首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
A regional experiment was conducted at 8 experiment stations, with a total of 320 sows initially, to evaluate the efficacy of adding 13.35% ground wheat straw to a corn-soybean meal gestation diet for 3 successive gestation-lactation (reproductive) cycles compared with sows fed a control diet without straw. A total of 708 litters were farrowed over 3 reproductive cycles. The basal gestation diet intake averaged 1.95 kg daily for both treatments, plus 0.30 kg of straw daily for sows fed the diet containing ground wheat straw (total intake of 2.25 kg/d). During lactation, all sows on both gestation treatments were fed ad libitum the standard lactation diet used at each station. Response criteria were sow farrowing and rebreeding percentages, culling factors and culling rate, weaning-to-estrus interval, sow BW and backfat measurements at several time points, and litter size and total litter weight at birth and weaning. Averaged over 3 reproductive cycles, sows fed the diet containing wheat straw farrowed and weaned 0.51 more pigs per litter (P 相似文献   

2.
A cooperative research study involving 1,080 litters was conducted at eight stations to determine the effects of additional feed during the last 23 d of gestation on reproductive performance of sows and on preweaning performance of their pigs. Primiparous and multiparous sows were fed fortified corn- or sorghum-soybean meal diets (14% crude protein). Control sows received 1.82 kg/d from March through November and 2.27 kg/d from December through February. Treated sows were fed an additional 1.36 kg of feed/d from d 90 of gestation to farrowing. Sows were allowed to consume the same diet ad libitum during a 21-d lactation. Additional feed in late gestation resulted in greater (P less than .001) sow weight gain from d 90 to d 110 of gestation (16.8 vs 9.0 kg) and greater (P less than .001) parturition-lactation weight loss (21.3 vs 16.4 kg). Total weight gain from breeding to 21 d of lactation favored sows that received extra feed (27.5 vs 22.7 kg; P less than .001). Sows receiving extra feed had more live pigs at farrowing (10.05 vs 9.71, P = .06) and at 21 d postpartum (8.35 vs 8.06, P = .09), and the pigs were heavier at birth (1.48 vs 1.44 kg, P = .003) and at 21 d (5.37 vs 5.20 kg, P = .006). Lactation feed intake and number of days from weaning to estrus were not affected by treatment. The results indicate that additional feed in late gestation improves reproductive performance in sows. In this study, the cost of an additional 31 kg of feed/sow was more than offset by the value of the additional sow weight gain (approximately 5 kg), the additional .3 of a pig/litter at weaning and the additional 2.6 kg of total litter weaning weight.  相似文献   

3.
Forty-five gravid cross-bred sows (mean parity 3.3 +/- .3) were randomly allotted to two dietary treatments: corn-soybean mean (CS) or CS plus 60 mg salinomycin per kilogram of diet (CSS). Sows were fed their respective diets through two successive parities with dietary treatment initiated at 100 d postcoitum and continued until weaning of the second successive litter. Therefore, sows fed CSS received salinomycin for 14 d before the first parturition and for approximately 153 d before the second parturition. Daily feed intake was restricted to 2 kg.hd-1.d-1 during gestation and to 3 kg.hd-1.d-1 from weaning to breeding. All sows. had ad libitum access to feed during lactation. Sows were weighed 7 d prior to parturition, at weaning and at breeding. Weaning-to-estrus interval and farrowing interval were recorded for all sows. Litters were weighed at birth and weaning. There were no differences (P greater than .05) between dietary treatments in sow weights before parturition, at weaning or at breeding for either first or second farrowing. The CSS-fed sows lost more weight from weaning to breeding after the first (P less than .03) and second (P less than .05) lactation periods than CS-fed sows. The CSS-fed sows tended to gain more (P = .06) weight during lactation than CS-fed sows. There were no differences (P greater than .05) between treatments in lactation feed intake, weaning-to-estrus interval, farrowing interval, litter size born or weaned, litter weights at birth or at weaning, or in sow culling rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Ninety-one primiparous and multiparous sows and their pigs were used to evaluate the effects of a novel carbohydrate- and protein-based feed ingredient (Nutri-Pal, NP) on sow and litter performance during lactation. Nutri-Pal is a feed supplement for sows that consists of a blend of milk chocolate, brewer's yeast, whey products, and glucooligosaccharides. The dietary treatments consisted of a corn-soybean meal control and a corn-soybean meal plus 5% NP fed from d 110 of gestation to weaning. The diets were formulated to be equal in total Lys and ME. Sows were allotted to treatment based on parity, body weight, and the date of d 110 of gestation. There were 46 and 45 sows per treatment over four farrowing groups. Litters were standardized to 10 pigs and weighed within 1 d of farrowing, and all sows weaned at least 8 pigs at an average age of 21 d. Sows were weighed on d 110 of gestation, d 1 postfarrowing, and at weaning. Sows were fed three times daily during lactation. Sows were checked twice daily after weaning for signs of estrus. The weaning weight of sows fed NP was increased (P < 0.10) compared with those fed the control diet. Sows fed the control diet tended (P = 0.11) to lose more weight per day from d 110 of gestation to weaning than the sows fed NP. Otherwise, sow response variables (sow weight on d 110 of gestation and d 1 postfarrowing, d 110 of gestation to d 1 postfarrowing and lactation weight change per day, d 110 of gestation to d 1 postfarrowing, lactation, and total feed intake, days to estrus, pigs born alive or dead, and litter and average pig birth weight) were not affected (P > 0.10) by diet. There were no effects (P > 0.10) of diet on litter performance response variables (pigs weaned, litter and average pig weaning weight and gain, and survival percent). The NP feed ingredient had minor effects on sow productivity, but it did not affect litter productivity indices.  相似文献   

