首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Feline immunodeficiency virus (FIV) is a natural infection of domestic cats that results in acquired immunodeficiency syndrome resembling human immunodeficiency virus (HIV) infection in humans. The worldwide prevalence of FIV infection in domestic cats has been reported to range from 1 to 28%. Hence, an effective FIV vaccine will have an important impact on veterinary medicine in addition to being used as a small animal AIDS model for humans. Since the discovery of FIV reported in 1987, FIV vaccine research has pursued both molecular and conventional vaccine approaches toward the development of a commercial product. Published FIV vaccine trial results from 1998 to the present have been compiled to update the veterinary clinical and research communities on the immunologic and experimental efficacy status of these vaccines. A brief report is included on the outcome of the 10 years of collaborative work between industry and academia which led to recent USDA approval of the first animal lentivirus vaccine, the dual-subtype FIV vaccine. The immunogenicity and efficacy of the experimental prototype, dual-subtype FIV vaccine and the efficacy of the currently approved commercial, dual-subtype FIV vaccine (Fel-O-Vax FIV) are discussed. Potential cross-reactivity complications between commercial FIV diagnostic tests, Idexx Snap Combo Test and Western blot assays, and sera from previously vaccinated cats are also discussed. Finally, recommendations are made for unbiased critical testing of new FIV vaccines, the currently USDA approved vaccine, and future vaccines in development.  相似文献   

2.
Feline immunodeficiency virus (FIV) is a natural infection of domestic cats, which produces a disease with many similarities to human immunodeficiency virus (HIV) infection in man. The virus is an important cause of morbidity and mortality in pet cats worldwide. As such an effective vaccine is desirable both for its use in veterinary medicine and also as a model for the development of an HIV vaccine. A large number of candidate vaccines have been tested against feline immunodeficiency virus. These include inactivated virus and infected cell vaccines, DNA and viral vectored vaccines, subunit and peptide vaccines and vaccines using bacterial vectors. Ultimately, the development of inactivated virus and infected cell vaccines led to the release of the first licensed vaccine against FIV, in 2002. This review highlights some of the difficulties associated with the development of lentiviral vaccines and some of the lessons that have been learned in the FIV model that are of particular relevance to the development of HIV vaccines.  相似文献   

3.
So far, most apparently successful immunodeficiency virus vaccines have only been tested against challenge with cell culture-adapted virus. However, even live priming of cats with feline herpesvirus (FHV) vectors expressing the FIV gag and env gene followed by inactivated booster vaccination with fixed FIX infected cell vaccine proved non-protective against infection with a primary FIV isolate. An effective FIV vaccine for field applications therefore is still not underway.  相似文献   

4.
Vaccine trials were undertaken to determine whether the Fel-O-Vax FIV, a commercial dual-subtype (subtypes A and D) feline immunodeficiency virus (FIV) vaccine, is effective against a subtype B FIV isolate. Current results demonstrate the Fel-O-Vax FIV to be effective against a subtype B virus, a subtype reported to be the most common in the USA.  相似文献   

5.
Natural infection of domestic cats by the feline immunodeficiency virus (FIV) causes acquired immunodeficiency syndrome (AIDS). FIV is genetically related to human immunodeficiency virus (HIV), and the clinical and biological features of infections caused by feline and human viruses in their respective hosts are highly analogous. Although the obstacles to vaccinating against FIV and HIV would seem to be of comparable difficulty, a licensed vaccine against feline AIDS is already in widespread use in several countries. While this seemingly major advance in prevention of AIDS would appear to be highly instructive for HIV vaccine development, its message has not been heeded by investigators in the HIV field. This review endeavours to relate what has been learned about vaccination against feline AIDS, and to suggest what this may mean for HIV vaccine development.  相似文献   

