首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Silicon amendment significantly reduced bacterial wilt incidence expressed as area under disease progress curve for tomato genotypes L390 (susceptible) by 26.8% and King Kong2 (moderately resistant) by 56.1% compared to non-treated plants grown in hydroponic culture. However, wilt incidence in silicon-treated plants of genotype L390 reached 100% at 13 days post-inoculation (dpi), while in genotype King Kong2, plant death was retarded by 6 days, with 20% reduction of final wilt incidence. Bacterial numbers were significantly lower in silicon-treated compared to non-treated plants in King Kong2 at 2 dpi in midstems and in all organs at 5 dpi, and in Hawaii 7998 (resistant) in all organs at 2 dpi. Differences between genotypes were obvious on midstem level (5 dpi), where bacterial populations were generally significantly lower compared to roots. Increased tolerance was observed in genotypes L390 and King Kong2 with silicon treatment.Silicon accumulated in roots and was low in stems and leaves. Inoculation with Ralstonia solanacearum did not significantly affect silicon uptake and distribution. Negative correlations between root silicon content and bacterial numbers of midstems in genotypes Hawaii 7998 and King Kong2 suggested an induced resistance. Indications for an influence of host genotype and silicon treatment on the phenotypic conversion of R. solanacearum strain To-udk2-sb from fluidal to non-fluidal colonies in planta were observed.This is the first report on the effect of silicon on a bacterial disease and in a silicon-non-accumulator plant.  相似文献   

2.
Kim SG  Kim KW  Park EW  Choi D 《Phytopathology》2002,92(10):1095-1103
ABSTRACT Locations of silicon accumulation in rice leaves and its possible association with resistance to rice blast were investigated by electron microscopy and X-ray microanalysis. A blast-susceptible cultivar, Jinmi, and a partially resistant cultivar, Hwaseong, were grown under a hydroponic culture system with modified Yoshida's nutrient solution containing 0, 50, 100, and 200 ppm of silicon. Electron-dense silicon layers were frequently found beneath the cuticle in epidermal cell walls of silicon-treated plants. Increasing levels of silicon were detected in the outer regions of epidermal cell walls. Silicon was present mainly in epidermal cell walls, middle lamellae, and intercellular spaces within subepidermal tissues. Furthermore, silicon was prevalent throughout the leaf surface, with relatively small deposition on stomatal guard cells in silicon-treated plants. Silicon accumulation and epidermal cell wall thickness in leaves were greater in cv. Jinmi than in cv. Hwaseong. However, the thickness ratios of the silicon layers to epidermal cell walls were greater in cv. Hwaseong (53.25 to 93.28%) than in cv. Jinmi (36.58 to 66.54%). Leaf blast severity was lower in cv. Hwaseong than in cv. Jinmi and was significantly reduced in silicon-treated plants of both cultivars. These results suggest that silicon-induced cell wall fortification of rice leaves may be closely associated with enhanced host resistance to blast.  相似文献   

3.
The composition and structure of pectic cell wall polysaccharides of stem sections were investigated in healthy and Ralstonia solanacearum-inoculated tomato genotypes L390 and Hawaii 7996, susceptible and resistant to bacterial wilt, respectively, by immunohistochemical analysis. Constitutive differences between genotypes manifested in methyl-ester distribution of homogalacturonan (HG), arabinan and galactan side chain composition of rhamnogalacturonan I (RG I) and arabinogalactan-protein (AGP) in the xylem parenchyma and in vessel cell walls. After inoculation increased labeling was observed with all the antibodies (JIM5, JIM7, LM2, LM5, LM6, LM7) specific for HG, RG I and AGP epitopes, in the xylem parenchyma and around xylem vessels of stem sections of L390, but not of Hawaii 7996. Also vessel cell walls were stronger stained after inoculation in L390, particularly for the non-blockwise de-esterification of HG, possibly indicating for the first time the non-blockwise action pattern of bacterial pectin methyl esterase. In genotype Hawaii 7996 a reaction to inoculation was observed only in vessel walls, with a significantly increased number of stained vessels—five- and nine-fold for arabinan and galactan epitopes of RG I, respectively. Differences in xylem cell wall structure may play a role as a constitutive resistance mechanism in the multigenic resistance of tomato against bacterial wilt, while changes after inoculation may contribute to induced basal resistance on cell wall level.  相似文献   

