首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of conservation agriculture (CA) is to improve soil quality and crop yield whilst reducing runoff and topsoil erosion. An experiment was carried out in a rainfed field using a permanent raised bed planting system for 3 yr (2005–2007) in Adigudem, northern Ethiopia in order to evaluate the effect of CA on runoff, soil loss and crop yield. CA practices were introduced in fields with Vertisols in a randomized complete block design on permanent 5 × 19 m plots. Three treatments were evaluated: (1) conventional tillage (CT) with a minimum of three tillage operations and removal of crop residues, (2) terwah (TER) that was similar to CT except that contour furrows were included at 1.5 m intervals, and (3) derdero+ (DER+), which consists of permanent raised beds with a furrow and bed system, retention of 30% of standing crop residues and zero tillage on the top of the bed. All ploughing as well as the maintenance of the furrows of the permanent raised beds was done using a local ard plough called maresha. Results from monitoring over 3 yr showed that soil loss and runoff were significantly higher (P < 0.05) in CT followed by TER and DER+. Average soil losses of 5.2, 20.1 and 24.2 t/ha were recorded from DER+, TER and CT, respectively. Runoff was 46.3, 76.3 and 98.1 mm from DER+, TER and CT, respectively. Grain yield was significantly lower (P < 0.05) in DER+ under teff in 2006, probably due to the high sensitivity of teff to weeds. The yield of wheat in 2007 was significantly higher in DER+ followed by TER. The terwah system is recommended as a first measure for wider adoption to reduce runoff and soil loss and to increase crop yield. The long‐term goal is to achieve a derdero+ system, i.e. a permanent raised bed planting system along with the application of crop residues.  相似文献   

2.
Mixed responses of soil nitrous oxide (N2O) fluxes to reduced tillage/no-till are widely reported across soil types and regions. In a field experiment on a Danish sandy loam soil we compared N2O emissions during winter barley growth following five years of direct drilling (DD), reduced tillage (RT) or conventional tillage (CT). Each of these tillage treatments further varied in respect to whether the resulting plot crop residues were retained (+Res) or removed (−Res). Sampling took place from autumn 2007 to the end of spring 2008. Overall N2O emissions were 27 and 26% lower in DD and RT, respectively, relative to N2O emissions from CT plots (P < 0.05). We observed that in residue removal scenarios N2O emissions were similar for all tillage treatments, but in residue retention scenarios N2O emissions were significantly higher in CT than in either DD or RT (P < 0.05). Irrespective of residue management, N2O emissions from DD and RT plots never exceeded emissions from CT plots. Retention of residue was estimated to reduce emissions from DD plots by 39% and in RT plots by 9%, but to increase N2O emissions from the CT plots by 35%. Relative soil gas diffusivity (Rdiff), soil NO3-N, soil temperature, tillage and residue were important driving factors for N2O emission (P < 0.05). A multiple linear regression model using Rdiff to represent the water factor explained N2O emissions better than a water-filled pore space (WFPS) based model, suggesting a need for review of the current use of WFPS in N2O prediction models. We conclude that on light textured soils, no-till has the potential for reducing N2O emissions when crop residues are returned to the soil.  相似文献   