6.
Fel-O-Vax FIV is an inactivated virus vaccine designed as an aid in the prevention of infection of cats, 8 weeks or older, by feline immunodeficiency virus (FIV). It contains two genetically distinct FIV strains. The efficacy of this vaccine was demonstrated in a vaccination-challenge study designed to meet various regulatory requirements for registering the vaccine. Eight-week-old kittens were vaccinated with an immunogenicity vaccine which contained minimal release levels of FIV antigens formulated with a proprietary adjuvant system. Twelve months later, all vaccinates and controls were challenged with a heterologous FIV strain. Following the vigorous challenge exposure, cats were monitored for FIV viremia. It was found that 16% of the vaccinated cats developed viremia while 90% of the controls became persistently infected with FIV, which demonstrated that the vaccine was efficacious and the protective immunity lasted for at least 12 months. The safety of the vaccine was demonstrated by a field safety trial in which only 22 mild reactions of short duration were observed following administering 2051 doses of two pre-licensing serials of Fel-O-Vax FIV to cats of various breeds, ages and vaccination histories. Thus, Fel-O-Vax FIV is safe and efficacious for the prevention of FIV infection in cats.  相似文献   

7.
猫免疫缺陷病毒(Feline immunodeficiency virus,FIV)是一种主要感染猫的反转录病毒.FIV与人的免疫缺陷病毒(Human immunodeficiency virus,HIV)有许多相似性,可作为HIV的研究模型,如测量FIV病毒在动物体内的感染曲线,可为了解HIV在人体内的传播细节提供蓝图;利用FIV偏好感染发展中的神经系,可以帮助人们了解艾滋病(Acquired immure deficiency syndrome,AIDS)对神经系统的致病机理.FIV疫苗的研究获得成功,可为HIV疫苗的研制提供提示.FIV在基因治疗方面有重要的应用价值,目前应用FIV传递CFTR(cystic fibrosis transmembrane conductance regulator)的cDNA到呼吸系统表皮细胞治疗囊肿性纤维化(cystic fibrosis,CF)的研究已经取得了很大进展.  相似文献   

8.
Vaccine protection has been achieved in cats against experimental infection with feline immunodeficiency virus (FIV). Such protection has been attributed to FIV-specific humoral immunity, as well as cellular immunity of unknown mechanism(s). Since cell-mediated immunity plays a crucial role in the clearance of viral infections, this study evaluated the role of FIV-specific CTL in vaccine prophylaxis. Cats were immunised with inactivated FIV vaccines, reported to have >90% vaccine efficacy. Significant levels of specific CTL activity were detected following the third immunisation. CTL activity persisted for several months and could be enhanced through a booster immunisation. The levels of CTL activity were comparable to those induced by a recombinant canarypoxvirus based FIV vaccine. These results suggest a possible role for CTL-mediated immunity in vaccine protection against FIV infection in cats.  相似文献   

9.
Vaccination of cats against feline immunodeficiency virus (FIV) with a whole-virus vaccine results in rapid and persistent production of antibodies that are indistinguishable from those used for diagnosis of FIV infection. There are no diagnostic tests available for veterinary practitioners at the present time to resolve the diagnostic dilemma posed by use of whole-virus vaccines for protection of cats against FIV. There is a great need for development of commercially available rapid diagnostic tests that conform to differentiation of infected from vaccinated animals standards.  相似文献   

10.
Prior to the widespread use of vaccination for the control of feline immunodeficiency virus (FIV) infection, diagnosis was made by the detection of antibodies against FIV. A number of commercial animal side tests perform quite well for this determination, with positive predictive values between 91 and 100% and negative predictive values between 96 and 100%. Furthermore, results of these tests could be confirmed by western blot analysis of FIV test-positive sera. Currently, a killed whole virus FIV vaccine has been made available to practitioners. Vaccinated cats seroconvert by ELISA and western blot, making presently available diagnostic tests, which rely on antibody detection, useless in cats after vaccination. The advisory panels of the American Association of Feline Practitioners and Academy of Feline Medicine both recommend testing for feline leukemia virus antigen and FIV antibody before vaccination.  相似文献   

11.
Cats were vaccinated with one of the three preparations: purified feline immunodeficiency virus (FIV) incorporated into immune stimulating complexes (ISCOMs), recombinant FIV p24 ISCOMs, or a fixed, inactivated cell vaccine in quil A. Cats inoculated with the FIV ISCOMs or the recombinant p24 ISCOMs developed high titres of antibodies against the core protein p24 but had no detectable antibodies against the env protein gp120 or virus neutralising antibodies. In contrast, all of the cats inoculated with the fixed, inactivated cell vaccine developed anti-env antibodies and four of five had detectable levels of neutralising antibody. However, none of the vaccinated cats were protected from infection after intraperitoneal challenge with 20 infectious units of FIV. Indeed there appeared to be enhancement of infection after vaccination as the vaccinated cats become viraemic sooner than the unvaccinated controls, and 100% of the vaccinated cats became viraemic compared with 78% of the controls. The mechanism responsible for this enhancement remains unknown.  相似文献   