4.
将印度梨形孢真菌(Piriformospora indica)接种于受不同干旱胁迫花生幼苗根部,研究接种该真菌对花生抗旱性的影响.试验设置3个处理,分别是:接菌+干旱胁迫处理、未接菌+干旱胁迫处理、未接菌+未干旱胁迫处理(CK).试验结果表明:接菌+干旱处理后的花生主根长、根鲜重、根干重、茎鲜重、茎干重、叶鲜重、叶干重、叶绿素含量(SPAD值)等农艺性状表现分别为14.96 cm、0.64g、0.08 g、1.48 g、0.20 g、1.61 g、0.29 g、42.63.与未接菌+干旱处理相比均显著增加,增幅分别为26.8%、25.50%、60%、15.63%、17.65%、15.59%、26.09%、7.43%.与对照相比,在主根长、根鲜重、根干重、茎干重、叶干重、叶绿素含量(SPAD值)等性状方面均没有显著性变化.以上结果说明:在干旱胁迫条件下,接种印度梨形孢真菌能够维持花生正常生长,使得花生从植株外部形态上表现出较强的抗旱性.  相似文献   

5.
The distribution and multiplication of Ralstonia solanacearum in tomato plants of 11 resistant cultivars derived from different genetic sources and susceptible cultivar Ponderosa were examined. Bacterial multiplication in stems of resistant tomato plants was suppressed owing to the limitation of pathogen movement from the protoxylem or the primary xylem to other xylem tissues. The limitation was most conspicuous in Hawaii 7996. Grafting experiments indicated that the percentage of wilting of Ponderosa scions was less on Hawaii 7996 rootstocks than that on the most resistant rootstock (LS-89) used in Japan. Hawaii 7996 could be an alternative genetic source for breeding for resistance to bacterial wilt.  相似文献   

6.
Intercellular washing fluid (IWF) obtained from the susceptibleArabidopsis accession Ws-eds1 inoculated withPeronospora parasitica isolate Emoy-2, contained an elicitor of necrosis with ecotype specificity towardsArabidopsis accessions with particular resistance genes. This elicitor caused necrosis on the highly resistant accessions La-er, Nd-1 and partly on Col-5, but not on the susceptible accessions Ws-eds1 and Oy-0. In resistant plants, injection of IWF caused hypersensitive reaction (HR)-like cell collapse which was associated with the accumulation of phenolics and lignin-like material in walls of cells undergoing cell death. The elicitor is sensitive to proteinase K and pronase enzymes, heating and autoclaving but insensitive to periodate oxidation, freezing and thawing, and is not dialyzable. Results suggest that the elicitor is a protein. Fractionation experiments using size-exclusion membranes revealed that elicitor activity has a molecular weight in excess of 100 kDa. http://www.phytoparasitica.org posting July 13, 2003.  相似文献   

7.
ABSTRACT Until recently, tomato race 1 (T1) of Xanthomonas campestris pv. vesicatoria was the only race causing bacterial spot of tomato in Florida. In 1991, tomato race 3 (T3) was first identified in 3 of 13 tomato production fields surveyed. By 1994, T3 was observed in 21 of 28 fields and was the only race identified in 14 fields. In field studies, tomato genotypes with resistance to either T1 or T3 or susceptibility to both were co-inoculated with strains of both races. Lesions on 10 plants in each of three replications for each genotype were sampled three times during the experiment; bacterial isolations were made from each lesion, and tomato race identifications were made for each strain. At the third sampling date, T3 was isolated from 97% of the lesions on the susceptible genotype Walter and the T1-resistant genotype Hawaii 7998, while T3 was isolated from 23% of the lesions and T1 from the remaining 77% on the T3-resistant genotypes PI 128216 and PI 126932. In surface population studies done in growth rooms, suspensions of T1 and T3 were applied alone and in combination to the leaf surfaces of susceptible and resistant genotypes. T1 populations were reduced more than 10-fold when applied in combination with T3, compared with populations that developed when T1 was applied alone. T3 populations were not affected when applied in combination with a T1 strain. In greenhouse studies with the T3-resistant genotype Hawaii 7981, disease was significantly reduced in plants inoculated with T3 in combination with T1, compared with plants inoculated with T1 alone. These results clearly demonstrate the competitive nature of T3 in the presence of T1 and help explain the emergence of T3 as a prevalent race in Florida.  相似文献   

