首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nutritional quality of protein in quinoa seeds has been determined by amino acid assay and by animal feeding experiments. The amino acid composition of the protein in raw quinoa and washed quinoa show similar pattern. The first limiting amino acids were the aromatic amino acids thyrosine + phenylalanine giving a chemical score of 86 for protein in raw quinoa and 85 for protein in washed quinoa. Threonine was the next limiting amino acid followed by lysine. The amount of lysine and sulfur amino acids (methionine + cystine) was relatively high. In general, the content of essential amino acids in quinoa is higher than in common cereals. The animal experiments showed NPU values of 75.7, BV of 82.6 and TD value of 91.7 for the protein in raw quinoa. Results of the in-vitro enzymatic methods showed that the digestibility of the protein in quinoa is comparable to that of other high quality food proteins. The corresponding experiments carried out with samples of guinoa seeds, which have been processed to remove the saponins, showed that, the saponins do not exert any negative effect on the nutritive quality of the protein.  相似文献   

2.
Gluten free (GF) flour (amaranth, buckwheat, chickpea, corn, millet and quinoa) was blended with rice flour to compare their impact on dough rheological characteristics and bread quality. The potential of some GF-rice blends in breadmaking has already been studied on blends with prevailing content of rice flour. The impact of added flour may be expected to rise with increasing amount of flour; therefore blends containing 30 g/100 g, 50 g/100 g and 70 g/100 g of GF flour in 100 g of GF-rice blend were tested. Under uniaxial deformation, peak strain was not impacted by the addition of GF flour; stress (12.3 kPa) was, however, significantly (P < 0.05) decreased (2.9–6.2 kPa). The reduction initiated by the presence of buckwheat, chickpea, quinoa and partly amaranth, together with thermally-induced dough weakening initiated by buckwheat and quinoa flour, may be related to significantly better crumb porosity. Overall acceptability of composite breads containing amaranth, chickpea and quinoa was negatively impacted by the aroma and taste of these flours. Higher potential to improve rice dough behavior and bread quality was found in the blend containing buckwheat flour (30 g/100 g; 50 g/100 g). Millet and corn flour deteriorated dough and bread quality.  相似文献   

3.
The use of amaranth, quinoa and buckwheat for the production of gluten-free pasta was investigated in the present study. The aim of the work was to produce pasta of good textural quality, in particular, low cooking loss, optimal cooking weight and texture firmness. The results demonstrated that pasta produced from amaranth had decreased texture firmness and cooking time, while pasta from quinoa mainly showed increased cooking loss. In buckwheat pasta the least negative effects were observed. By combination of all three raw materials to one flour blend in the ratio of 60% buckwheat, 20% amaranth and 20% quinoa, dough matrix was improved. After decreasing dough moisture to 30%, addition of an increased amount of egg white powder of 6% and addition of 1.2% emulsifier (distilled monoglycerides) texture firmness as well as cooking quality of gluten-free pasta produced from such a flour blend reached acceptable values comparable to wheat pasta.  相似文献   

4.
Chenopodium quinoa Willd (quinoa) has been a source of food for millennia by the Andes region native population. Because of its bitter taste, quinoa seeds are commercialized without their coat for human consumption. Quinoa coats are surfactant sub-products of the quinoa food industry, which have been only characterized to contain triterpene saponins. We postulated that this coat should also contain antioxidant molecules as part of the defense system of the quinoa seed. We found that a quinoa seed coats hydroalcoholic extract, displayed thiol compounds in addition to polyphenols, recognized antioxidants. Accordingly, it inhibited microsomal lipid peroxidation and the loss of microsomal thiol content, both oxidative phenomena promoted by Cu2+/ascorbate. Microsomal glutathione S-transferase (GST) is inhibited by reducing agents, which decrease the content of catalytically active disulfide-linked dimers. The effects of this quinoa extract on microsomal GST are consistent with it displaying disulfide reducing properties. The occurrence of thiol compounds in this quinoa extract is discussed in terms of the potential of their antioxidant properties.  相似文献   