5.
Effects of sarcoptic mange on lactating swine and growing pigs   总被引:1,自引:0,他引:1  
The impact of Sarcoptic mange on sows and on performance of their offspring from birth to slaughter was determined. Sows naturally infested with Sarcoptic mange were paired, mated to the same boar, and assigned randomly to treated or control farrowing groups. Treated sows received ivermectin s.c. at 300 micrograms/kg body weight; control sows received the vehicle s.c. Sow performance was evaluated via sow feed consumption, litter size, litter birth weights, litter weaning weights and piglet death loss from birth to weaning. Seven replicates (farrowing groups), each with six sow pairs, were included in the trial. Offspring from treated and control sows, 35 head/group, were fed to slaughter weights. Untreated sows had litters that weighed 4.14 kg less than ivermectin-treated sow litters at 21 d (P less than .07). Treated sows consumed 1.95 kg less feed per weaned piglet and .13 kg less feed per kilogram of weaned piglet (P less than .05). Piglets from treated sows were 5.79 kg/head heavier at slaughter (P less than .05) and had a .05 kg/d superior average daily gain (P less than .05).  相似文献   

6.
Multiparous sows (n = 307) were used to evaluate the effects of added dietary L-carnitine, 100 mg/d during gestation and 50 ppm during lactation, on sow and litter performance. Treatments were arranged as a 2 (gestation or lactation) x2 (with or without L-carnitine) factorial. Control sows were fed 1.81 kg/d of a gestation diet containing .65% total lysine. Treated sows were fed 1.59 kg/d of the control diet with a .23 kg/d topdressing of the control diet that provided 100 mg/d of added L-carnitine. Lactation diets were formulated to contain 1.0% total lysine with or without 50 ppm of added L-carnitine. Sows fed 100 mg/d of added L-carnitine had increased IGF-I concentration on d 60 (71.3 vs. 38.0 ng/mL, P<.01) and 90 of gestation (33.0 vs. 25.0 ng/mL, P = .04). Sows fed added L-carnitine had increased BW gain (55.3 vs 46.3 kg; P<.01) and last rib fat depth gain (2.6 vs. 1.6 mm; P = .04) during gestation. Feeding 100 mg/d of added L-carnitine in gestation increased both total litter (15.5 vs. 14.6 kg; P = .04) and pig (1.53 vs 1.49 kg; P<.01) birth weight. No differences were observed in pig birth weight variation. Added L-carnitine fed during gestation increased litter weaning weight (45.0 vs. 41.3 kg, P = .02); however, no effect of feeding L-carnitine during lactation was observed. No differences were observed in subsequent days to estrus or farrowing rate. Compared to the control diet, feeding added L-carnitine in either gestation, lactation, or both, increased (P<.05) the subsequent number of pigs born alive, but not total born. In conclusion, feeding L-carnitine throughout gestation increased sow body weight and last rib fat depth gain and increased litter weights at birth and weaning.  相似文献   

