首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A trend analysis of information needs and communication channel use of rural women in Africa, Asia, and Latin America was conducted by examining empirical works published in reports, scholarly publications, and the popular press from 2000 to 2012. Results show that information about farming practices, health, education, gender and general family well-being issues were the most sought across the three continents. Demand for 14 information categories surged in volume and scope after 2009. Interpersonal communication sources trumped the mediated ones as the channels of choice; extension agents were the most preferred source. Radio was the most frequently mentioned preferred medium.  相似文献   

2.
《Biological conservation》1986,38(3):233-242
Hedgerow and ditch removal between 1838 and 1984 in an agricultural area of south east Essex was studied using maps, aerial photographs and field survey results as source materials. An opisometer was used to record hedgerow and ditch lengths (metres) at seven reference points over the 146-year period. Removal was found to have occurred in two main periods, 1838–1873 (35 km) and 1960–1984 (49 km). The rate of removal for the latter period showed no signs of decline. Removal of hedegerows and ditches on farms has occurred piecemeal, with larger farms undergoing greater changes. Smaller farms (<70 ha) hedgerow field boundaries) of the study area still have relatively high hedgerow densities (average 136m ha−1). As 3·8 km of hedgerow removed between 1980 and 1984 was due to farm enlargement in the western region, future losses are expected in this area upon further amalgamation of the smaller farms with adjacent larger concerns (>150 ha). As the hedgerows on these small farms are important wildlife features, such a future trend has important implications for conservation on farms.  相似文献   

3.
Distinct changes in air temperature since the end of the 1980s have led to clear responses in plant phenology in many parts of the world. In Germany phenological phases of the natural vegetation as well as of fruit trees and field crops have advanced clearly in the last decade of the 20th century. The strongest shift in plant development occurred for the very early spring phases. The late spring phases and summer phases reacted also to the increased temperatures, but they usually show lower trends. Until now the changes in plant development are still moderate, so that no strong impacts on yield formation processes were observed. But further climate changes will probably increase the effect on plants, so that in the future stronger impacts on crop yields are likely.  相似文献   

4.
An assessment of the environmental quality of sediments at several locations of the Ría de Pontevedra (NW of Spain) was performed by integrating toxicity data obtained from multiespecies bioassays, chemical data from analysis of mussels and sediment, and physical–chemical parameters of the sampled sites. Subsequently, a toxicity identification evaluation (TIE) method intended for characterization and identification of the toxic agents was applied to the most polluted location by using the Paracentrotus lividus sea urchin bioassay. Both metals and organic compounds seem to be the causative agents of toxicity in elutriates of the studied sediment. Finally, multivariate statistics were applied for a better interpretation of results. A factor analysis was developed to establish the relationship among variables and to derive local sediment quality guidelines (SQG) by linking chemical contamination to biological effects. When multidimensional scaling and cluster analysis were performed to group the locations according to either the chemistry or toxicity data, P3-site was always clearly broken up the others. The different approaches all supported the same conclusion: site P3 can be considered highly contaminated by both trace metals and PAHs resulting in high toxicity for all the tested species.  相似文献   

5.
6.
In a long‐term maize–wheat rotation at the Punjab Agricultural University, Ludhiana, India (subtropical climate), the effects of nitrogen (N), phosphorus (P), and potassium (K) addition on soil fertility and forms of inorganic P and K in the plow layer of an alkaline sandy loam soil were measured after 11 and 22 years of cropping. The treatments comprised four rates of N (0, 60, 120, and 180 kg N ha?1) as urea, three rates of P (0, 17.5, and 35 kg P ha?1) as single superphosphate, and two rates of K (0 and 33 kg K ha?1) as muriate of potash. The treatments selected for the present study were N0P0K0, N120P0K0, N120P17.5K0, N120P35K0, N120P17.5K33, and N120P35K33. A significant year × treatment interaction in decreasing available N [alkaline potassium permanganate (KMnO4)–oxidizable N) status of soils was found in all the treatments. Available P (Olsen P) in the control plot decreased over time whereas in plots with added P, available P increased significantly after years 11 and 22, with the greatest increase in the N120P17.5Ko treatment. Compared to the initial values, continuous P fertilization resulted in greater total P and chloride P concentrations after 11 and 22 years. Although sodium hydroxide (NaOH) P and sulfuric acid (H2SO4) P increased in P‐treated plots from the start of the trial to year 11, they decreased from year 11 to year 22. Among these inorganic P forms, chloride P was significantly positively correlated with P uptake (r = 0.811*). When only N and P were applied, available K [ammonium acetate (NH4OAc)–extractable K] significantly decreased over time. In plots without K addition, water‐soluble and exchangeable K decreased from their initial status. Compared to year 11, water‐soluble K increased, whereas exchangeable K decreased after year 22 in plots receiving no K fertilizer. Compared with NPK treatments, a significant decrease of total K in NP treatment plots suggests the release and uptake of nonexchangeable K. Water‐soluble K and exchangeable K were not correlated with K uptake. These results suggest that long‐term application of P fertilizers resulted in the accumulation of P in the soil, which could have resulted in saturation of P binding sites. Of the soil inorganic P fractions, only chloride P appears to be a good indicator of plant‐available P. The gradual loss in native soil K and release of nonexchangeable K indicates the need for adding K fertilizer to maintain soil fertility.  相似文献   