8.
To ascertain if active oxygen species play a role in fusarium wilt of chickpea caused by Fusarium oxysporum f. sp. ciceris, the degree of lipid peroxidation (malondialdehyde formation) and the activity levels of diamine oxidase (DAO), an apoplastic H2O2-forming oxidase, and several antioxidant enzymes, namely ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), guaiacol-dependent peroxidase (GPX) and superoxide dismutase (SOD), were determined spectrophotometrically in roots and stems of ‘WR315’ (resistant) and ‘JG62’ (susceptible) chickpea cultivars inoculated with the highly virulent race 5 of the pathogen. Moreover, APX, CAT, GPX and SOD were also analysed in roots and stems by gel electrophoresis and activity staining; and the protein levels of APX and SOD in roots were determined by Western blotting. In roots, infection by the pathogen increased lipid peroxidation and CAT and SOD activities, although such responses occurred earlier in the incompatible compared with the compatible interactions. APX, GPX and GR activities were also increased in infected roots, but only in the compatible interaction. In stems, infection by the pathogen increased lipid peroxidation and APX, CAT, SOD and GPX activities only in the compatible interaction, and DAO activity only in the incompatible one. In general, electrophoregrams agreed with the activity levels determined spectrophotometrically and did not reveal any differences in isoenzyme patterns between cultivars or between infected and non-infected plants. Further, Western blots revealed an increase in the root protein levels of APX in the compatible interaction and in those of SOD in both compatible and incompatible interactions. In conclusion, whereas enhanced DAO activity in stems, and earlier increases in lipid peroxidation and CAT and SOD activities in roots, can be associated with resistance to fusarium wilt in chickpea, the induction of the latter three parameters in roots and stems along with that of APX, GR (only in roots) and GPX (only in stems) activities are rather more associated with the establishment of the compatible interaction.  相似文献   

9.
To study the behavior and mutation of Ralstonia solanacearum in Solanum toxicarium, which is resistant to bacterial wilt, S. toxicarium was grown in aseptic culture and inoculated with R. solanacearum. Although 60%–80% of the inoculated plants were wilting after 2 to 3 days, most wilted plants had recovered by 20 days after inoculation. The pathogen was reisolated from over 98% of inoculated plant stems, but the percentage of recovery decreased the closer the isolation sites were toward the upper stem sections. Three colony types, characterized as fluidal white, nonfluidal red, and a mixture of fluidal white and nonfluidal red, were reisolated from the stems. Nonfluidal red colonies were less virulent on tomato plants than fluidal white colonies.  相似文献   

10.
Two sources of resistance to Rice yellow mottle virus were challenged in host passage experiments. Pronounced changes in pathogenicity occurred over serial passages of virus isolates inoculated to partially or highly resistant cultivars. The changes encompassed the known existing pathogenic variability of field isolates. Ultimately, the high resistance of the Oryza indica cv. Gigante was overcome and the partial resistance of the O. sativa japonica cv. Azucena broke down. The effect was resistance-specific as different isolates overcame partial and high resistance, and may also be allele-specific as different isolates overcame the resistance of cultivars carrying the same resistance gene. The ability of isolates to break resistance was not linked to a high initial pathogenicity of the isolates and did not result in higher virus content in the infected plants. Implications for resistance breeding and deployment are discussed.  相似文献   