7.
Pregnant sow nutrition has potential effects on the muscle fiber development of progeny in utero. A total of 199 Landrace x Large White sows from parities 0 to 6 and their offspring were used to evaluate the effects of increasing the feeding amount during midpregnancy on the muscle tissue, growth performance, and meat quality of the progeny. The experiment was divided into 2 study replicates, and in each replicate, sows were assigned to 1 of the 2 treatments: 1) sows in the control group (C sows) were fed 2.5 to 3.0 kg/d (feed: 12.1 MJ of ME/kg and 0.62% lysine) throughout gestation; and 2) sows in the high group (H sows) received an extra feed allowance of 1.5 kg/d for gilts and 2.0 kg/d for multiparous sows above the C amount from d 45 to 85 of gestation (period of secondary muscle fiber formation). Sow backfat was recorded on d 40 and 85 of gestation. Sow performance (litter size and piglet BW) at farrowing and on d 18 of lactation was measured. At weaning, pigs were divided into 5 BW groups/treatment, and progeny growth performance was measured during the nursery (n = 958) and the growing-finishing (n = 636) periods. At slaughter, carcass and meat quality traits (lean content, main cut weight, pH, Minolta color, and drip loss) were recorded from the second lightest group at weaning (BW group 4; n = 90), and samples from the longissimus thoracis muscle were taken to study muscle fiber characteristics (n = 70). The extra nutrition from d 45 to 85 of gestation did not lead to differences in litter size or piglet BW at farrowing and on d 18 of lactation. Pigs born to H mothers had fewer muscle fibers and fewer estimated primary and secondary fibers than did pigs born to C mothers (P < 0.05). However, postnatal growth performance was not consistently affected by the maternal treatment. The smaller number of muscle fibers found in the H group of pigs was associated with fewer type IIB fibers (P < 0.05) with greater cross-sectional areas (P < 0.10), which might be related to the significantly greater meat pH at 24 h postmortem and the smaller L* (lightness) values recorded in the H group of pigs. Results from the present study confirm the existence of effects of maternal nutrition on fetal development, at least in terms of muscle tissue development and meat quality, although with no beneficial effects were found for the postnatal growth performance of the progeny.  相似文献   

8.
Supplementing diets with n-3 fatty acids from fish oil has been shown to improve reproductive performance in dairy cattle and sheep, but there is little published literature on its effects in sows. The aim of this study was to evaluate the reproductive performance of sows fed fish oil as a source of n-3 PUFA prefarrowing and during lactation. From d 107.7 ± 0.1 of pregnancy, 328 sows ranging in parity from 0 to 7 (parity 1.95 ± 0.09, mean ± SE) were fed either a diet containing tallow (control) or an isocaloric diet containing 3 g of fish oil/kg of diet (n-3). Diets were formulated to contain the same amount of DE (13.9 MJ/kg), crude fat (54 g/kg), and CP (174 g/kg). Sows were fed their treatment diet at 3 kg daily for 8 d before farrowing and continued on treatment diets ad libitum until weaning at 18.7 ± 0.1 d of lactation. After weaning, all sows were fed a gestation diet without fish oil until their subsequent farrowing. There was no effect (P > 0.310) of feeding n-3 diets prefarrowing on piglet birth weight, preweaning growth rate, piglet weaning weight, or sow feed intake. However, n-3 sows had a larger subsequent litter size (10.7 ± 0.3 vs. 9.7 ± 0.3 total born; 10.2 ± 0.3 vs. 9.3 ± 0.3 born live; P < 0.05). In conclusion, this is the first study to demonstrate that feeding sows a diet containing n-3 PUFA from fish oil fed before farrowing and during lactation increased litter size in the subsequent parity independent of energy intake.  相似文献   