5.
Due to its high nutritional value, quinoa has recently been attracting worldwide attention. The composition and secondary structure of proteins isolated from quinoa varieties from other countries have been determined, but proteins from Chinese quinoa varieties have not been described. The aim of this research was to determine the composition and secondary structure of proteins isolated from six different quinoa varieties from China. In all varieties, the protein content was 69.62–73.14%. The fat content and ash content were all less than 2%. The starch content was 20.67–23.12%. The amino acid composition and secondary structures of quinoa protein isolates (QPIs) purified from six Chinese quinoa varieties were investigated by using a combination of amino acid analysis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and Fourier transform infrared spectroscopy (FTIR). The results revealed that QPIs, with molecular weights ranging from 10.0 kDa to 50.0 kDa, were rich in essential amino acids. In addition, glutamic acid was the most abundant amino acid found in the quinoa protein isolates. The remaining amino acid contents were balanced, except for tryptophan. The secondary structures of QPIs have been quantified by the deconvolution of the amide I band of the FTIR spectrum of QPIs. The main secondary structure in quinoa isolate protein was the β-sheet (from 30.86% to 36.88%). These results will be promising guides for the use of QPIs in food processing and additives.  相似文献   

6.
灰灰菜与藜麦形态和生长特性相似,是藜麦田中的顽固杂草,难以防除。为了探究不同栽培密度下藜麦对同科杂草灰灰菜的抑制效果,本研究设置高(67株/m2)、低(10株/m2)2种藜麦栽培密度,比较2种密度下藜麦在3种生长条件(自生组、间生组和替生组)下灰灰菜的农艺性状差异。结果表明:藜麦高密度栽培较低密度栽培在不同生长条件下对于抑制同科杂草灰灰菜均具有显著差异;同一藜麦栽培密度下,灰灰菜居间生长所受到的抑制效应较大。  相似文献   

7.
The performance of quinoa-wheat flour blends (5/95, 10/90, 20/80, 30/70) were evaluated in breads, cakes and cookies. Breads baked with 5% and 10% quinoa flour were of good quality. Loaf volume decreased, crumb grain became more open and the texture slightly harsh at higher usage levels of quinoa flour. A bitter aftertaste was noted at the 30% level. Cake quality was acceptable with 5% and 10% of quinoa flour. Cake grain became more open and the texture less silky as the level of quinoa substitution increased. Cake taste improved with either 5% or 10% quinoa flour in the blend. Cookie spread and top grain scores decreased with increasing levels of quinoa flour blended with high-spread cookie flour. Flavor improved up to 20% quinoa flour in the blend. Cookie spread and cookie appearance was improved with a quinoa/low-spread flour blend by using 2% lecithin.  相似文献   

8.
We investigated certain properties of starch in raw and in heat-treated samples of quinoa, properties that are of importance to the nutritional quality of an infant food currently being developed. Scanning electron microscopy of the starch in raw seeds showed polygonal granules (0.6 to 2.0 µm diameter) to be present both singly and as spherical aggregates. Thermograms (DSC) of the flours showed one transition phase for gelatinisation of the starch and another for the amylose-lipid complex. The gelatinisation temperature of the starch was 67°C. Cooked samples manifested the highest degree of gelatinisation (97%), followed by the drum-dried (96%) and autoclaved (27%) samples. Separation of the starch on a SEPHAROSE CL-2B column showed the quinoa starch to be affected by the heat treatment, manifesting changes in the degree and extent of degradation. The amylograph viscosity of the quinoa flour showed no distinct peak for pasting, but the viscosity remained constant after gelatinisation. Cooking and autoclaving modified the viscosity of the paste. The drum-dried sample manifested a higher initial viscosity at 25°C. Thein vitro digestibility of raw quinoa starch determined by incubation for 60 min with -amylase was 22%, while that of autoclaved, cooked and drum-dried samples was 32%, 45% and 73%, respectively. Saponins did not affect the digestibility of the starch, though they tended to increase the amylograph viscosity. The total dietary fibre content in the cooked sample (11.0%) was significantly lower than that in the autoclaved (13.2%), drum-dried (13.3%) or raw samples (13.3%), while the insoluble dietary fibre fraction in the samples did not change with heat treatment. However, as compared with that of raw quinoa, the soluble dietary fibre fraction was reduced significantly both by cooking (0.9%) and by autoclaving (1.0%).  相似文献   