3.
Abstract

Soil carbon sequestration in agricultural lands has been deemed a sustainable option to mitigate rising atmospheric CO2 levels. In this context, the effects of different tillage and C input management (residue management and manure application) practices on crop yields, residue C and annual changes in total soil organic C (SOC) (0–30 cm depth) were investigated over one cycle of a 4-year crop rotation (2003–2006) on a cropped Andisol in northern Japan. For tillage practices, the effects of reduced tillage (no deep plowing, a single shallow harrowing for seedbed preparation [RT]) and conventional deep moldboard plow tillage (CT) were compared. The combination of RT, residue return and manure application (20 Mg ha?1 in each year) increased spring wheat and potato yields significantly; however, soybean and sugar beet yields were not influenced by tillage practices. For all crops studied, manure application enhanced the production of above-ground residue C. Thus, manure application served not only as a direct input of C to the soil, but the greater crop biomass production engendered enhanced subsequent C inputs to the soil from residues. The SOC contents in both the 0–5 cm and 5–10 cm layers of the soil profile were greater under RT than under CT treatments because the crop residue and manure were densely incorporated into the shallow soil layers. Comparatively, neither tillage nor C input management practices had significant effects on annual changes in SOC content in either the 10–20 cm or 20–30 cm layers of the soil profile. When soil C sequestration rates, as represented by annual changes in total SOC (0–30 cm), were assessed on a total soil mass basis, an anova showed that tillage practices had no significant effect on total C sequestration, but C input management practices had significant positive effects (P ≤ 0.05). These results indicate that continuous C input to the soil through crop residue return and manure application is a crucial practice for enhancing crop yields and soil C sequestration in the Andisol region of northern Japan.  相似文献   

4.
We studied fodder radish carbon turnover as affected by soil tillage in Foulum, Denmark. Actively growing fodder radish monoliths from direct‐drilled (DD) and conventionally tilled (CT) plots were extracted and labelled regularly with 14C isotope across their entire growth period. At the end of the fodder radish growth cycle, labelled biomass was harvested and incorporated into the same monolith. These monoliths were destructively sampled at biomass incorporation, 4, 8 and 18 months after incorporation. For each sampling period, soil and root samples were taken at 0‐ to 10‐, 10‐ to 25‐, and 25‐ to 45‐cm‐depth increments for determination of 14C distribution and retention. Carbon‐14 declined significantly with increasing soil depth at each sampling for the two tillage practices (< 0.05). We further observed significantly higher 14C at 0–10 cm for DD than for CT at 4 and 8 months after biomass incorporation. For the 10–25 cm depth, 14C was significantly higher for CT than for DD, 4 and 8 months after incorporation. However, despite these depth‐specific differences, cumulative (0–45 cm soil depth) 14C retention was similar for DD and CT treatments for all the sampling periods. On the basis of a CN‐SIM model forecast, we estimated that over a 30‐yr period of continuous autumn fodder radish establishment, at least 4.9 t C/ha fodder radish C with a residence time of more than 20 yr could be stored in the soil.  相似文献   

5.
Field rainfall simulations were conducted in 2002 and 2005 to study the effects of different soil management practices on the total phosphorous (TP) and Olsen-P losses by soil erosion and redistribution along a 15 m long slope in Luoyang, Henan province, China. Field plots were set up in 2001 and included the following soil management practices: subsoiling with mulch (SSM), no-till with mulch (NTM), reduced tillage (RT), and a conventional tillage control (CT). The results showed that there were no significant differences in TP and Olsen-P content in the sediment load between different plots after 6 years uniform tillage practices. The enrichment of TP and Olsen-P at the lower slope showed a clear redistribution along the slope. Effects of tillage practices on the temporal pattern of the enrichment ratio (ER) of TP and Olsen-P was not uniform. ERTP values were initially high and diminished after a short period of time and leveled to the end of the rainfall test in CT and RT plots, but remained ≥ 1. The ER of Olsen-P at the end of rainfall simulation showed a significant difference when compared to the initial stage, 0.78 to 1.60, respectively. However, the temporal loss rate of TP and Olsen-P showed a similar pattern because it was more depending on the sediment loss rate than on the concentration in the sediment. SSM resulted in 96% less TP and Olsen-P erosion loss compared to CT in 2002. Also, SSM showed the highest reduction in TP and Olsen-P loss after 4 years consistent practice. RT reduced TP and Olsen-P loss by 30%, although the runoff reduction was not significant. NTM was the best alternative with respect to TP and Olsen-P conservation, when considering its lower operational costs.  相似文献   