9.
This study was conducted to investigate the effects of feeding sows a bulky diet during gestation on their physiological and metabolic adaptations during the peripartum period, and to determine how these effects may relate to sow and piglet performances. From d 26 of gestation until farrowing, gilts were fed diets that contained 2.8 or 11.0% crude fiber (control and high-fiber diets, respectively, n = 9/group). Daily feed allowance provided the same amount of DE daily (33 MJ of DE/d). Throughout lactation, sows were allowed to consume a standard lactating sow diet ad libitum. Litters were standardized to 12 piglets beyond 48 h after birth. On d 105 of gestation, a jugular catheter was surgically implanted. Preprandial blood samples were collected from d 109 of gestation to the day after farrowing and on d 4, 18, and 26 of lactation. Meal tests and glucose tolerance tests were performed on d 109 of gestation and d 4 and 18 of lactation. During gestation, BW and backfat gain did not differ between treatment groups. During lactation, sows fed the high-fiber diet ate an average of 0.94 kg/d more than control sows (P < 0.02). Piglets born from sows fed the high-fiber diet grew faster than piglets from control sows (P = 0.03). Body weight and backfat losses did not differ between the 2 treatment groups. Sows fed the high-fiber diet during gestation had lesser concentrations of leptin before farrowing than control sows (P < 0.01). Leptin concentrations were negatively correlated with feed intake during lactation (P < 0.05). The prepartal increase in prolactin concentrations tended to be greater in sows fed the high-fiber diet than in control sows (P < 0.1). Preprandial concentrations of glucose, NEFA, lactate, and IGF-I fluctuated over time without significant treatment effect. Glucose half-life was shorter in late gestation than during both stages of lactation, but did not differ between sows in the 2 groups. In late gestation, the postprandial increases in glucose and insulin were delayed, and smaller, after a high-fiber meal than after a control meal. During lactation, glucose and insulin profiles after a standard meal did not differ between sows from treatment groups. In conclusion, the greater appetite of lactating sows fed a high-fiber diet during gestation does not seem related to changes in glucose and insulin metabolism and may be partly due to decreased secretion of leptin. The greater feed consumption was accompanied by a faster growth rate of piglets without sparing effect on maternal body reserves.  相似文献   

10.
In a field trial conducted on a commercial swine farm, lean-genotype sows (n = 485) were fed diets containing 0 or 10% supplemental fat as either medium-chain triglyceride or choice white grease from d 90 of gestation until weaning (15.5 d). Effects on standard sow and litter production traits were examined together with assessment of sow body condition using live ultrasound. Daily feed intake during lactation was 10% higher in sows consuming diets without added fat (7.2 vs 6.5 kg; P < 0.01); however, lactation ME (23.9 Mcal/d) and digestible lysine (54 g/d) intakes were unaffected (P > 0.10). Sows supplemented with fat were 4 kg heavier on d 109 of gestation (220 vs 224 kg; P < or = 0.01), 1 d after farrowing (210 vs 214 kg; P < or = 0.01), and at weaning (210 vs 214 kg; P < or = 0.01). Expressed as overall gain, this amounted to a 23% increase (0.66 vs 0.86 kg/d; P < or = 0.01) and was accompanied by a 49% increase in backfat (0.82 vs 1.68 mm; P < or = 0.03) from d 90 to farrowing. Changes in sow weight (-0.01 kg/d) and backfat (+4.2 mm) over lactation were minimal and were not affected by fat supplementation (P > or = 0.10). Longissimus muscle area at weaning was slightly greater (44.96 vs 46.2 cm2) in sows consuming fat than in control sows (P < or = 0.05), but changes in longissimus muscle area were not significant from d 90 to weaning (P > or = 0.10). Gestation length, pigs born alive, average birth weight, survival (d 3 to weaning), and days to estrus were not affected by diet (P > 0.10). However, supplemental fat increased pig ADG (192 vs 203 g/d; P < 0.01) and average pig weaning weight (4.3 vs 4.5 kg) at 15.5 d (P < or = 0.02). No differences between the two fat sources were detected. This large-scale study demonstrated that supplemental fat during gestation and lactation effectively improved sow condition and improved suckling pig performance without affecting energy intake during lactation, implying improved efficiency of sow energy utilization.  相似文献   