9.
为揭示藜麦耐盐生理机制,本研究分别采用0、50、100、150、200、250、300 mmol/L NaCl处理藜麦,于处理6、12、24、48、72、96 h后测定藜麦株高、生物量、叶绿素及类黄酮的含量。结果表明:低浓度NaCl胁迫及短时间NaCl处理(50~150 mmol/L NaCl、6~48 h)促进藜麦的生长,高浓度NaCl胁迫及长时间NaCl处理(200~300 mmol/L NaCl、72~96 h)则抑制其生长;藜麦叶片叶绿素和类黄酮含量随NaCl浓度升高呈先升后降趋势,均在100 mmol/L NaCl处理下有最大值,且随处理时间的增加呈先降后升趋势,表明适宜的NaCl浓度和处理时间会促进叶绿素和类黄酮在藜麦体内的积累,增强其抗氧化能力。  相似文献   

10.
Quinoa (Chenopodium quinoa Willd.) is a plant species of the Chenopodiaceae family, which originated in the Andean region and can adapt to different types of soil and climatic conditions. It is a pseudo grain with high nutritional value as it is rich in proteins, lipids, fiber, vitamins, and minerals, and has an extraordinary balance of essential amino acids. Quinoa also contains a high amount of health-beneficial phytochemicals including saponins, phytosterols, phytoecdysteroids. It is known that quinoa has considerably positive effects on metabolic, cardiovascular, and gastrointestinal health in humans. Despite all these health benefits, quinoa is not widely consumed due to several reasons, such as high import costs of the grain and lack of knowledge regarding its benefits among consumers. As we believe that further research is needed to provide more information about quinoa, this review was prepared to investigate its basic compounds and health effects.  相似文献   

11.
A new gluten-free bread formulations composed of quinoa, buckwheat, rice flour and potato starch were developed in the present study. Rheological characteristics of the bread batter with increasing amount of quinoa were determined; storage (G′) and loss modulus (G″) values were also measured for investigation of viscoelastic properties. To evaluate the quality of breads; technological and physical (bake loss %, specific volume, texture, microstructure, color), chemical (protein, moisture, ash) and sensory properties were determined. All batter formulations independent of the quinoa amount exhibited pseudoplastic behavior, and G′ values were found to be higher than G″ values in expressing the solid like characteristics of the batter. Amount of quinoa flour addition did not present significant difference on bake loss%, specific volume and protein content (p>0.05); however, 25% quinoa flour bread displayed better results with its higher sensory scores and softer texture. Quinoa and buckwheat flour mixture therefore will be a good alternative for conventional gluten-free bread formulations.  相似文献   

12.
Quinoa (Chenopodium quinoa Willd) is a Latin American food staple readily available in large quantities in Peru, Bolivia and Ecuador. The outer husk of the grain is removed prior to consumption to reduce its bitter taste. At present, quinoa husks are considered as a by-product with no commercial value, despite its high content of triterpenoid saponins (20–30%). Due to this, the present work was undertaken to test if quinoa saponins have antifungal properties against Botrytis cinerea and if this activity is enhanced after alkaline treatment, since recent reports indicate that alkaline treatment of quinoa saponins increase their biological activity. Six products were tested against B. cinerea: (1) non-purified quinoa extract, (2) purified quinoa extract, (3) alkali treated non-purified quinoa extract, (4) alkali treated purified quinoa extract, (5) non-purified quinoa extract treated with alkali but without thermal incubation and (6) purified quinoa extract treated with alkali but without thermal incubation.

Untreated quinoa extracts showed minimum activity against mycelial growth of B. cinerea. Also, no effects were observed against conidial germination, even at 7 mg saponins/ml. However, when the saponin extracts were treated with alkali, mycelial growth and conidial germination were significantly inhibited. At doses of 5 mg saponins/ml, 100% of conidial germination inhibition was observed, even after 96 h of incubation. Fungal membrane integrity experiments based on the uptake of the fluorogenic dye SYTOX green showed that alkali treated saponins generate membrane disruption, while non-treated saponins had no effects.

