds were collected from the west part of Turkey in the fall of 2002. Seeds with pericarp (+) or without pericarp (−) were treated with 1000 mg/l, 2000 mg/l and 3000 mg/l GA3 concentrations, cold stratified at +4 ± 1°C for 25 and 50 days, punctured and seed coat removed to overcome and assess the mechanism of laurel seed dormancy. A period of 50 days cold stratification and removing seed coat significantly increased germination rate to 55% ± 1.91 (Mean ± SE) and 85% ± 3.00, respectively. None of the seeds with pericarp germinated regardless of treatment they underwent. Results suggested that seed dormancy was mainly due to pericarp and perhaps inhibitors linked to seed coat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号