11.
A lactation trial involving 105 sows was conducted to determine the effect of 12% roasted or raw, ground, whole, shelled peanuts on sow weight change during lactation, feed intake, piglet and litter weight gain, milk composition, and days to return to postweaning estrus. The trial was conducted using three sow groups during two farrowing seasons, summer (July to September) and winter (December to February). Diets were based on corn plus soybean meal. Diets contained either 5% animal fat or equivalent added fat from 12% roasted or raw, ground, shelled peanuts. The replacement of animal fat by roasted or raw peanuts had no effect (P greater than .20) on sow weight change, average daily feed intake during lactation or days to estrus postweaning, or on piglet weight gain or survival. Milk composition (percentage fat and protein) was not altered (P greater than .20) by source of fat in the summer; however, in the winter, sows fed roasted peanuts had higher (P less than .05) milk fat and protein percentage at 3 d postfarrowing than other treatment groups. At d 7, sows fed 12% roasted or raw peanuts had higher (P less than .05) milk protein than sows fed 5% animal fat. Sows farrowing in the summer had greater (P less than .01) weight loss and consumed less (P less than .05) feed during lactation than sows farrowing in the winter. Sows farrowed in the summer had larger (P less than .05) litters at birth and 14 d postfarrowing and greater (P less than .10) piglet and litter weight gain postfarrowing than those farrowed in the winter.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A cooperative experiment to evaluate biotin addition to sow diets was conducted at three research stations using 303 litters. Primiparous and multiparous sows (overall average parity 2.8) were fed a 14% CP corn-soybean meal diet (140 micrograms/kg biotin), with or without supplemental biotin (330 micrograms added biotin per kg feed), throughout gestation and lactation. As many sows as possible were fed their respective diets through three successive parities. During gestation, sows were given from 1.82 to 2.27 kg of feed per day, depending on environmental conditions; during lactation sows had ad libitum access to feed. Supplemental biotin had no effect (P greater than .35) on sow weights at breeding, at d 109 of gestation, at farrowing or at weaning. No differences were found in litter size at birth (P greater than .18), but at d 21 of lactation, sows fed the diet containing supplemental biotin had larger litters than sows fed the unsupplemented diet (9.4 vs 8.7 pigs, respectively; P = .01). Pig weights at birth and d 21 of lactation were not affected (P greater than .20) by dietary treatment. Biotin supplementation did not affect (P greater than .28) the length of the interval from weaning to estrus. No evidence was found that feet cracks or bruises were reduced by biotin supplementation. The results indicate that biotin supplementation of a corn-soybean meal diet during gestation and lactation increased the number of pigs at d 21 of lactation, but it did not decrease the incidence of foot lesions.  相似文献   

13.
An experiment was conducted to evaluate feather meal as a source of Val in lactating sow diets. Sows (five farrowing groups; mean parity = 2.34) were allotted to one of two dietary treatments on the basis of ancestry, parity, and weight and date of d 110 of gestation. The treatment diets included 1) corn-soybean meal lactation diet (n = 40) or 2) corn-soybean meal lactation diet with 2.5% feather meal (n = 39). The diets were formulated on an equal Lys basis. All litters were adjusted to 10 pigs within 24 h after farrowing, and all sows weaned at least nine pigs. Sows were bled at 110 d of gestation and at weaning, and serum urea N was determined. Backfat thickness was determined ultrasonically at 110 d of gestation and at weaning. Serum urea N and backfat thickness at d 110 of gestation were used as covariates for serum urea N and backfat thickness at weaning, respectively. The litter response criteria (weaning weight, litter weight gain, and percentage survival) were not affected (P > .10) by feather meal. The sow response criteria (weaning weight, weight loss per day, weaning backfat thickness, change in backfat thickness, ADFI, and days to estrus) were not affected (P > .10) by feather meal. Sows fed feather meal had increased (P < .01) serum urea N and tended (P = .15) to have decreased sow weaning weight. Following the initial analysis of the data, the data set was split into two groups: 1) sows with litters gaining less than 2.17 kg/d (n = 19 and 20 for control and feather meal diets, respectively) and 2) sows with litters gaining more than 2.17 kg/d (n = 21 and 19 for control and feather meal diets, respectively). These two groups were analyzed separately. In sows with litters gaining less than 2.17 kg/d, the litter and sow criteria were not affected (P > .10) by treatment. In sows with litters gaining more than 2.17 kg/d, sow weaning weight was decreased (P < .04) and sow weight loss (P < .02) and serum urea N (P < .01) were increased in sows fed feather meal. Feather meal (as a source of Val) did not improve litter weight gain, but it increased serum urea N.  相似文献   