6.
Soil organic matter (SOM) is considered an important indicator of soil quality, which can be impacted by crop production practices such as tillage. In this study, two long‐term tillage regimes (conventional tillage [CT] and no tillage [NT], conducted for 36 years) were compared in continuous sorghum production in a sub‐tropical environment in southeast Texas. The positive effects of long‐term NT practice were more conspicuous at the soil surface compared with the deeper soil profiles. The SOC was greater (1.5 t C ha?1 greater) in the NT system compared with the CT system. Results from an incubation study indicate that the rate of C‐min at 0–5 cm soil depth was significantly greater (164 μg of CO2–C g?1 of soil greater) in NT than that of CT, but this trend was reversed at 10–20 cm depth wherein the C‐min rates were 106 μg of CO2–C g?1 of soil greater in CT compared with NT, which is likely because of soil disturbance during the study. Soil cumulative CO2‐C emissions were greater in the CT system (7.28 g m?2) than in the NT system (5.19 g m?2), which is primarily attributed to high soil temperature conditions in the CT system. Sorghum grain yield however was not influenced by the differences in SOC content in this long‐term experiment. Overall, the present study found that long‐term conservation tillage improved SOC stock and reduced carbon loss, thus had a positive impact on soil health and sustainability.  相似文献   

7.
Soil tillage practices affect the soil microbial community in various ways, with possible consequences for nitrogen (N) losses, plant growth and soil organic carbon (C) sequestration. As microbes affect soil organic matter (SOM) dynamics largely through their activity, their impact may not be deduced from biomass measurements alone. Moreover, residual microbial tissue is thought to facilitate SOM stabilization, and to provide a long term integrated measure of effects on the microorganisms. In this study, we therefore compared the effect of reduced (RT) and conventional tillage (CT) on the biomass, growth rate and residues of the major microbial decomposer groups fungi and bacteria. Soil samples were collected at two depths (0-5 cm and 5-20 cm) from plots in an Irish winter wheat field that were exposed to either conventional or shallow non-inversion tillage for 7 growing seasons. Total soil fungal and bacterial biomasses were estimated using epifluorescence microscopy. To separate between biomass of saprophytic fungi and arbuscular mycorrhizae, samples were analyzed for ergosterol and phospholipid fatty acid (PLFA) biomarkers. Growth rates of saprophytic fungi were determined by [14C]acetate-in-ergosterol incorporation, whereas bacterial growth rates were determined by the incorporation of 3H-leucine in bacterial proteins. Finally, soil contents of fungal and bacterial residues were estimated by quantifying microbial derived amino sugars. Reduced tillage increased the total biomass of both bacteria and fungi in the 0-5 cm soil layer to a similar extent. Both ergosterol and PLFA analyses indicated that RT increased biomass of saprophytic fungi in the 0-5 cm soil layer. In contrast, RT increased the biomass of arbuscular mycorrhizae as well as its contribution to the total fungal biomass across the whole plough layer. Growth rates of both saprotrophic fungi and bacteria on the other hand were not affected by soil tillage, possibly indicating a decreased turnover rate of soil microbial biomass under RT. Moreover, RT did not affect the proportion of microbial residues that were derived from fungi. In summary, our results suggest that RT can promote soil C storage without increasing the role of saprophytic fungi in SOM dynamics relative to that of bacteria.  相似文献   

