首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 161 毫秒
1.
大豆种子脂肪酸含量的遗传分析   总被引:3,自引:0,他引:3  
利用气相色谱脂肪酸甲酯化法测定了大豆品种绥农10与L-9及其杂交衍生的197个重组自交系种子的棕榈酸、硬脂酸、油酸、亚油酸、亚麻酸的含量,运用主基因+多基因混合遗传模型,对大豆种子的5种脂肪酸进行了遗传分析.结果表明:硬脂酸、油酸和亚油酸均为2对主基因+多基因遗传模型;棕榈酸与亚麻酸均为3对主基因+多基因遗传模型,且五种脂肪酸含量的主基因遗传率大于多基因遗传率,即五种脂肪酸的遗传主要受主基因控制.  相似文献   

2.
本研究以‘花育36号’ב高油613’构建重组自交系(recombinant inbred line,RIL)群体为试验材料,考察2个环境下(E1、E2)RIL群体种子长宽比表型数据,采用数量性状主基因+多基因混合遗传模型联合分离分析方法进行遗传分析。结果表明,E1环境下花生种子长宽比符合B_1_8模型(即2对存在重叠作用的独立主基因遗传模型),主基因间互作效应为-0.19,主基因遗传率为89.86%;E2环境花生种子长宽比符合B_1_7模型(即2对存在互补作用的独立主基因遗传模型),主基因间互作效应为-0.22,主基因遗传率为92.04%。通过对多态性SSR标记筛选和相关性分析,发现标记AGGS1325在2个环境下均与种子长宽比显著性相关。本研究将为深入开展花生粒型分子机制研究和推进花生外观品质育种提供重要理论基础。  相似文献   

3.
大豆对豆卷叶螟抗性的主基因+多基因混合遗传   总被引:5,自引:0,他引:5  
豆卷叶螟为南京地区大豆的主要食叶害虫.研究大豆对豆卷叶螟抗性的遗传规律,为其抗性机理研究、QTL初级与精细定位、抗虫育种和分子标记辅助选择育种奠定基础.为此,在田间自然虫源条件下,以溧水中子黄豆和南农493-1正反交组合的F2群体为材料,F2单株叶片损失率为抗性鉴定指标,应用亲本、F1和F2四个世代的数量性状主基因 多基因混合遗传分析方法,分析了大豆对豆卷叶螟抗性的遗传规律.结果表明,大豆对豆卷叶螟的抗性由两对加性-显性-上位性主基因 多基因混合遗传模型控制,主基因遗传率为62.93%,且两对主基因间存在互作.因此,大豆对卷叶螟抗性符合2对主基因 多基因的遗传模式,说明大豆对不同虫源的抗虫性性状存在相似的遗传规律.  相似文献   

4.
不同遗传背景下大豆百粒重的遗传模型分析   总被引:2,自引:0,他引:2  
以1个共同亲本(合丰25)衍生的3个重组自交系(合丰25×Bayfield杂交衍生的144个F2∶12,合丰25×Conrad杂交衍生的140个F2∶11,合丰25×Mapple Arrow杂交衍生的117个F2∶12)为研究材料,利用主基因+多基因遗传体系对这3个群体在2013年哈尔滨环境条件下的百粒重遗传模型进行分析。结果表明:合丰25×Conrad群体后代大豆百粒重遗传呈现2对主基因+多基因遗传模型,合丰25×Mapple Arrow群体后代大豆百粒重遗传呈现主基因+加性多基因的遗传模型,合丰25×Baybield杂交群体后代大豆百粒重遗传呈现2对主基因+多基因遗传模型,表明有相似的遗传背景的重组自交系群体在相同环境条件下,具有类似的遗传模型,为大豆高产育种提供了有益的参考。  相似文献   