14.
Residual feed intake (RFI) has been explored as an alternative selection criterion to feed conversion ratio to capture the fraction of feed intake not explained by expected production and maintenance requirements. Selection experiments have found that low RFI in the growing pig is genetically correlated with reduced fatness and feed intake. Selection for feed conversion ratio also reduces sow appetite and fatness, which, together with increased prolificacy, has been seen as a hindrance for sow lifetime performance. The aims of our study were to derive equations for sow RFI during lactation (SRFI) and to evaluate the effect of selection for RFI during growth on sow traits during lactation. Data were obtained on 2 divergent lines selected for 7 generations for low and high RFI during growth in purebred Large Whites. The RFI was measured on candidates for selection (1,065 pigs), and sow performance data were available for 480 sows having from 1 to 3 parities (1,071 parities). Traits measured were sow daily feed intake (SDFI); sow BW and body composition before farrowing and at weaning (28.4 ± 1.7d); number of piglets born total, born alive, and surviving at weaning; and litter weight, average piglet BW, and within-litter SD of piglet BW at birth, 21 d of age (when creep feeding was available), and weaning. Sow RFI was defined as the difference between observed SDFI and SDFI predicted for sow maintenance and production. Daily production requirements were quantified by litter size and daily litter BW gain as well as daily changes in sow body reserves. The SRFI represented 24% of the phenotypic variability of SDFI. Heritability estimates for RFI and SRFI were both 0.14. The genetic correlation between RFI and SRFI was 0.29 ± 0.23. Genetic correlations of RFI with sow traits were low to moderate, consistent with responses to selection; selection for low RFI during growth reduced SDFI and increased number of piglets and litter growth, but also increased mobilization of body reserves. No effect on rebreeding performance was found. Metabolic changes previously observed during growth in response to selection might explain part of the better efficiency of the low-RFI sows, decreasing basal metabolism and favoring rapid allocation of resources to lactation. We propose to consider SRFI as an alternative to SDFI to select for efficient sows with reduced input demands during lactation.  相似文献   

15.
Four experiments involving 265, 410, 894, and 554 sows (Exp. 1 to 4, respectively) were conducted to determine the effect of spray-dried plasma (SDP) at 0 or 0.25% (Exp. 1 and 2) and 0 or 0.50% (Exp. 3 and 4) in lactation diets on average daily feed disappearance (FD), sum of sow BW, fetal and placental loss from d 110 gestation to weaning (SWL), litter size at weaning, litter weight at weaning, and average days from weaning to first estrus (WEI). Experiments 1, 3, and 4 were conducted during summer months, and Exp. 2 was conducted during fall to winter months. Experiment 1 used only parity 1 and parity 2 sows and Exp. 4 used only mature (>2 parities) sows, whereas Exp. 2 and 3 used all parity groups. Sows fed SDP in Exp. 1 had increased (P < 0.01) FD and a tendency for reduced (P = 0.06) SWL and WEI (P = 0.06). Sows fed SDP in Exp. 2 had a tendency for increased (P = 0.09) sow BW at weaning and reduced (P = 0.09) SWL, whereas other variables were not different between diets. Parity 1 and 2 sows fed SDP in Exp. 3 had increased (P < 0.01) FD, but mature sows fed SDP had reduced (P = 0.02) FD. Pig survival and litter size at weaning for all parity groups was not different between diets. The WEI for parity 1 sows fed SDP was reduced (P = 0.02) and tended to be reduced (P = 0.10) for mature sows fed SDP, but was not different between diets for parity 2 sows. More parity 1 sows fed SDP were detected (P = 0.01) in estrus 4 to 6 d after weaning, and fewer were detected (P < 0.01) in estrus 6 d after weaning compared with control parity 1 sows. In Exp. 4, FD was reduced (P < 0.01) for mature sows fed SDP; however, litter weight and average pig BW at weaning was increased (P < 0.01) with more (P < 0.01) marketable pigs (pig BW > 3.6 kg) weaned per litter. Relatively low dietary levels of SDP (0.25 to 0.50%) fed to parity 1 sows farrowed during summer months increased lactation FD and reduced WEI. Mature sows fed SDP during summer months consumed less lactation feed without compromising WEI, but had an increased litter weight, average pig BW, and number of marketable pigs at weaning.  相似文献   