8.
CQESTR simulates the effect of management practices on soil organic carbon (SOC) stocks. The beta version of the model had been calibrated and validated for temperate regions. Our objective was to evaluate the CQESTR model performance for simulating carbon dynamics as affected by tillage practices in two tropical soils (Ultisol and Oxisol) in southeastern and northeastern Brazil. In the southeast (20.75 S 42.81 W), tillage systems consisted of no tillage (NT); reduced tillage (RT) (one disc plow and one harrow leveling [RT1] or one heavy disc harrow and one harrow leveling [RT2]); and conventional tillage (CT) (two heavy disc harrows followed by one disc plow and two harrow levelings). In the northeast (7.55 S 45.23 W), tillage systems consisted of NT, RT (one chisel plow and one harrow leveling), and CT (one disk plow, two heavy disk harrowings, and two harrow levelings). CQESTR underestimated SOC at both sites, especially under NT systems, indicating that adjustments (e.g., the inclusion of clay mineralogy factor) are necessary for more accurate simulation of SOC in the tropics. In spite of this, measured and simulated values of SOC in the 0–20 cm depth were well correlated (southeast, R2 = 0.94, p < 0.01; northeast, R2 = 0.88, p < 0.05). With respect to initial conditions (native forest), CQESTR estimated a decrease in SOC stocks in plowed and no-tillage systems. In 2006, in the southeast, SOC stocks were 28.8, 23.7, 23.2, and 22.0 Mg ha?1 under NT, RT2, RT1, and CT, respectively; in the northeast, stocks were 36.0, 33.8, and 32.5 Mg ha?1 under NT, RT, and CT, respectively. The model estimated carbon emissions varying from 0.36 (NT) to 1.05 Mg ha?1 year?1 (CT) in the southeast and from 0.30 (NT) to 0.82 (CT) Mg ha?1 year?1 in the northeast. CQESTR prediction of SOC dynamics illustrates acceptable performance for the two tropical soils of Brazil.  相似文献   

9.
Long‐term conservation tillage can modify vertical distribution of nutrients in soil profiles and alter nutrient availability and yields of crops. This study aimed to evaluate the effect of 14 yr of conventional (CT) and reduced tillage (RT) on soil macronutrient availability (0–5, 5–15, 15–30 cm) and uptake by Italian ryegrass and maize in a forage rotation under a temperate–humid climate (NW Spain). Soil contents of total C, plant available Ca, Mg, Na, K and P and their uptake by plants were evaluated over 2 yr. The three‐way ANOVA showed that tillage and its interactions with soil depth and sampling date have little influence on soil C and macronutrients contents (<13% of variance explained). In the topsoil layer, all studied variables (except K) increased in RT compared with CT, but they remained unchanged (C, Ca and Na) or decreased (Mg, K and P) in deeper layers. Crop yields were greater with RT than CT during the year with soil‐water‐deficit periods, while limited tillage effect was found in the other year. Whereas no differences were obtained for maize, nutrient concentration (Mg, Na, K and P) in ryegrass increased under RT. Conservation tillage improved surface soil fertility, maize yield and ryegrass nutrient content.  相似文献   

10.
Conservation tillage practices are widely used to protect against soil erosion and soil C losses, whereas winter cover crops are used mainly to protect against N losses during autumn and winter. For the greenhouse gas balance of a cropping system the effect of reduced tillage and cover crops on N2O emissions may be more important than the effect on soil C. This study monitored emissions of N2O between September 2008 and May 2009 in three tillage treatments, i.e., conventional tillage (CT), reduced tillage (RT) and direct drilling (DD), all with (+CC) or without (−CC) fodder radish as a winter cover crop. Cover crop growth, soil mineral N dynamics, and other soil characteristics were recorded. Furthermore, soil concentrations of N2O were determined eight times during the monitoring period using permanently installed needles. There was little evidence for effects of the cover crop on soil mineral N. Following spring tillage and slurry application soil mineral N was dominated by the input from slurry. Nitrous oxide emissions during autumn, winter and early spring remained low, although higher emissions from +CC treatments were indicated after freezing events. Following spring tillage and slurry application by direct injection N2O emissions were stimulated in all tillage treatments, reaching 250-400 μg N m−2 h−1 except in the CT + CC treatment, where emissions peaked at 900 μg N m−2 h−1. Accumulated emissions ranged from 1.6 to 3.9 kg N2O ha−1. A strong positive interaction between cover crop and tillage was observed. Soil concentration profiles of N2O showed a significant accumulation of N2O in CT relative to RT and DD treatments after spring tillage and slurry application, and a positive interaction between slurry and cover crop residues. A comparison in early May of N2O emissions with flux estimates based on soil concentration profiles indicated that much of the N2O emitted was produced near the soil surface.  相似文献   