5.
大豆脂肪及脂肪酸组分含量的遗传分析   总被引:5,自引:0,他引:5  
以Essex×ZDD2315的P1、P2、F1、BC1F3为材料,用主基因 多基因混合遗传模型,分析大豆脂肪及脂肪酸组分含量的遗传机制及相关关系.结果表明,大豆脂肪含量受2对加性互补主基因 多基因控制,主基因遗传率为16.23%,多基因遗传率为53.49%;棕榈酸、硬脂酸和亚油酸均为3对主基因 多基因遗传模型,其中均有2对主基因效应为等加性,主基因遗传率分别为71.63%,91.51%和91.59%,棕榈酸多基因遗传率为14.78%,硬脂酸和亚油酸未估计出多基因遗传率;油酸为3对加性主基因遗传模型,其中2对主基因效应为等加性,主基因遗传率为74.66%;亚麻酸为2对等加性主基因 多基因遗传模型,主基因遗传率为41.98%,多基因遗传率为24.17%.相关分析结果,棕榈酸、亚麻酸与脂肪呈极显著负相关(-0.272、-0.325);油酸与亚油酸亚麻酸呈极显著负相关(-0.833、-0.604);亚油酸和亚麻酸呈极显著正相关(0.287);棕榈酸与油酸亚油酸呈极显著和显著负相关(-0.255和-0.211);硬脂酸与亚油酸呈极显著负相关(-0.310).因此,脂肪及脂肪酸组分含量的遗传涉及到主效基因和多基因,脂肪及亚麻酸含量的主基因遗传率较低,其它性状主基因遗传率均在70%以上,改善脂肪含量要注重多基因的积累,改善脂肪酸组分可着重在主基因的利用,提高脂肪含量与改善脂肪酸组分无突出矛盾.  相似文献   

6.
冬瓜种子千粒重主基因+多基因混合遗传分析   总被引:1,自引:0,他引:1  
利用主基因+多基因混合遗传模型对冬瓜组合B214(小籽粒)×B227(大籽粒)的6世代群体(P1、P2、F1、B1、B2及F2)种子千粒重进行遗传分析.结果表明,冬瓜组合B214×B227种子千粒重性状为1对加性主基因+加性-显性多基因遗传,主要受主基因和多基因的加性效应控制,不存在杂种优势.主基因+多基因在B1、B2及F2群体的遗传率分别为68.82%、75.70%和76.29%.因此,可通过选择较高千粒重的材料为亲本,利用加性效应对冬瓜种子千粒重性状进行品种改良.  相似文献   

7.
玉米子粒油分含量的遗传模型分析   总被引:1,自引:0,他引:1  
玉米子粒油分含量直接影响着深加工品质,研究子粒油分含量的遗传模型,可以为遗传育种中进一步提高玉米油分含量提供参考。以3个玉米组合济533/PH6WC、济533/H5818和2394/PH4CV的亲本构建各自的六世代群体(P1、P2、F_1、B1、B2、F_2),利用主基因+多基因混合遗传模型分析玉米子粒油分含量的遗传特性。结果表明,3个组合油分含量均符合D-2模型(1对加性主基因+加性-显性多基因模型),主基因+多基因遗传率均以F_2代较高,表明玉米子粒油分特性在F_2世代选择时效率较高。  相似文献   

8.
利用先玉335品种(PH6WC×PH4CV)P1、P2、F_1、B1、B2、F2共6个世代,运用主基因+多基因遗传模型和六世代联合分析方法,进行农艺性状株高、穗位高、穗重、穗粒重、穗轴重、穗长、穗行数、秃尖长、百粒重、出籽率的遗传分析。结果表明,株高、穗重、穗粒重、穗轴重、穗长、穗行数6个性状均为2对主基因加、显、上+多基因加、显混合遗传模型;秃尖长、百粒重两个性状为2对主基因加、显、上+多基因加、显、上混合遗传模型;穗位高为1对主基因加性+多基因加、显混合遗传模型;出籽率为多基因加、显、上遗传模型。株高、穗轴重、百粒重以主基因遗传为主、多基因遗传为辅。穗重、穗粒重、穗行数以主基因遗传为主;穗长主基因遗传、多基因遗传同等重要;秃尖长以多基因遗传为主,主基因遗传为辅;穗位高、出籽率多基因起决定作用。  相似文献   

9.
玉米粒深性状的数量遗传分析   总被引:2,自引:0,他引:2  
以两个粒深不同的玉米自交系PHBIM和丹340构成的P1、F1、P2、B1、B2和F2 6个世代群体为材料,运用主基因与多基因遗传分析方法,研究玉米粒深性状主基因+多基因遗传规律。结果表明,该性状在B1分离世代群体呈双峰分布,B2和F2分离世代群体呈多峰分布,说明玉米粒深性状属于数量性状,由主基因和多基因控制,且符合两对加性-显性-上位性主基因+加性-显性-上位性多基因模型(即E-1-0模型),主基因遗传率为56.16%~62.46%,多基因遗传率为11.72%~16.24%,主基因作用对后代遗传方面影响较大。  相似文献   