12.
A group of 15 cats experimentally infected with a Swiss isolate of feline immunodeficiency virus (FIV) and a group of 15 FIV-negative control cats were inoculated with an FeLV vaccine containing recombinant FeLV-envelope. High ELISA antibody titer developed after vaccination in FIV-positive and FIV-negative cats. Vaccinated and nonvaccinated controls were later challenge exposed by intraperitoneal administration of virulent FeLV subtype A (Glasgow). Although 12 of 12 nonvaccinated controls became infected with FeLV (10 persistently, 2 transiently), only 1 of 18 vaccinated (9 FIV positive, 9 FIV negative) cats had persistent and 2 of 18 had transient viremia. From these data and other observations, 2 conclusions were drawn: In the early phase of FIV infection, the immune system is not depressed appreciably, and therefore, cats may be successfully immunized; a recombinant FeLV vaccine was efficacious in protecting cats against intraperitoneal challenge exposure with FeLV.  相似文献   

13.
With the commercial release in Australia in 2004 of a vaccine against feline immunodeficiency virus (FIV; Fel‐O‐Vax FIV®), the landscape for FIV diagnostics shifted substantially. Point‐of‐care (PoC) antibody detection kits, which had been the mainstay for diagnosing FIV infection since the early 1990s, were no longer considered accurate to use in FIV‐vaccinated cats, because of the production of vaccine‐induced antibodies that were considered indistinguishable from those produced in natural FIV infections. Consequently, attention shifted to alternative diagnostic methods such as nucleic acid detection. However, over the past 5 years we have published a series of studies emphasising that FIV PoC test kits vary in their methodology, resulting in differing accuracy in FIV‐vaccinated cats. Importantly, we demonstrated that two commercially available FIV antibody test kits (Witness? and Anigen Rapid?) were able to accurately distinguish between FIV‐vaccinated and FIV‐infected cats, concluding that testing with either kit offers an alternative to PCR testing. This review summarises pertinent findings from our work published in a variety of peer‐reviewed research journals to inform veterinarians (particularly veterinarians in Australia, New Zealand and Japan, where the FIV vaccine is currently commercially available) about how the approach to the diagnosis of FIV infection has shifted. Included in this review is our work investigating the performance of three commercially available FIV PoC test kits in FIV‐vaccinated cats and our recommendations for the diagnosis of FIV infection; the effect of primary FIV vaccination (three FIV vaccines, 4 weeks apart) on PoC test kit performance; our recommendations regarding annual testing of FIV‐vaccinated cats to detect ‘vaccine breakthroughs’; and the potential off‐label use of saliva for the diagnosis of FIV infection using some FIV PoC test kits. We also investigated the accuracy of the same three brands of test kits for feline leukaemia virus (FeLV) diagnosis, using both blood and saliva as diagnostic specimens. Based on these results, we discuss our recommendations for confirmatory testing when veterinarians are presented with a positive FeLV PoC test kit result. Finally, we conclude with our results from the largest and most recent FIV and FeLV seroprevalence study conducted in Australia to date.  相似文献   

14.
OverviewFeline immunodeficiency virus (FIV) is a retrovirus closely related to human immunodeficiency virus. Most felids are susceptible to FIV, but humans are not. Feline immunodeficiency virus is endemic in domestic cat populations worldwide. The virus loses infectivity quickly outside the host and is susceptible to all disinfectants.InfectionFeline immunodeficiency virus is transmitted via bites. The risk of transmission is low in households with socially well-adapted cats. Transmission from mother to kittens may occur, especially if the queen is undergoing an acute infection. Cats with FIV are persistently infected in spite of their ability to mount antibody and cell-mediated immune responses.Disease signsInfected cats generally remain free of clinical signs for several years, and some cats never develop disease, depending on the infecting isolate. Most clinical signs are the consequence of immunodeficiency and secondary infection. Typical manifestations are chronic gingivostomatitis, chronic rhinitis, lymphadenopathy, weight loss and immune-mediated glomerulonephritis.DiagnosisPositive in-practice ELISA results obtained in a low-prevalence or low-risk population should always be confirmed by a laboratory. Western blot is the ‘gold standard’ laboratory test for FIV serology. PCR-based assays vary in performance.Disease managementCats should never be euthanased solely on the basis of an FIV-positive test result. Cats infected with FIV may live as long as uninfected cats, with appropriate management. Asymptomatic FIV-infected cats should be neutered to avoid fighting and virus transmission. Infected cats should receive regular veterinary health checks. They can be housed in the same ward as other patients, but should be kept in individual cages.Vaccination recommendationsAt present, there is no FIV vaccine commercially available in Europe. Potential benefits and risks of vaccinating FIV-infected cats should be assessed on an individual cat basis. Needles and surgical instruments used on FIV-positive cats may transmit the virus to other cats, so strict hygiene is essential.  相似文献   