16.
Different floor space allowances for dry, pregnant sows in pens were evaluated to determine the impacts of space on sow performance, productivity, and body lesions during 2 consecutive farrowings. Treatment groups of 5 sows/pen were assigned to 1.4, 2.3, or 3.3 m(2) of floor space/sow or of 5 sows in individual stalls (1.34 m(2)). The experiment consisted of 6 replications (blocks 1 to 6), and within each block measurements were recorded for 2 consecutive pregnancies and farrowings. A total of 152 sows were measured at 1 farrowing, and 65 of those sows were measured at the successive farrowing (n = 217 records). Performance traits were BCS, BW, backfat (BF), days until rebred, and proportion culled. Litter traits were number of piglets born alive, male:female ratio, and proportions of stillborn, mummified, or dead piglets after birth. Litter performance measures were mean piglet BW and gain and litter BW. Lesion scores were assessed for several body regions. There were treatment and parity effects and interactions for several traits. An interaction of space treatment and parity occurred for sow mean BW, d-110 BW, BF, litter size, and litter and piglet BW and gain, with most effects in parity 2, 3, and 4 sows. Space affected sow mean (P < 0.001) and d-110 BW (P < 0.05) and mean BF and adjusted BF (P < 0.001); sows in pens at 相似文献   

17.
A cooperative study involving six experiment stations and 236 crossbred litters was conducted to determine the effect of nominal nipple drinker water flows of 700 mL/min and 70 mL/min (actual = 701 and 76 mL/min, respectively) during winter (November through February; 124 litters) and summer (June through August; 112 litters) seasons on performance of lactating sows and their litters. Within a season, sows were paired according to expected farrowing date and assigned at random to crates. Water flow rate treatments were assigned at random to sows within pairs. Sows were housed in farrowing crates from d 109 of gestation until either d 21 (two stations) or d 28 of lactation (four stations). Within 24 h after farrowing, litters were adjusted to contain 8 to 12 piglets. Sow feed intake (SFI) and litter weight (LW) were recorded weekly. Sow weights were recorded at d 109 of gestation, d 0, and d 21 of lactation. Sows lactating beyond 21 d were also weighed on d 28. Analysis of covariance was applied to sow weight change, average daily SFI, and LW data where litter size after crossfostering was the covariate. Average ambient temperature 30 cm above the floor at 0830 and 1600 was 24.6 +/- 0.15 degrees C and 29.4 +/- 0.14 degrees C, respectively, during summer and 20.7 +/-0.13 degrees C and 21.8 +/- 0.11 degrees C during winter trials. Restricted drinker water flow rate decreased SFI (P < 0.01; 4.59 vs. 3.94 kg/d, respectively, for 700 and 70 mL/min) and increased BW loss (P < 0.01; 0.56 vs 0.89 kg/d, respectively for 700 and 70 mL/min) but did not affect litter size (P > 0.87) or LW (P > 0.89) during the first 21 d of lactation. During d 22 to 28, the 70 mL/min flow decreased SFI (P < 0.01; 5.02 vs. 4.47 kg/d respectively, for 700 and 70 mL/min). Over the 21-d lactation period, the 70 mL/min treatment depressed (P < 0.01) SFI more during the winter (5.12 vs. 4.24 kg/d for 700 and 70 mL/ min, respectively) than during the summer (4.05 vs 3.65 kg/d for 700 and 70 mL/min, respectively). Season affected SFI (P < 0.01; 4.68 vs. 3.85 kg/d, respectively, for winter and summer), sow weight loss (P < 0.001; 0.46 vs 0.83 kg/d, respectively, for winter and summer), and LW at 21 d (P < 0.05; 52.8 vs. 49.6 kg, respectively, for winter and summer) but not (P > 0.96) the number of pigs per litter. Results of this study suggest that ample access to drinking water and controlling ambient temperature during summer months are essential for sow and litter performance.  相似文献   

18.
Performance measures were evaluated for 125 outdoor sows and litters of two crossbred genotypes (Camborough-15 and 25% Meishan) and in two farrowing hut designs (American-style and English-style hut). Contemporary breeding groups of second-parity sows were evaluated in an intensive, outdoor research unit. Sow genotype and hut designs were arranged factorially. Seven complete blocks were evaluated over a 21-wk period. No interactions between environment and genotype were identified for sow and litter productivity. Litters farrowing in the English-style huts weaned 1.5 more (P < .05) piglets per sow (because of a lower preweaning mortality, P = .05) than did litters in the American-style huts. The 25% Meishan weaned 1.7 more (P < .01) pigs per sow than Camborough-15, because of a greater number of piglets born alive. The effects of hut style and genotype were additive and 25% Meishan sows in English-style huts weaned an average (+/- SEM) of 11.1 +/- .83 piglets per sow. The English-style arc hut design may improve outdoor pig production and increase competitiveness of the intensive, outdoor system. The 25% Meishan genotype has potential for increased pigs weaned per litter that must be considered in light of other features of this genotype such as body composition.  相似文献   