10.
小麦农艺性状的主基因+多基因遗传分析   总被引:1,自引:0,他引:1  
为明确小麦重要农艺性状的遗传组成,并筛选适于QTL的性状,以西农817和中国春为亲本,构建F2、F3群体,采用P1、P2、F1、F2、F3五世代联合分析方法,研究了株高、有效分蘖、小穗数、穗粒数、穗长、穗下节间距、小穗着生密度等产量相关性状的遗传模型.结果表明,7个性状不仅受基因的控制,同时也受到不同程度的环境影响.其中,穗长、穗粒数符合多基因遗传模型,无主基因存在;株高、小穗数、小穗着生密度符合一对加显性主基因+加性-显性多基因混合遗传模型;穗下节间距符合一对完全显性主基因+加性-显性多基因模型;有效分蘖符合一对负向完全显性主基因+加性-显性多基因模型.  相似文献   

11.
太湖流域粳稻地方品种产量相关性状的遗传分析   总被引:8,自引:0,他引:8  
采用主基因+多基因混合遗传模型,对亲本穗部性状差异较大的3个杂交组合,大头稻/呆长青(组合Ⅰ)、老来红/盐粳2号(组合Ⅱ)和呆长青/上海青(组合Ⅲ)的后裔世代的产量相关性状进行了遗传分离分析,得到了这些性状的最适遗传模型。结果表明:组合Ⅰ每穗总粒数的最适遗传模型为一对主基因+加性 显性多基因混合模型,而组合Ⅱ、Ⅲ为一对完全显性主基因+加性 显性多基因遗传模型;组合Ⅱ、Ⅲ的单株有效穗数受一对主基因控制,组合Ⅰ则受两对主基因控制;组合Ⅰ、Ⅱ千粒重的遗传模型为两对主基因+多基因模型,组合Ⅲ为一对主基因+多基因遗传模型;每穗实粒数为两对主基因遗传模型。选用P1、P2、F1、B1、B2、F2六世代联合分离分析方法,相比于单个分离世代的分析方法,增加了试验的精确度,保证了分析结果的准确性,并可鉴别多基因的存在。根据试验结果,分析了不同性状、不同组合的育种策略。  相似文献   

12.
烤烟易烤性遗传分析   总被引:2,自引:0,他引:2  
应用植物数量性状主基因+多基因混合遗传模型多世代联合分析方法,对烤烟杂交组合中烟100×翠碧1号的P1,P2,F1,B1,B2和F26个世代群体烟叶易烤性性状进行了联合分析。结果表明:烤烟烟叶易烤性性状的遗传符合2对加性-显性-上位性主基因+加性-显性多基因混合遗传模型(E 1),同时两对主基因间存在互作效应,且显性效应值相近,表现出负向不完全显性。主基因遗传率以B1最高,达78.17%,B2与F2相差不大,分别为63.68%和65.61%,表现出较高的主基因遗传效应;多基因遗传率以B2最高,为7.51%,其次是F2(6.84%),B1最低(0.88%)。主基因+多基因效应决定了各分离世代易烤性性状变异的71.19%~79.06%。  相似文献   

13.
苦瓜叶片叶绿素含量的遗传分析   总被引:1,自引:0,他引:1  
为探究苦瓜叶片叶绿素含量遗传特点,加快高产优质新品种选育进程,以苦瓜高代自交系$\otimes$04-17-6和$\otimes$25-6配组产生的6个世代P1、P2、F1、B1、B2和F2为材料,利用主基因+多基因混合遗传模型和ABC尺度测验2种方法,对苦瓜叶片叶绿素含量进行遗传分析。主基因+多基因混合遗传模型分析结果表明,叶绿素含量遗传受1对加性-显性主基因+加性-显性-上位性多基因控制,且高叶绿素含量对低叶绿素含量为不完全显性。3个分离世代B1、B2、F2的主基因遗传率分别为2.86%、75.35%、79.79%,多基因遗传率分别为87.81%、0%、0%,环境变异为9.33%~24.65%,主基因的加性效应da和显性效应ha分别为17.739和17.682,显性度ha/da 小于1。ABC尺度测验结果表明,叶绿素含量的遗传符合加性-显性模型。2种方法分析结果表明,苦瓜叶片叶绿素含量由1对主基因控制,同时受微效多基因及环境影响,适合进行早代选择。B2、F2世代应重点进行主基因选择,多基因在B1选择效率高,提高品系叶绿素含量应注重对加性效应和显性效应的利用。该研究结果为苦瓜产量及品质育种提供了理论基础。  相似文献   