11.
To test the assumption that changes to earthworm communities subsequently affect macroporosity and then soil water infiltration, we carried out a 3 year study of the earthworm communities in a experimental site having six experimental treatments: 2 tillage management systems and 3 cropping systems. The tillage management was either conventional (CT; annual mouldboard ploughing up to −30 cm depth) or reduced (RT; rotary harrow up to −7 cm depth). The 3 cropping systems were established to obtain a wide range of soil compaction intensities depending on the crop rotations and the rules of decision making. In the spring of 2005, the impact of these different treatments on earthworm induced macroporosity and water infiltration was studied. During the 3 years of observation, tillage management had a significant effect on bulk density (1.27 in CT and 1.49 mg m−3 in RT) whereas cropping system had a significant effect on bulk density in RT plots only. Tillage management did not significantly affect earthworm abundance but significantly influenced the ecological type of earthworms found in each plot (anecic were more abundant in RT). On the contrary cropping system did have a significant negative effect on earthworm abundance (104 and 129 ind. m−2 in the less and most compacted plots, respectively). Significantly higher numbers of Aporrectodea giardi and lower numbers of Aporrectodea caliginosa were found in the most compacted plots. CT affected all classes of porosity leading to a significant decrease in the number of pores and their continuity. Only larger pores, with a diameter superior to 6 mm, however, were adversely affected by soil compaction. Tillage management did not change water infiltration, probably because the increase in macroporosity in RT plots was offset by a significant increase in soil bulk density. However, cropping system had a significant effect on water infiltration (119 vs 79 mm h−1 in the less and most compacted plots, respectively). In RT plots, a significant correlation was observed between larger macropores (diameter > 6 mm) and water infiltration illustrating the potential positive effect of earthworms in these plots.  相似文献   

12.
Measuring penetration resistance (PR) is a common technique for evaluating the effects of field management on soils. This study focuses on the effects of long‐term tillage on the spatial distribution of PR, comparing reduced and conventional tillage (CT) practices. The study site, located in Lower Saxony (Germany), has been subdivided into three plots, with one plot having been managed conventionally, whereas reduced tillage (RT) practices have been applied to the other two. In total, PR was measured at 63 randomly selected points. The PR data were stepwise interpolated using kriging with external drift. Core samples have been taken at 20 additional sites. The results show significant differences in PR between the different tillage practices. Within the conventionally managed plot, PR ranges to 2.3 MPa less in the topsoil than under RT. However, measured saturated hydraulic conductivity and amount of biopores at the depth of 30–35 cm are significantly greater under RT, indicating improved soil properties under RT. Comparisons between the headlands (HL) and the inner field point out the effects of intense field traffic in the HL, where maximum PR values of about 6 MPa have been measured. The spatial prediction of PR values show that long‐term effects of different tillage practices result in clearly structured patterns between CT and RT and the HL. Combining extensive PR measurements and point measurements of additional soil properties supports an adequate interpretation of PR data and can lead to fieldwide derivation of soil functions influenced by field management.  相似文献   

13.
Detailed information on the profile distributions of agronomically important soil properties in the planting season can be used as criteria to select the best soil tillage practices. Soil cores (0–60 cm) were collected in May, 2012 (before soybean planting), from soil transects on a 30‐yr tillage experiment, including no‐tillage (NT), ridge tillage (RT) and mouldboard plough (MP) on a Brookston clay loam soil (mesic Typic Argiaquoll). Soil cores were taken every 19 cm across three corn rows and these were used to investigate the lateral and vertical profile characteristics of soil organic carbon (SOC), pH, electrical conductivity (EC), soil volumetric water content (SWC), bulk density (BD), and penetration resistance (PR). Compared to NT and MP, the RT system resulted in greater spatial heterogeneity of soil properties across the transect. Average SOC concentrations in the top 10 cm layer were significantly greater in RT than in NT and MP (= 0.05). NT soil contained between 0.8 and 2.5% (vol/vol) more water in the top 0–30 cm than RT and MP, respectively. MP soil had lower PR and BD in the plough layer compared to NT and RT soils, with both soil properties increasing sharply with depth in MP. The RT had lower PR relative to NT in the upper 35 cm of soil on the crop rows. Overall, RT was a superior conservation tillage option than NT in this clay loam soil; however, MP had the most favourable soil conditions in upper soil layers for early crop development across all treatments.  相似文献   