19.
A review of factors influencing litter size in Irish sows   总被引:1,自引:0,他引:1  
Many factors influence litter size. These include genetics, gilt management, lactation length, parity distribution, disease, stress and boar fertility. In the past 20 years, litter size in Irish sows has increased by only one pig. Born alive figures now average at 11.2 pigs per litter. In this regard, Ireland is falling behind our European competitors who have made significant advances over this time. Denmark, for example, has an average figure of 12.7 pigs born alive per litter and France an average of 12.5. The single area that could be improved immediately is sow feeding. It is important that sows are fed correctly throughout pregnancy. If over-fed during pregnancy, sows will have depressed appetite during lactation. If underfed in pregnancy, sows will be too thin at farrowing. The correct way to feed a pregnant sow is to match her feed allocation to her requirement for maintenance, body growth and growth of her developing foetuses. During lactation, sows should be given as much feed as they can eat to prevent excessive loss of body condition. Liquid-feed curves should be such that lactating sows are provided with a minimum mean daily feed supply of 6.2 kg. A small proportion of sows will eat more and this could be given as supplementary dry feed. Where dry feeding is practised in the farrowing house, it is difficult to hand-feed sows to match their appetite. Ideally ad libitum wet/dry feeders should be used. From weaning to service, sows should once again be fed ad libitum. If liquid feeding, this means giving at least 60 MJ DE (digestible energy) per day during this period. If dry feeding, at least 4 kg of lactation diet should be fed daily. The effort spent perfecting sow feeding management on units should yield high dividends in the form of increased pigs born alive per litter.  相似文献   

20.
Hormonal changes involved in the farrowing process partly control the initiation of lactation. Inducing farrowing by injection of PG may alter the normal prepartum hormonal cascade. The aim of the study was to investigate the consequences of farrowing induction on colostrum yield and composition, as well as newborn piglet growth. Gilts were treated with 2 mg of alfaprostol on d 113 of gestation (induced farrowing, IF, n = 9) or were injected with 1 mL of a saline solution (natural farrowing, NF, n = 11). Colostrum production was estimated during 24 h, starting at the onset of parturition, based on piglet BW gains. Colostrum samples were collected during the 36 h after the onset of parturition. Blood samples were collected from sows as of d 112 of pregnancy until d 2 postpartum (d 0 being the day of parturition). Piglet blood samples were obtained at birth, on d 1, and on d 21. Litter size and litter weight at birth did not differ between groups (P > 0.10). Farrowing induction did not influence (P > 0.10) colostrum yield (3.96 ± 0.20 kg) or piglet BW gain during d 1 postpartum (116 ± 8 g). At the onset of farrowing (T0), lactose content in colostrum was greater in IF sows than in NF sows (P < 0.05), whereas colostrum ash and protein contents were less (P < 0.05) in IF sows. Concentrations of IgG in colostrum were similar in both groups of sows, whereas concentrations of IgA at T0 were less in IF than in NF sows (P < 0.01). Overall, endocrine changes in blood from d -2 until d 2 (cortisol, prolactin, progesterone, and estradiol-17β) were not altered by farrowing induction (P > 0.10), but 1 h after the injection of alfaprostol, IF sows had greater circulating concentrations of prolactin (P < 0.01) and cortisol (P < 0.10) than NF sows. The greater concentration of lactose in colostrum from IF sows could be attributed to this transient increase in prolactin and cortisol. At birth, concentrations of white blood cells were less in piglets born from IF sows (P < 0.01). On d 1 and 21, piglets from IF sows had similar IgG concentrations in plasma to piglets from NF sows (P > 0.1). In conclusion, farrowing induction at 113 d of pregnancy induced transient hormonal changes in sows and alterations in colostrum composition, without significantly affecting colostrum yield. It also modified some hematological variables of piglets at birth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号