15.
BACKGROUND: Serodiagnosis of feline immunodeficiency virus (FIV) is complicated by the use of a formalin-inactivated whole-virus FIV vaccine. Cats respond to immunization with antibodies indistinguishable from those produced during natural infection by currently available diagnostic tests, which are unable to distinguish cats that are vaccinated against FIV, infected with FIV, or both. HYPOTHESIS: An enzyme-linked immunosorbent assay (ELISA) detecting antibodies against formalin-treated FIV whole virus and untreated transmembrane peptide will distinguish uninfected from infected cats, regardless of vaccination status. ANIMALS: Blood samples were evaluated from uninfected unvaccinated cats (n = 73 samples), uninfected FIV-vaccinated cats (n = 89), and FIV-infected cats (n = 102, including 3 from cats that were also vaccinated). METHODS: The true status of each sample was determined by virus isolation. Plasma samples were tested for FIV antibodies by a commercial FIV diagnostic assay and an experimental discriminant ELISA. RESULTS: All samples from uninfected cats were correctly identified by the discriminant ELISA (specificity 100%). Of the samples collected from FIV-infected cats, 99 were correctly identified as FIV-infected (sensitivity 97.1%). CONCLUSIONS AND CLINICAL IMPORTANCE: With the exception of viral isolation, the discriminant ELISA is the most reliable assay for diagnosis of FIV. A practical strategy for the diagnosis of FIV infection would be to use existing commercial FIV antibody assays as screening tests. Negative results with commercial assays are highly reliable predictors for lack of infection. Positive results can be confirmed with the discriminant ELISA. If the discriminant ELISA is negative, the cat is probably vaccinated against FIV but not infected. Positive results are likely to represent infection.  相似文献   

16.
OBJECTIVE: To evaluate the use of a polymerase chain reaction (PCR) method for detection of feline immunodeficiency virus (FIV) DNA, using formalin-fixed paraffin-embedded (FFPE) tissues, and to use this method to evaluate tissues obtained from vaccine site-associated sarcomas (VSS) of cats for FIV DNA. SAMPLE POPULATION: 50 FFPE tissue blocks from VSS of cats and 50 FFPE tissue blocks from cutaneous non-vaccine site-associated fibrosarcomas (non-VSS) of cats. PROCEDURE: DNA was extracted from FFPE sections of each tumor and regions of the gag gene of FIV were amplified by a PCR, using 3 sets of primers. Sensitivity of the method was compared between frozen and FFPE tissues, using splenic tissue obtained from a cat that had been experimentally infected with FIV. RESULTS: We did not detect FIV DNA in VSS or non-VSS tissues. Sensitivity of the PCR method was identical for frozen or FFPE tissues. CONCLUSIONS AND CLINICAL RELEVANCE: It is possible to detect FIV DNA in FFPE tissues by use of a PCR. We did not find evidence to support direct FIV involvement in the pathogenesis of VSS in cats.  相似文献   