14.
Conventional tillage creates soil physical conditions that may restrict earthworm movement and accelerate crop residue decomposition, thus reducing the food supply for earthworms. These negative impacts may be alleviated by retaining crop residues in agroecosystems. The objective of this study was to determine the effects of various tillage and crop residue management practices on earthworm populations in the field and earthworm growth under controlled conditions. Population assessments were conducted at two long-term (15+ years) experimental sites in Québec, Canada with three tillage systems: moldboard plow/disk harrow (CT), chisel plow or disk harrow (RT) and no tillage (NT), as well as two levels of crop residue inputs (high and low). Earthworm growth was assessed in intact soil cores from both sites. In the field, earthworm populations and biomass were greater with long-term NT than CT and RT practices, but not affected by crop residue management. Laboratory growth rates of Aporrectodea turgida (Eisen) in intact soil cores were affected by tillage and residue inputs, and were positively correlated with the soil organic C pool, suggesting that tillage and residue management practices that increase the soil organic C pool provide more organic substrates for earthworm growth. The highest earthworm growth rates were in soils from RT plots with high residue input, which differed from the response of earthworm populations to tillage and residue management treatments in the field. Our results suggest that tillage-induced disturbance probably has a greater impact than food availability on earthworm populations in cool, humid agroecosystems.  相似文献   

15.
The objective was to evaluate the effect of different agricultural managements on soil organic C (SOC) storage and crop yields in the North China Plain (NCP). The study was conducted at five experimental stations. Different agricultural managements were designed, including optimal (OPT) and conventional (CON) irrigation and fertilization treatments, different amounts of fertilization application and residue‐return treatments, and different tillage practices. Compared to the CON treatment, SOC storage in the 1 m soil profile under the OPT treatment increased by 2 t ha–1, 8 t ha–1, and 4 t ha–1 at Quzhou, Wuqiao, and Dongbeiwang sites, respectively. The annual increasing rate of SOC storages in the topsoil (0–30 cm) under the OPT treatments at Wuqiao (0.88 t ha–1 y–1), Quzhou (0.93 t ha–1 y–1), and Dongbeiwang (1.86 t ha–1 y–1) were higher than those in the CON treatments at Wuqiao (0.15 t ha–1 y–1), Quzhou (0.54 t ha–1 y–1), and Dongbeiwang (0.28 t ha–1 y–1), but the difference of grain yields between the two treatments was not significant. The SOC storage in 1 m soil profile in the no‐tillage treatment with standing residue return (NT1) at Luancheng increased by 5 t ha–1 and 7 t ha–1 compared with rotary‐tillage (RT) and conventional‐tillage (CT) treatments, respectively, but the crop yield under no‐tillage treatment was the lowest. While at Quzhou site, it increased by 3 t ha–1 in the top 40 cm soil under the NT treatment compared to the CT treatment. The annual increasing rate of SOC storage in the top 30 cm under NT treatment was also the highest (1.08 t ha–1 y–1 at Luancheng, 1.86 t ha–1 y–1 at Quzhou), compared to the other tillage treatments. At Henghsui site, the combination of the highest fertilization application and highest residue‐return treatments got the highest SOC storage and the highest crop yields. We concluded that the agricultural management practices, such as optimal irrigation and fertilization treatment, the higher fertilization, residue return and RT, has significant impact on the SOC storage and agricultural sustainability in the NCP.  相似文献   