11.
The biocontrol agent Pythium oligandrum (PO) can suppress bacterial wilt caused by Ralstonia solanacearum (RS) in tomato. To understand the primary biocontrol mechanisms of bacterial wilt by PO, we pretreated tomato plants with sterile distilled water or preinoculated them with PO, followed by inoculation with RS, then observed PO and RS in fixed sections of tomato tissues using a confocal laser-scanning microscope and fluorescence labeling until 14 days after the inoculation with RS. Horizontal and vertical movement of RS bacteria was frequently observed in the xylem vessels of roots and stems of tomato plants (cv. Micro-Tom) that had not been inoculated with PO. In plants that were preinoculated with PO, the movement of RS was suppressed, and bacteria appeared to be restricted to the pit of vessels, a reaction similar to that observed in resistant rootstocks. PO colonization was mainly observed at the surfaces of taproots, the junctions between taproots and lateral roots, and the middle sections of the lateral roots. PO was not observed near wound sites or root tips where RS tended to colonize. However, RS colonization was significantly repressed at these sites in PO preinoculated plants. These observations suggest that the induction of plant defense reactions is the main mechanism for the control of tomato bacterial wilt by PO, not direct competition for infection sites.  相似文献   

12.
Four carnation cultivars, Novada (resistant to races 1 and 2 ofFusarium oxysporum f.sp.dianthi), Elsy (susceptible to race 1), Lena (susceptible to race 2) and Sam's Pride (susceptible to both races), were selfed and crossed. When three months old, the seedlings were inoculated via the roots or via the stems, after which wilting was recorded weekly according to a 5-point ordinal scale.Analyses were carried out on the proportions of diseased plants. For race 1 variation between the progenies could be described by means of general combining abilities only; GCA values were not affected by the inoculation method used. Also for race 2 GCAs were most important but the GCA values appeared different for the two inoculation methods. It is concluded that resistance to both races is inherited in an additive way.Indications for independently inherited root-specific resistance components (extravascular resistance) were only found with race 2. With both races, the ability to confine the pathogen at the infection site appeared the most important resistance component. Resistant progenies were also characterized by longer latent periods and lower wilting rates.Both race 1 and race 2 induced the accumulation of the phytoalexins dianthalexin and methoxydianthramide S, but race 2 induced higher amounts than race 1. The accumulation of phytoalexins was positively correlated to the resistance level of the progenies against the respective races. The progenies of the double-resistant cultivar Novada appeared to produce particularly high levels of phytoalexins.  相似文献   

13.
Muskmelon (Cucumis melo cv. Temprano Rochet) and autumn squash (Cucurbita maxima) seedlings were inoculated either with Acremonium cucurbitacearum or Monosporascus cannonballus, two of the soil-borne fungi implicated in ‘melon collapse’. Inoculation was achieved in two different ways: by growing the plants in pots containing infested soil to study the histological changes produced in the infected tissues using light microscopy and by growing seedlings in Petri dishes together with fungal colonies in order to observe the colonisation of the plant tissues using scanning electron microscopy. Both muskmelon and autumn squash roots infected with A. cucurbitacearum showed a suberised layer in the epidermis and the outermost layers of the parenchymatic cortex, but these symptoms developed earlier in the muskmelon plants. Muskmelon plants infected by this fungus also presented hypertrophy and hyperplasia, which led to a progressive separation of the vascular bundles in the lower stems of the affected plants. This response was not observed in autumn squash during the study. On the other hand, few histological changes were observed in tissues infected with M. cannonballus and only a slight increase in the size of cortical intercellular spaces was noted in the lower stems of muskmelon plants, and infected autumn squash tissues remained free of these symptoms throughout the study. The scanning electron microscope observations revealed that both fungi were able to colonise the tissues of the two host plants which were studied. A. cucurbitacearum colonised the epidermis and cortex of both muskmelon and autumn squash. The hyphae grew both inter- and intracellularly, and the density of the colonisation decreased within the endodermis. The same colonisation of host plants was observed as a result of M. cannonballus infection. The xylem vessel lumina of both muskmelon and autumn squash showed hyphae and tylose formation as a result of both fungal infections. However, non-fungal structures were detected in the hypocotyl vascular tissues. The present study demonstrates that both fungi are capable of infecting the tissues of a species which is resistant (autumn squash) and a species which is susceptible (muskmelon) to melon collapse.  相似文献   