14.
以短抽雄至散粉间隔时间玉米自交系WZ08X38和长抽雄至散粉间隔时间玉米自交系BS1074杂交获得的6个世代(P_1、P_2、F_1、B_1、B_2和F_2)株系为材料,应用植物数量性状主基因+多基因遗传模型,对玉米抽雄至散粉间隔时间进行遗传分析。结果表明,春播和夏播玉米的抽雄至散粉间隔时间的最适遗传模型分别是E-0和E-3,即2对加性-显性-上位性主基因+加性-显性-上位性多基因和2对加性主基因+加性-显性多基因。春播结果中,2对主基因加性效应值均为-0.831,显性效应值分别是-0.679和-0.025,主基因遗传率在B_1、B_2和F_2中分别为40.955%、60.657%和52.325%,多基因遗传率分别为0.002%、14.298%和25.642%,环境方差占表型方差的比例分别为59.03%、25.03%和22.02%;夏播结果中,2对主基因加性效应值分别为0.180和-0.651,主基因遗传率在B_1、B_2和F_2中分别是27.295%、26.997%和39.052%,多基因遗传率分别为0.001%、0.001%和0.001%,环境方差占表型方差的比例分别为72.74%、72.95%和60.91%。  相似文献   

15.
水稻恢复系C224对条纹叶枯病的抗性遗传模型分析   总被引:1,自引:0,他引:1  
应用植物数量性状"主基因+多基因混合遗传模型"方法分析了C224对条纹叶枯病抗性的遗传效应,并考查了C224与7个保持系组配的杂交组合对条纹叶枯病的抗性。结果表明,C224对条纹叶枯病的抗性遗传符合2对加性-显性-上位性主基因+加性-显性多基因的混合遗传模型(E-1),两对主基因的加性效应分别为-12.47和-24.75,均呈负向显性,上位性和互作效应明显;主基因的遗传率为92.12%,多基因遗传率为2.74%,抗性遗传存在明显的主基因效应。在C224与7个保持系组配的杂交组合中,有5个组合对条纹叶枯病的抗性达到高抗或中抗水平。  相似文献   

16.
甘蓝型油菜主要脂肪酸的主基因+多基因遗传分析   总被引:2,自引:0,他引:2  
以低芥酸油菜品系APL01与高芥酸品种M083杂交所获得的6个基本世代(P1、P2、F1、B1、B2和F2)为材料,利用主基因+多基因混合遗传模型对油菜主要脂肪酸进行遗传分析,结果表明:棕榈酸和廿碳烯酸均由2对加性-显性-上位性主基因+加性-显性多基因控制,棕榈酸的主基因以显性效应为主,加性效应较小,廿碳烯酸的主基因加性效应与显性效应并重。硬脂酸、油酸、亚油酸和亚麻酸均由2对加性-显性-上位性主基因+加性-显性-上位性多基因控制,硬脂酸的主基因以加性效应为主,显性效应较小,主基因的遗传率为75.00%~92.45%,多基因的遗传率较小;控制油酸的2对主基因的加性效应值分别为14.38和9.92,显性效应值分别为-2.24和-0.44,上位性效应以加加上位为主,主基因的遗传率较大,为81.93%~92.68%,多基因的遗传率较小;控制亚油酸及亚麻酸的主基因加性效应均大于显性效应,上位性效应中以加加上位和显显上位为主。芥酸由2对加性-显性主基因控制,加性效应为-12.27和-8.83,显性效应值较小,分别为0.35和1.69,无上位性效应,也无多基因存在,主基因的遗传率较大,为92.54%~96.72%。  相似文献   

17.
利用主基因 多基因混合遗传模型,对由韭菜青×IR26杂交和自交构建的一个由220个家系组成的重组自交系群体 (F8)的苗期吸氮能力和氮素生理利用率进行了遗传分析。水稻苗期硝态氮吸收能力、铵态氮吸收能力和氮素生理利用率均由两对主基因+多基因模式控制。硝态氮吸收能力的主基因遗传率为6320%,多基因遗传率为20.64%,两对主基因之间有加性和上位性效应;铵态氮吸收能力的主基因遗传率为55.67%,多基因遗传率为0.03%,两对主基因之间具有显性上位性效应;氮素生理利用率的主基因遗传率仅为19.47%,多基因遗传率达67.46%,两对基因之间具有重叠效应。对水稻氮高效利用品种的选育策略进行了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号