16.
Tillage practices and straw management can affect soil microbial activities with consequences for soil organic carbon (C) dynamics. Microorganisms metabolize soil organic C and in doing so gain energy and building blocks for biosynthesis, and release CO2 to the atmosphere. Insight into the response of microbial metabolic processes and C use efficiency (CUE; microbial C produced per substrate C utilized) to management practices may therefore help to predict long term changes in soil C stocks. In this study, we assessed the effects of reduced (RT) and conventional tillage (CT) on the microbial central C metabolic network, using soil samples from a 12-year-old field experiment in an Irish winter wheat cropping system. Straw was removed from half of the RT and CT plots after harvest or incorporated into the soil in the other half, resulting in four treatment combinations. We added 1-13C and 2,3-13C pyruvate and 1-13C and U-13C glucose as metabolic tracer isotopomers to composite soil samples taken at two depths (0–15 cm and 15–30 cm) from each of the treatments and used the rate of position-specific respired 13CO2 to parameterize a metabolic model. Model outcomes were then used to calculate CUE of the microbial community. Whereas the composite samples differed in CUE, the changes were small, with values ranging between 0.757 and 0.783 across treatments and soil depth. Increases in CUE were associated with a reduced tricarboxylic acid cycle and reductive pentose phosphate pathway activity and increased consumption of metabolic intermediates for biosynthesis. Our results suggest that RT and straw incorporation do not substantially affect CUE.  相似文献   

17.
In the scope of the increasing concern for soil conservation, reduced tillage (RT) agriculture is growing more important in today's agriculture in Western Europe. However, crop rotations often include beets and potatoes, crops that are generally assumed to be less suitable under RT agriculture because they result in a high disturbance of the soil at the formation of the ridges and at harvest. Therefore, the short- and long-term effect of RT agriculture on bulk density (BD), water retention curve (WRC), aggregate stability and field-saturated hydraulic conductivity of silt loam soils with crop rotations including root crops was evaluated. Ten fields at seven locations representing the important RT types, applied for a different number of years, and eight fields under conventional tillage (CT) agriculture with similar soil type and crop rotation were selected. At each location, BD of the 5–10 cm layer was mostly lower in the RT fields (1.42 ± 0.05 Mg m−3 [average with standard deviation]) compared to the CT fields (1.44 ± 0.09 Mg m−3) and the water content at saturation was mostly higher (0.394 ± 0.027 m3 m−3 and 0.382 ± 0.021 m3 m−3 for RT and CT fields, respectively). No differences in BD (1.53 ± 0.03 Mg m−3) or WRC could be found in the 25–30 cm soil layer when comparing the RT with the CT fields. The stability index of the 0–10 cm layer measured by ‘dry and wet sieving’ [De Leenheer, L., De Boodt, M., 1959. Determination of aggregate stability by the change in mean weight diameter. Mededelingen van landbouwhogeschool en de opzoekingstations van de staat te Gent 24, 290–300] was 40% higher under RT than CT agriculture. The mean weight diameter (MWD) [Le Bissonnais, Y., 1996. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. Eur. J. Soil Sci. 47, 425–437] was significantly higher even after short-term RT compared to CT agriculture. The MWD after a heavy shower, a slow wetting of the soil and stirring the soil after prewetting was 19%, 38% and 34% higher for RT than CT fields, respectively. The field-saturated hydraulic conductivity tended to be higher under RT compared to the CT fields. Despite the high disturbance of the soil every 2 or 3 years of crop rotations including sugar beets or potatoes, RT agriculture had a positive effect on the investigated physical soil properties.  相似文献   