7.
《Geoderma》2001,99(3-4):277-294
The purpose of this research was to: (1) characterize the clay mineralogy of soils in and adjacent to Kärkevagge, a recently deglaciated valley in Arctic Sweden, (2) document chemical weathering in a periglacial environment and (3) use the mineralogy to help explain landscape evolution. Soil samples were analyzed from 11 sites that differ in elevation, parent material, drainage, slope and vegetation. Parent materials include residuum, alluvium, colluvium and glaciofluvial material derived from garnet–mica–schist, plus, in one locality, a till of granitic origin. X-ray diffraction (XRD) was used to characterize the clay-size fraction (<2 μm). Muscovite, chlorite and mixed-layered (ML) minerals are the predominant soil minerals identified. ML minerals indicate chemical weathering and also act as tracers used to identify source areas of soil parent materials. High concentrations of ML minerals in the soils on the alpine ridges flanking Kärkevagge indicate in situ chemical weathering. At lower elevations within the valley, their distribution indicates that the ridges contributed sediments early on in the evolution of the landscape, but more recently the source has shifted towards ML-poor supply areas from lower elevations. Soil chemistry also supports this model; the alpine soils are base-poor while the valley soils are base-rich. The higher abundance of ML minerals in the alpine zone indicates either a long period of weathering or a greater period of development. The latter explanation supports the hypothesis that the ridge crests were covered by cold-based ice during the last glaciation; remnants of which still survive at the highest elevations. Cold-based ice preserved a pre-weathered landscape that was the primary source of the ML minerals in the soils in the valley.  相似文献   

8.

Purpose

The El Granero reservoir is the last reservoir of the Rio Conchos before it joins the Rio Grande at the Mexico–USA border. This reservoir, together with the San Marcos reservoir, is located in the arid region of Chihuahua, Mexico. High, naturally occurring radioactivity levels, as well as high arsenic (As) concentrations, have been found in both reservoirs. The main goal of this research was to establish the spatial and temporal distribution of trace and radioactive elements in surface sediments and cores collected from these reservoirs.

Materials and methods

Sediment cores were dated using 210Pb and 137Cs measurements and applying the constant rate of supply (CRS) model. Major, trace, and radioactive elements were determined in surface samples and three sediment cores. Radioactive elements were determined by both alpha and gamma spectrometry. Major and trace elements were determined by inductively coupled plasma optical emission spectrometry (ICP-OES) using the EPA 3051a method. Enrichment factors (EF), contamination factors (CF), and pollution load indexes (PLI) were calculated in order to identify the human impact in both reservoirs, whereas the chemical index weathering (CIW) was used to assess differences in the degree of weathering.

Results and discussion

High uranium (U) enrichment (EFs?=?24.9–54.7) was observed in core layers at the San Marcos reservoir, while in surface sediments, this enrichment was lower. The high variability of lead (Pb) and As in sediment cores from the Granero reservoir was attributed to human influence. Arsenic and Pb enrichment differences between entry and exit sediment cores were explained by the filtering capabilities of the elongated shape, the topography, and the presence of plants on the reservoir’s bed. The highest PLI was found at the entrance core of the Granero reservoir.