The higher antifungal activity of alkaline treated saponins is probably due to the formation of more hydrophobic saponin derivatives that may have a higher affinity with the sterols present in cell membranes.  相似文献   


13.
As it is well documented that the phytochemical composition and bioactive profile of quinoa are influenced by different phenotypes, we analyzed the physicochemical and functional characteristics of different quinoa soluble dietary fiber (SDF). SDF was prepared through ultrasound-assisted enzymatic extraction from three colored quinoa brans. After purification, the yield of SDF from white (W-SDF), red (R-SDF) and black quinoa bran (B-SDF) was 2.2%, 5.7% and 5.9%, respectively. Compared with R-SDF and B-SDF, W-SDF had a higher molecular weight (1.72 × 106 Da) and lower zeta-potential (- 32.16 mV), although their monosaccharide composition and Fourier transform infrared spectroscopy (FT-IR) results showed no obvious differences. The transmission electron microscope (TEM) image suggested that R-SDF exhibited a more complex and loose structure than W-SDF and B-SDF. Moreover, R-SDF exhibited higher thermal stability, gel forming capacity, bile acid binding capacity, water-holding capacity and glucose adsorption capacity than those of B-SDF and W-SDF. Taken together, SDF extracted from quinoa especially from red quinoa might be a promising candidate for the development of novel functional food ingredients.  相似文献   

14.
The in vitro starch digestibility of five gluten-free breads (from buckwheat, oat, quinoa, sorghum or teff flour) was analysed using a multi-enzyme dialysis system. Hydrolysis indexes (HI) and predicted glycaemic indexes (pGI) were calculated from the area under the curve (AUC; g RSR/100g TAC*min) of reducing sugars released (RSR), and related to that of white wheat bread. Total available carbohydrates (TAC; mg/4 g bread “as eaten”) were highest in sorghum (1634 mg) and oat bread (1384 mg). The AUC was highest for quinoa (3260 g RSR), followed by buckwheat (2377 g RSR) and teff bread (2026 g RSR). Quinoa bread showed highest predicted GI (95). GIs of buckwheat (GI 80), teff (74), sorghum (72) and oat (71) breads were significantly lower. Significantly higher gelatinization temperatures in teff (71 °C) and sorghum flour (69 °C) as determined by differential scanning calorimetry (DSC) correlated with lower pGIs (74 and 72). Larger granule diameters in oat (3–10 μm) and sorghum (6–18 μm) in comparison to quinoa (1.3 μm) and buckwheat flour (3–7 μm) as assessed with scanning electron microscopy resulted in lower specific surface area of starch granules. The data is in agreement with predictions that smaller starch granules result in a higher GI.  相似文献   

15.
Extrusion processing characteristics of Cherry Vanilla quinoa flour (Chenopodium quinoa Willd) were investigated using a three factor response surface design to assess the impact of feed moisture, temperature, and screw speed on the physicochemical properties of quinoa extrudates. Specific mechanical energy (SME) required to extrude this quinoa variety was higher (250–500 kJ/kg) than previously reported for quinoa. The following characteristics of the extrudates were observed: expansion ratio (1.17–1.55 g/cm3), unit density (0.45–1.02 g/cm3), water absorption index (WAI) (2.33–3.05 g/g), and water solubility index (WSI) (14.5–15.87%). This quinoa flour had relatively low direct expansion compared to cereal grains such as corn or wheat, suggesting that it is not well suited for the making of direct expanded products. The study further suggests that there is a need to understand the processing characteristics of new quinoa varieties for cultivation. Understanding extrusion and other quality traits in advance will help to select the appropriate varieties that would allow food processors to meet consumer needs.  相似文献   

16.
The in vitro starch digestibility of five gluten-free breads (from buckwheat, oat, quinoa, sorghum or teff flour) was analysed using a multi-enzyme dialysis system. Hydrolysis indexes (HI) and predicted glycaemic indexes (pGI) were calculated from the area under the curve (AUC; g RSR/100g TAC*min) of reducing sugars released (RSR), and related to that of white wheat bread. Total available carbohydrates (TAC; mg/4 g bread “as eaten”) were highest in sorghum (1634 mg) and oat bread (1384 mg). The AUC was highest for quinoa (3260 g RSR), followed by buckwheat (2377 g RSR) and teff bread (2026 g RSR). Quinoa bread showed highest predicted GI (95). GIs of buckwheat (GI 80), teff (74), sorghum (72) and oat (71) breads were significantly lower. Significantly higher gelatinization temperatures in teff (71 °C) and sorghum flour (69 °C) as determined by differential scanning calorimetry (DSC) correlated with lower pGIs (74 and 72). Larger granule diameters in oat (3–10 μm) and sorghum (6–18 μm) in comparison to quinoa (1.3 μm) and buckwheat flour (3–7 μm) as assessed with scanning electron microscopy resulted in lower specific surface area of starch granules. The data is in agreement with predictions that smaller starch granules result in a higher GI.  相似文献   