18.
Integrated evaluation of soil physical properties using the least limiting water range (LLWR) approach may allow a better knowledge of soil water availability. We determined the LLWR for four tillage practices consisted of conventional tillage (CT), reduced tillage (RT), no-tillage (NT) and fallow no-tillage (NTf). In addition, LLWR was determined for abandoned soils (i.e. control), compacted soils, ploughed compacted soils and abandoned soils with super absorbent polymers (SAPs) application. Soil water retention, penetration resistance (PR), air-filled porosity and bulk density were determined for the 0–5 and 0–25-cm depths. Mean LLWR (0.07–0.08 cm3 cm?3) was lower in compacted soils than the soils under CT, NT, NTf, RT, tilled, abandoned and SAP practices but it was not different among tillage practices. The values of LLWR were 0.12 cm3 cm?3 for NT and CT. LLWR for tilled plots (0.12 cm3 cm?3) became greater than compacted soils by 1.3 times. Analysis of the lower and upper limits of the LLWR further indicated that PR was the only limiting factor for soil water content, but aeration was not a limiting factor. The LLWR was more dependent on soil water content at permanent wilting point and at PR.  相似文献   

19.
《Soil & Tillage Research》2007,92(1-2):199-206
Long-term tillage and nitrogen (N) management practices can have a profound impact on soil properties and nutrient availability. A great deal of research evaluating tillage and N applications on soil chemical properties has been conducted with continuous corn (Zea Mays L.) throughout the Midwest, but not on continuous grain sorghum (Sorghum bicolor (L.) Moench). The objective of this experiment was to examine the long-term effects of tillage and nitrogen applications on soil physical and chemical properties at different depths after 23 years of continuous sorghum under no-till (NT) and conventional till (CT) (fall chisel-field cultivation prior to planting) systems. Ammonium nitrate (AN), urea, and a slow release form of urea were surface broadcast at rates of 34, 67, and 135 kg N ha−1. Soil samples were taken to a depth of 15 cm and separated into 2.5 cm increments. As a result of lime applied to the soil surface, soil pH in the NT and CT plots decreased with depth, ranging from 6.9 to 5.7 in the NT plots and from 6.5 to 5.9 in the CT plots. Bray-1 extractable P and NH4OAc extractable K was 20 and 49 mg kg−1 higher, respectively, in the surface 2.5 cm of NT compared to CT. Extractable Ca was not greatly influenced by tillage but extractable Mg was higher for CT compared to NT below 2.5 cm. Organic carbon (OC) under NT was significantly higher in the surface 7.5 cm of soil compared to CT. Averaged across N rates, NT had 2.7 Mg ha−1 more C than CT in the surface 7.5 cm of soil. Bulk density (Δb) of the CT was lower at 1.07 g cm−3 while Δb of NT plots was 1.13 g cm−3. This study demonstrated the effect tillage has on the distribution and concentration of certain chemical soil properties.  相似文献   

20.
少免耕土壤结构与导水能力的季节变化及其水保效果   总被引:14,自引:0,他引:14  
通过对黑土坡耕地免耕、少耕与传统耕作土壤物理性状全生育期观测,比较研究土壤结构和导水性状季节变化差异及其与水土流失的关系。结果表明,表层0~20 cm土壤,免耕土壤容重全生育期维持在1.20~1.30 g cm-3,变化小,大于0.25 mm的水稳性团聚体含量(WR0.25)和平均重量直径(MWD)高于传统耕作,初始和稳定入渗速率均高于少耕和传统耕作,土壤含水量分别较少耕和传统耕作高4.7和4.4个百分点,较传统耕作分别减少地表径流和土壤流失量86%和100%;少耕除夏季各项性状均介于免耕和传统耕作之间,夏季垄沟深松后,垄沟土壤容重显著降低,较免耕和传统耕作降低0.15 g cm-3以上,提高土壤初始入渗速率30%以上,较传统耕作减少水和土壤流失量20%和40%。传统耕作土壤容重,垄台由播种时的0.91 g cm-3增加至收获时的1.23 g cm-3,垄沟一直维持在1.30 g cm-3左右,WR0.25、MWD、土壤稳定入渗速率、含水量均较低,全生育期10%的雨水流失,土壤流失量615 t km-2a-1。免耕土壤结构稳定,蓄水保水最佳,为效果显著的水土保持耕作措施,少耕也有一定的保水保土作用;免耕和少耕均能够改善土壤物理性状。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号