14.
The mechanism by which Fusarium diseases of cymbidium plants are suppressed by a weakly virulent strain HPF-1 of Fusarium sp. was studied. Strain HPF-1 produced microscopic, necrotic local lesions on cymbidium leaves, causing minor damage to palisade tissues at the infection sites. This weakly virulent strain remained near the site of infection and did not develop further. It systemically and nonselectively suppressed some diseases of cymbidium such as yellow spot of leaves caused by Fusarium proliferatum and F. fractiflexum, bulb and root rot caused by F. oxysporum, and dry rot of bulbs and roots caused by F. solani. Because endogenous salicylic acid levels increased in cymbidium leaves inoculated with strain HPF-1, the mechanism of disease suppression is thought to be systemic acquired resistance.  相似文献   

15.
Out of 164 plants of clubroot-susceptible Chinese cabbage inoculated with single resting spores ofPlasmodiophora brassicae, two plants developed clubroot symptoms. The two single-spore isolates (SSIs) extracted from these plants gave an identical reaction pattern on the European Clubroot Differential set (ECD) and seven doubled-haploid lines (DH-lines). Their reaction pattern differed from that of the original field isolate on four hosts: ECD hosts 06 and 07 were susceptible to the field isolate but resistant to both SSIs, while for DH-lines Bi and Pt the reverse was true. DH-line Pt was significantly less diseased by mixed inocula consisting of the field isolate and SSI-1 than by SSI-1 alone. It was concluded that the SSI-1 pathotype was a minor component of the field isolate, although it was isolated twice. The results also suggest that the alleviating effect of the field isolate in mixed inoculations with SSI-1 on DH-line Pt was due to induced resistance, rather than to competitive interactions.Abbreviations cv cultivar - DH-line doubled haploid line - ECD European Clubroot Differential set - SSI single-spore isolate  相似文献   

16.
Ceratocystis wilt of cacao (caused by Ceratocystis cacaofunesta) is a dangerous disease and results in the death of the plant. This fungus was recently identified in the major cacao-producing regions of Brazil, and was observed to be more aggressive than isolates from other geographical locations. The objective of this study was to develop and test a consistent method to assess cacao genotype response to C. cacaofunesta, based on young plants (seedlings or cuttings). The fungus was inoculated by the deposition of propagule suspensions on cut stems. The parameters to assess disease progress were (a) disease incidence, (b) differences in mortality between the most contrasting cacao genotypes for resistance and susceptibility, (c) disease index, (d) consistency of response over time and (e) relative lesion heights. When seedlings were used for the analyses, the ICS-1 and TSH-1188 genotypes proved to be useful as genetic standards for susceptibility and resistance to C. cacaofunesta, respectively. Inoculum concentrations between 104 and 105 propagules ml−1 and the moment at which the disease incidence stabilized provided appropriate conditions for genotypic comparison. When ten cacao genotypes propagated by cuttings (clones) were assessed, the results confirmed TSH-1188 as the reference genotype for resistance to C. cacaofunesta, while the remaining clones could be grouped as resistant (CEPEC-2008), moderately resistant (CEPEC-2002, CEPEC-2007) and susceptible (CEPEC-2009, CCN-10, CCN-51, HW-25, PH-16, SJ-02). The analytical concepts and results were discussed in terms of their application in breeding programmes aimed at developing genetic resistance to Ceratocystis wilt of cacao.  相似文献   