Conclusions

The natural element concentration levels of As, Pb, and U were established at the Granero reservoir. High EFs for As and Pb suggest an anthropogenic origin of these pollutants at specific time intervals. High U concentrations in the San Marcos area are explained as naturally occurring. The concentrations of As in most of the studied sediments could pose a risk to human health by As ingestion, since they are above the probable effect level (PEL).
  相似文献   

9.
The Fisher–Shannon information plane (FS), defined by the Fisher information measure and the Shannon entropy power, is proposed to investigate the complex dynamics of the concentration of three heavy metals (Cd, Fe, and Pb) in four different fractions of particulate matter data, recorded in Tito, a small industrial area of southern Italy. In the FS plane, the three metals are aggregated in three different clusters, characterized by different degrees of order. This result is related to different sources of the three metals.  相似文献   

10.
A two-year field study (2003–2004 and 2004–2005) on the effects of four sulfur (S) levels (0, 15, 30, and 45 kg ha?1) in an onion–maize system revealed that S application in onion up to 30 kg ha?1 significantly increased fresh and dry bulb and foliage yield over the previous levels of 0 and 15 kg ha?1 (direct effect). In maize (residual effect) and onion–maize sequence as a whole (direct?+?residual effects), the same trend was visible. Sulfur additions beyond 30 kg ha?1 reduced the yields (economic yields as well as foliage/straw yields) of individual crops of onion, maize, and sequence (onion?+?maize) to the level of either 15 kg ha?1 or even the control. Sulfur-use efficiencies (kg yield kg?1 S) at S doses of 15, 30, and 45 kg ha?1, over no S, were 373, 303, and 109; 43, 63, and 2; and 413, 367, and 111 in onion, maize, and onion?+?maize, respectively. The utilizations of S added at three rates by onion, maize and onion?+?maize were 21.3, 16.7, and 9.1%; 2.0, 10.7, and –0.4%; and 23.3, 27.3 and 8.4%, respectively.  相似文献   

11.
Journal of Soils and Sediments - Compared with deep oligotrophic waters, the distribution and geochemical processes of polycyclic aromatic hydrocarbons (PAHs) in shallow eutrophic waters are more...  相似文献   

12.
Information on phosphorus (P) release kinetics and sorption–desorption in soils is important for understanding how quickly reaction approaches equilibrium and replenishes the depleted soil solution. Laboratory experiments were conducted to study the P release and sorption–desorption kinetics in soils differing in clay, soil organic carbon (SOC), available P, and calcium carbonate (CaCO3) contents. Phosphorus release from soils proceeded in two phases: initially faster phase followed by a slower phase as equilibration progressed. Elovich equation (R2 ≥ 0.97**) described well the P release versus time data. P release coefficients for power function were significantly correlated with available P and SOC. Freundlich sorption constants increased with increase in clay and CaCO3 content. With increase in SOC and available P concentration in soils, substantial reduction in sorption constants was observed. It was concluded that for efficient P management, it is important to take into account soil texture, the existing soil P level, SOC content, and soil calcareousness.  相似文献   

13.
A field experiment was conducted in a phosphorus (P)–deficient acidic alfisol of the northwestern Himalayas using three vesicular arbuscular mycorrhizal (VAM) cultures: a local culture developed by CSK Himachal Pradesh Agricultural University, Palampur (Glomus mosseae), VAM culture from Indian Agricultural Research Institute (IARI), New Delhi (Glomus mosseae), and a culture from the Centre for Mycorrhizal Research, The Energy Research Institute (TERI), New Delhi (Glomus intraradices). These were applied alone or in combination with 25 to 75% of recommended P2O5 and recommended nitrogen (N) and potassium (K) based on soil-test crop response (STCR) precision model with an absolute control, farmers’ practice, and 100% of recommended P2O5 dose based on the STCR model. The results revealed that sole application of either of the three VAM cultures have produced 2.68 to 9.81% and 25.06 to 28.62% greater grain yield than the control in soybean and wheat crops, respectively. Besides greater straw yield, NPK uptake as well as soil nutrient buildup increased. Increase in P fertilization from 25 to 75% of recommended P2O5 dose coupled with VAM inoculation with either of the three VAM cultures resulted in consistent and significant improvement in crop productivity (grain and straw yields), NPK uptake, and improved soil nutrient status, though significantly greatest magnitude was obtained with sole application of 100% of the recommended P2O5 dose. The targeted grain yields of soybean (25 q ha?1) and wheat (30 q ha?1) were achievable with 75% of recommended P2O5 dose along with mycorrhizal biofertilizers, thereby indicating that application of efficient VAM fungi with 75% of recommended P2O5 dose can economize the STCR precision model fertilizer P dose by about 25% without impairing crop yield targets or soil fertility in a soybean-based cropping system in an acidic alfisol.  相似文献   