17.
In a previous experiment a group of 15 specified pathogen free (SPF) cats were experimentally infected with a Swiss isolate of feline immunodeficiency virus (FIV). A group of 15 SPF cats served as FIV negative controls. Nine cats of each group were vaccinated with a recombinant feline leukemia virus (FeLV) vaccine, six cats in each group with a placebo vaccine. All vaccinated cats developed high antibody titers to FeLV and were protected against subsequent FeLV challenge infection. In both control groups five of six cats became persistently infected with FeLV. Unexpectedly, the primary immune response to the vaccine antigen was significantly higher in the FIV positive group than in the FIV negative. The secondary response was stronger in the FIV negative cats. The goal of the present investigation was to further study the immune response in these 30 cats. They were immunized twice with the synthetic peptide L-tyrosine-L-glutamic acid-poly(DL-alanine)-poly(L-lysine) (TGAL) 21 days apart. Blood samples were collected on four occasions during the immunization process. They were tested for antibodies to TGAL, complete blood cell counts and CD4+, CD8+ and pan-T-lymphocyte counts. The following observations were made: (1) in contrast to the FeLV vaccine experiment, the primary immune response to TGAL was not significantly stronger in the FIV positive cats when tested by enzyme-linked immunosorbent assay (2). The absolute size of the CD4+ lymphocyte population was distinctly smaller in the FIV positive than in the FIV negative cats. The lowest CD4+ values were found in the dually FIV/FeLV infected cats. (3) A population of CD8+ lymphocytes was identified that was characterized by a distinctly weaker fluorescence. The size of this population increased in FIV positive and decreased in FIV negative cats during the TGAL immunization experiment. (4) The CD4+:CD8+ ratio increased in FIV negative cats during TGAL immunization from 1.9 to 2.3. In contrast, in FIV positive animals the CD4+:CD8+ ratio decreased significantly from 1.9 to 1.3 during the same period. From these and earlier data it was concluded that in short-term FIV infection the immune response to T-cell dependent antigens may be increased over that of the controls. Immune suppression develops gradually with duration of the infection. The significant drop of the CD4+:CD8+ ratio over a 5 week immunization period suggests that antigenic stimulation may accelerate the development of immune suppression in FIV positive cats. If this is a general feature, FIV infection may provide a particularly interesting model for studying the pathogenesis of AIDS.  相似文献   

18.
Feline immunodeficiency virus (FIV), previously known as feline T-lymphotropic lentivirus (FTLV), was first described by Pedersen et al. (1987) who isolated the virus from cats with a variety of clinical signs suggestive of immunodeficiency. Since then FIV has become one of the most studied feline viruses, not least because of its similarity to human immunodeficiency viruses (HIV) which cause acquired immunodeficiency syndrome (AIDS) in man.  相似文献   

19.
Feline immunodeficiency virus (FIV) infection of the domestic cat induces an immunodeficiency characterised by a gradual depletion of CD4+ T-helper lymphocytes. The virus targets T-helper cells by way of an interaction between its envelope glycoprotein (Env) and the cell surface molecule CD134 (OX40), a member of the nerve growth factor receptor/tumour necrosis factor receptor superfamily. The Env–CD134 interaction is a necessary prerequisite for the subsequent interaction with CXCR4, the only chemokine receptor identified to date to act as a co-receptor for FIV. As T-helper cell expression of CD134 and CXCR4 is restricted to activated cells, FIV targets selectively antigen-specific T-helper cells. With disease progression the cell tropism of the virus expands; this may be the result of changes in the way in which Env interacts with CD134, a less stringent Env–CD134 interaction enabling the Env to interact more readily with CXCR4 and thus broadening the cell tropism of virus. In contrast, viruses that are present in early infection may have a narrower cell tropism, reflecting a more stringent interaction with CD134. Accordingly, “early” viruses may target CD134-expressing cells more efficiently and be more resistant to neutralising antibody. It is these early viruses that may be transmitted and should be considered as candidates for the development of vaccine regimes and novel therapeutic agents.  相似文献   

20.
In recent years it has become clear that cell-mediated immunity is playing a role in the control of lentivirus infections. In particular, cytotoxic T lymphocyte responses have been associated with improved outcome of infection, especially those directed against the regulatory proteins like Rev and Tat, which are expressed early after infection. Therefore, there is considerable interest in lentiviral vaccine candidates that can induce these types of immune responses. In the present study, we describe the construction and characterisation of expression vectors based on recombinant Semliki Forest virus system and modified vaccinia virus Ankara for the expression of feline immunodeficiency virus (FIV) accessory proteins Rev and OrfA. These recombinant viral vectors were used to immunize cats using a prime-boost regimen and the protective efficacy of this vaccination strategy was assessed after challenge infection of immunized cats with FIV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号