17.
The effect of pepper seed and root treatments with Trichoderma harzianum spores on necrosis caused in stems by Phytophthora capsici inoculation and on the course of capsidiol accumulation in the inoculated sites were studied. The results indicate that seed treatments significantly reduced stem necrosis, which fell by nearly a half compared with the values observed in plants grown from non-treated seeds. Necrosis was also reduced in plants whose roots were drenched with various doses of T. harzianum spores, although the extent of necrosis was not correlated with the dose used. Attempted isolation of P. capsici and T. harzianum from the zones immediately contiguous with the necrotic zones revealed the presence of the former but not of the latter, suggesting that there was no direct contact between them in the zones of isolation, which means that there was no competition for space. The percentage of P. capsici isolated 9 days after inoculation was greater in non-treated inoculated plants than in treated inoculated plants. These results suggest that T. harzianum, introduced into the subterranean part of the plant, induces a systemic defense response against P. capsici in the upper part of the plant. Analysis of capsidiol in the stems of treated inoculated plants by the end of the sixth day after inoculation, revealed that its concentration was more than seven-fold greater than in non-treated and inoculated plants, while after 9 days, the concentration of capsidiol decreased in the treated inoculated plants and increased in the non-treated inoculated plants. The high concentration of capsidiol detected in treated and inoculated stems after 6 days might be one of the contributing factors, but not necessarily the main factor, in delaying lesion development in the stems of pepper plants.  相似文献   

18.
Fusarium species are soil-borne fungal pathogens that produce a variety of disease symptoms when attacking crop plants. The mode of root colonization of Eucalyptus viminalis seedlings by a pathogenic F. oxyporum strain (Foeu1) at the ultrastructural level and changes in cell wall pectin during host pathogen interactions are described. Root systems of E. viminalis plants were inoculated with F. oxysporum in an in vitro model system. Hyphae of F. oxysporum adhered to the outer epidermal cell walls through fibrillar material, and after penetration they spread into the internal tissues. They developed intercellularly and intracellularly in the root cortex and invaded vascular tissues. Papillae were induced, and the host plasma membrane ruptured in colonized cells, causing rapid host tissue and cell damage. Changes in distribution and occurrence of nonesterified and methyl-esterified pectins were evaluated after root colonization by F. oxysporum using two monoclonal antibodies, JIM 5 and JIM 7, respectively. Nonesterified pectin in control roots was mainly localized in the epidermal cell walls and middle lamellae in parenchymal cortex, whereas methyl-esterified pectin accumulated more in primary cell walls of the cortex and phloem. Decreases in immunodetected nonesterified and methyl-esterified pectins were associated with extensive plant tissue degradation after root colonization by the pathogenic fungus.  相似文献   

19.
Potatoes were grown under a permanent rain shelter in mobile containers in soil with or without potato cyst nematodes (Globodera pallida). The plants were subjected to an early drought stress period starting at planting until 43 days after planting, to a late drought stress period starting at 43 days until senescence at 92 days and to a drought control. Dry matter weight and characteristics of leaves, stems, stolons and roots were determined at periodic harvests. The early drought stress and nematode infection affected many plant organ characteristics in similar ways. Numbers of leaves, specific leaf area, plant height, specific stem weight, leaf area ratio, mean tuber weight and harvest index were reduced by both stress factors at early stages of growth.Later on, interactions between both stress factors which influence the development rate of the plants led to more diverse plant reactions. Plants of all treatments rapidly senesced at about 90 days after planting. Uninfected plants had then depleted the soil nutrient supply whereas the plants grown in the inoculated soil senesced as a result of the potato cyst nematode infection.  相似文献   

20.
The numbers of diseased plants could significantly be reduced when microconidia ofFusarium oxysporum f. sp.dianthi were inoculated into the stem and viable-, heat-killed cells or purified LPS of the bacteriumPseudomonas sp. strain WCS417r were applied to the roots. Because the competition betweenF. o. dianthi and the bacterium could be excluded, the disease suppression seems to be due to an induced resistance. Accumulation of phytoalexins was found in the stem segments. No accumulation of these compounds was found when the plants were bacterized but noninfected. It is concluded that cell surface components present in the lipopolysaccharides of the bacterium are the inducing factors.Increased peroxidase activity could be measured in root washes and root extracts after only bacterial preparations were added. No significant differences in peroxidase activity were found in stem extracts. The possible role of increased peroxidase activity in suppression of Fusarium wilt in carnation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号