14.
The status of available macronutrients [phosphorus (P) and potassium (K)] and soil organic carbon (SOC) of the surface soil under a rice–wheat cropping system was studied in 40 districts of the Indo-Gangetic Plains (IGP) of India. The soil samples were collected from the farmers' fields in four transects (Trans-, Upper, Middle, and Lower Gangetic Plains) of the IGP. The selection of farmers, villages, blocks, and districts within an agro-climatic zone (ACZ) was done on the basis of a multistage statistical approach. The available macronutrients were characterized as low, medium, and high. In Trans-Gangetic Plains, SOC, available P, and available K were in the ranges of 0.06–0.86%, 6.7–85.1 kg ha?1, and 50–347 kg ha?1, respectively. In Upper Gangetic Plains, the respective values were in the ranges of 0.05–2.55%, 4.5–155.0 kg ha?1, and 45 to 560 kg ha?1. Similarly, in Middle Gangetic Plains, these values were in the ranges of 0.04–2.01%, 4.7–183.7 kg ha?1, and 72–554 kg ha?1, respectively. In Lower Gangetic Plains, respective values were 0.12–1.78%, 2.2–112.0 kg ha?1, and 83–553 kg ha?1. In Trans-Gangetic plains, the majority of the soils in the midplains ACZ representing intensively cultivated rice–wheat system area were low to medium in SOC and available P, whereas available K status was medium to high. Irrespective of the agroclimatic variations, more than 90% of the soils were low to medium in SOC and available P with a marginal deficiency of K. The majority of the coarse-textured soils in Shiwaliks were found to have low to medium SOC and available P, whereas less intensively cultivated arid zone soils were high in SOC, available P, and available K. In Upper and Middle Gangetic Plains, the majority of the soils tested medium for SOC and medium to high in available P and K. The dominance of medium status of available P in these soils could be due to mining of soil P by the rice–wheat cropping system practiced in these regions for more than 300 years. In Lower Gangetic Plains, the SOC was medium to high in most of the soils, whereas available P and K were high. Recent introduction of the rice–wheat system on intensive scale in these traditionally rice-growing areas resulted in less mining of SOC, P, and K.  相似文献   

15.
Agricultural productivity is increasingly becoming dependent upon soil fertility, which is generally thought to be supplemented through the application of nutrients mainly through inorganic fertilizers. The present study aims to characterize the soil physical environment in relation to long-term application of farmyard manure (FYM) and inorganic fertilizers in a maize–wheat cropping system. The treatments in both the maize and wheat systems included a control (without any fertilizer or FYM), FYM (farmyard manure at 20 t ha?1), N100 (nitrogen at 100 kg ha?1), N100P50 (nitrogen and phosphorus at 100 and 50 kg ha?1), and N100P50K50 (nitrogen, phosphorus, and potash at 100, 50, and 50 kg ha?1). The treatments were replicated four times in a randomized complete block design in sandy loam soil. The root mass density in surface layers of both the crops was lower in FYM and higher in inorganic fertilizer plots. The root length density was found to be highest in FYM-treated plots and lowest in control plots. The periodic soil matric suction during wheat following maize remained highest in FYM plots followed by that in N100 plots in all the layers. The soil water storage of wheat at harvest (rice–wheat) was highest (21.1 cm) in control and lowest (17.8 cm) in FYM-treated plots. The soil water status, root growth, and crop performance improved with balanced fertilization.  相似文献   

16.
17.
Zinc sorption–desorption by sand, silt and clay fractions of six representative calcareous soils of Iran were measured. Sand, silt and clay particles were fractionated after dispersion of soils with an ultrasonic probe. Zinc sorption analysis was performed by adding eight rates of Zn from 6 to 120 μmol g?1. For the desorption experiment, samples retained after the measurement of Zn sorption were resuspended sequentially in 0.01 M NaNO3 solution and shaken for 24 h. Results indicated that Zn sorption by soil fractions increased in the order clay > silt > sand, and correlated negatively with CaCO3 content and positively with cation exchange capacity (CEC) and smectite content. Results indicated that for all fractions, the Langmuir equation described the sorption rates fairly well. In contrast to sorption, Zn desorption from soil fractions increased in the order sand > silt > clay, and correlated positively with CaCO3 content, CEC and smectite content. Results showed that parabolic diffusion and two constant equations adequately described the reaction rates of Zn desorption. In general, for all soils studied, the coarser the particle size, the less Zn sorption and more Zn desorption, and this reflects much higher risk of Zn leaching into groundwater or plant uptake in contaminated soils.  相似文献   