17.
Waxy maize (a standard starch of normal granule size) and five small granule starches from different botanical sources (rice, wheat B type, oat, quinoa and amaranth) were subjected to 2-octenyl-1-succinic anhydride (OSA) modification. Changes of pasting, gel texture, thermal and rheological properties were investigated. Different small granule starches showed quite different property changes after OSA modification. Pasting viscosity was generally increased in OSA starches, among which OSA oat starch had notably high peak and breakdown viscosity but low setback viscosity. Gel hardness of rice, wheat B type, oat and quinoa starches was reduced by OSA treatment, whereas that of waxy maize and amaranth starches was increased. Amylose content was considered to be the major factor influencing pasting, gel and thermal property of OSA starches. Esterification increased pseudoplastic flow behavior of all starches, while OSA oat starch uniquely had reduced flow consistency coefficient. The dynamic rheological properties were also changed differentially among OSA starches. Viscoelastic properties of rice, wheat B type, oat and quinoa starches were increased after OSA treatment, whereas those of waxy maize and amaranth starches were decreased. This study showed that diverse functionalities from OSA small granule starches may fulfil different demands in product development.  相似文献   

18.
The effects of the following additives on the amaranth (A), quinoa (Q) and oat (O) dough rheological properties and the extruded tagliatelle dough mechanical characteristics were evaluated: carboxymethylcellulose of sodium (CMC), whey protein isolate (WPI), casein (CAS), chitosan (CHIT) and pregelatinized starch (PS). The amaranth, quinoa and oat rheological dough properties and amaranth, quinoa and oat tagliatelle mechanical characteristics were compared to those of their respective controls (ACTRL, QCTRL and OCTRL) and of the SEMOLINA sample. The storage modulus (G′) and loss modulus (G″) values of the quinoa and oat doughs with PS were similar to those of the semolina dough. For all tagliatelle samples, WPI reduced the elastic modulus or Young's modulus towards that of the semolina tagliatelle. Moreover, the additives did not have particular influence on the tenacity with the exception of the amaranth tagliatelle added with WPI.  相似文献   

19.
The effect of 40 h solid-state fermentation with Rhizopus oligosporus on selected parameters of white and coloured quinoa was studied, as compared to standard (30 h) product and cooked seeds.The reducing power (RP) and the activity against synthetic free radicals of standard tempe were higher by on average 140% (white) and 64% (coloured quinoa) than that of cooked seeds. The OH scavenging activity was increased by more than 7 fold (white), and over 2 fold (coloured quinoa). Prolongation of the fermentation caused further improvement in this potential, on average by 27% (OH, RP) and 24% (DPPH, ABTS+ assays). The soluble phenols i.e. vanillic acid, protocatechuic acid and rutin levels in 40 h tempe were significantly higher than in cooked quinoa. Fermented products contained 470% (white) and on average 150% (coloured quinoa) more riboflavin and 100% more thiamine (white quinoa) than cooked seeds. The levels of total protein, free amino acids and proteins releasable during the in vitro digestion, were improved as a result of 40 h fermentation. The essential amino acids profile of quinoa tempe was consistent with the reference pattern.The prolonged tempe-type fermentation of quinoa can be recommended as a method of the value-added food production.  相似文献   

20.
Germination can be used to improve the sensory and nutritional properties of cereal and pseudocereal grains. Oat and quinoa are rich in minerals, vitamins and fibre while quinoa also contains high amounts of protein of a high nutritional value. In this study, oat and quinoa malts were produced and incorporated in a rice and potato based gluten free formulation. Germination of oat led to a drastic increase of α-amylase activity from 0.3 to 48 U/g, and minor increases in proteolytic and lipolytic activities. Little change was observed in quinoa except a decrease in proteolytic activity from 9.6 to 6.9 U/g. Oat malt addition decreased batter viscosities at both proofing temperature and during heating. These changes led to a decrease in bread density from 0.59 to 0.5 g/ml and the formation of a more open crumb, but overdosing of oat malt deteriorated the product as a result of excessive amylolysis during baking. Quinoa malt had no significant effect on the baking properties due to low α-amylase activity. Despite showing a very different impact on the bread quality, both malts influenced the electrophoretic patterns of rice flour protein similarly. This suggests that malt induced proteolysis does not influence the technological properties of a complex gluten free formulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号