18.
In this study, benthic flux measurements of inorganic nitrogen (i.e., $ {\text{NH}}^{ + }_{4} $ , $ {\text{NO}}^{ - }_{2} $ ?+? $ {\text{NO}}^{ - }_{3} $ ) were made using a batch incubation system at different stations (i.e., shallow sandy macrophyte and unvegetated beds, and deep central mud) over four seasons in Lake Illawarra, NSW, Australia, to study the influence of different primary producers (i.e., seagrasses, microphytobenthos (MPB) and macroalgae) and/or different sediment types (i.e., sand or mud) on the benthic fluxes. In general, nutrient fluxes displayed typical diel variations, with lower flux out of sediments (release) or enhanced uptake by the sediment in the light, due to the photosynthetic activities of the plant-MPB-sediment community in Lake Illawarra during photosynthetic periods. A distinct seasonal pattern of inorganic-N fluxes was also observed (e.g., the marked difference between summers 2002 and 2003). This may be explained by the seasonal variations in the biomass and activity (growing or decay phases) of MPB, seagrass and macroalgae, which may influence their nutrient assimilation and alter the chemical conditions of surface sediments that influence the benthic geochemical processes and thus benthic nutrient fluxes. On an annual basis, unvegetated sediments displayed net DIN effluxes, while seagrass beds showed a net DIN uptake, and the highest DIN uptakes coincided with the largest standing crop of seagrass and/or macroalgae and the highest levels of benthic community production. This may be due to the enhanced denitrification and/or assimilation activity by rooted plants and macroalgae, and the effect is most efficient during periods of net growth (e.g., in Spring 2002).  相似文献   

19.
This study reports distribution of uranium (U) and thorium (Th) in soil samples and the roots and shoots of some plants grown around an abandoned lead (Pb)–zinc (Zn)–copper (Cu) mining area. The plants Euphorbia macroclada, Verbascum cheiranthifolium Boiss, and Astragalus gummifer were examined. The determinations of U and Th were carried out by inductively coupled plasma‐mass spectrometry (ICP‐MS). Uranium and Th levels of the studied soil samples were found to be in the range of 1.1–70.3 mg kg?1 and 2.1–62.1 mg kg?1, respectively. Some results obtained from this study were higher than the mean U and Th concentrations of soils reported around the world. Uranium and thorium concentrations in studied plant roots were in the range of 0.04–16 and 0.08–14.57 mg kg?1, whereas in plant shoots they were 0.02–2.76 and 0.07–12.3 mg kg?1, respectively. It was concluded that the shoots of Astragalus and roots of Euphorbia and Verbascum can be used as both a biomonitor for environmental pollution and biogeochemical indicator because of their higher U and Th concentrations.  相似文献   

20.
Accurate estimation of reference evapotranspiration (ETo) is essential for water resources management and irrigation systems scheduling, especially in arid and semiarid regions such as Iran. In the present research, constant coefficients of Hargreaves–Samani (CH–S) and Priestley–Taylor (CP–T) equations were locally calibrated to estimate the ETo based on the FAO–Penmen–Monteith (PM) method as standard method. For this purpose, meteorological data of eight synoptic stations located in the northwest of Iran were used during the period of 1997–2008. The outcomes showed that the values of CH–S and CP–T were 0.0026 (instead of 0.0023) and 1.68 (instead of 1.26), respectively. Also, at stations with high wind speed, the values of calibrated coefficients of CH–S and CP–T were maximum. Then, the estimated ETo values using adjusted CH–S and CP–T coefficients were compared to the obtained actual ETo values by PM method using root mean square error and mean bias error indices. The results indicated that the new calibrated H–S and P–T equations have good agreement with the PM method for estimation of the ETo. Moreover, the equation of Ravazzani et al. was calibrated in the studied region. It was concluded that in general, the mentioned equation was shown better performance than original H–S equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号