首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
芽眼检测是马铃薯种薯智能切块首先要解决的问题,为实现种薯芽眼精准高效检测,提出了一种基于改进YOLO v5s的马铃薯种薯芽眼检测方法。首先通过加入CBAM注意力机制,加强对马铃薯种薯芽眼图像的特征学习和特征提取,同时弱化与芽眼相似的马铃薯种薯表面背景对检测结果的影响。其次引入加权双向特征金字塔BiFPN增加经骨干网络提取的种薯芽眼原始信息,为不同尺度特征图赋予不同权重,使得多尺度特征融合更加合理。最后替换为改进的高效解耦头Decoupled Head区分回归和分类,加快模型收敛速度,进一步提升马铃薯种薯芽眼检测性能。试验结果表明,改进YOLO v5s模型准确率、召回率和平均精度均值分别为93.3%、93.4%和95.2%;相比原始YOLO v5s模型,平均精度均值提高3.2个百分点,准确率、召回率分别提高0.9、1.7个百分点;不同模型对比分析表明,改进YOLO v5s模型与Faster R-CNN、YOLO v3、YOLO v6、YOLOX和YOLO v7等模型相比有着较大优势,平均精度均值分别提高8.4、3.1、9.0、12.9、4.4个百分点。在种薯自动切块芽眼检测试验中,改进Y...  相似文献   

2.
为了实现复杂环境下农业机器人对番茄果实的快速准确识别,提出了一种基于注意力机制与改进YOLO v5s的温室番茄目标快速检测方法。根据YOLO v5s模型小、速度快等特点,在骨干网络中加入卷积注意力模块(CBAM),通过串联空间注意力模块和通道注意力模块,对绿色番茄目标特征给予更多的关注,提高识别精度,解决绿色番茄在相似颜色背景中难识别问题;通过将CIoU Loss替换GIoU Loss作为算法的损失函数,在提高边界框回归速率的同时提高果实目标定位精度。试验结果表明,CB-YOLO网络模型对温室环境下红色番茄检测精度、绿色番茄检测精度、平均精度均值分别为99.88%、99.18%和99.53%,果实检测精度和平均精度均值高于Faster R-CNN模型、YOLO v4-tiny模型和YOLO v5模型。将CB-YOLO模型部署到安卓手机端,通过不同型号手机测试,验证了模型在移动终端设备上运行的稳定性,可为设施环境下基于移动边缘计算的机器人目标识别及采收作业提供技术支持。  相似文献   

3.
为准确高效地实现无接触式奶山羊个体识别,以圈养环境下奶山羊面部图像为研究对象,提出一种基于改进YOLO v5s的奶山羊个体识别方法。首先,从网络上随机采集350幅羊脸图像构成羊脸面部检测数据集,使用迁移学习思想预训练YOLO v5s模型,使其能够检测羊脸位置。其次,构建包含31头奶山羊3 844幅不同生长期的面部图像数据集,基于预训练的YOLO v5s,在特征提取层中引入SimAM注意力模块,增强模型的学习能力,并在特征融合层引入CARAFE上采样模块以更好地恢复面部细节,提升模型对奶山羊个体面部的识别精度。实验结果表明,改进YOLO v5s模型平均精度均值为97.41%,比Faster R-CNN、SSD、YOLO v4模型分别提高6.33、8.22、15.95个百分点,比YOLO v5s模型高2.21个百分点,改进模型检测速度为56.00 f/s,模型内存占用量为14.45 MB。本文方法能够准确识别具有相似面部特征的奶山羊个体,为智慧养殖中的家畜个体识别提供了一种方法支持。  相似文献   

4.
肉牛目标检测和数量统计是精细化、自动化、智能化肉牛养殖要解决的关键问题,受肉牛个体颜色及纹理相近和遮挡等因素的影响,现有肉牛目标检测方法实用性较差。本研究基于YOLO v5s网络与通道信息注意力模块(ECABasicBlock),提出了一种融合通道信息的改进YOLO v5s网络(ECA-YOLO v5s),在YOLO v5s模型的骨干特征提取网络部分添加了3层通道信息注意力模块。ECA-YOLO v5s网络实现了重度遮挡环境下多目标肉牛的准确识别。对养殖场监控视频分帧得到的肉牛图像采用了一种基于结构相似性的冗余图像剔除方法以保证数据集质量。数据集制作完成后经过300次迭代训练,得到模型的精确率为89.8%,召回率为76.9%,全类平均精度均值为85.3%,检测速度为76.9 f/s,模型内存占用量为24 MB。与YOLO v5s模型相比,ECA-YOLO v5s的精确率、召回率和平均精度均值分别比YOLO v5s高1.0、0.8、2.2个百分点。为了验证不同注意力机制应用于YOLO v5s的性能差异,本研究对比了CBAM(Convolutional block attention mo...  相似文献   

5.
鸡群计数是鸡场资产评估中一项非常重要的工作。目前鸡场采用的人工计数方法,存在效率低下且计数准确度不稳定的问题。针对此问题,本文提出了一种基于改进YOLO v5s的蛋鸡个体识别与计数的方法。该方法为了消除真实复杂环境下产蛋箱、食槽等设施对蛋鸡个体识别带来的干扰,在YOLO v5s模型的Neck部分引入了SimAM注意力机制;为了扩大模型感受野,解决蛋鸡个体较小、识别困难的问题,将YOLO v5s模型的SPPF(空间金字塔池化模块)改为了SPPCSPC模块;为了尽可能多地提取蛋鸡有效特征,通过在YOLO v5s的Neck结构添加自适应特征融合模块ASFF,将不同尺度的蛋鸡成像特征信息进行融合的方法,进一步提升了模型的检测精度。在此基础上,通过调用模型检测接口,在接口内部添加计数函数、统计目标数量的方法,实现了蛋鸡个体的计数和鸡舍饲养密度的计算。将改进后的模型通过PyQt工具包进行封装、打包,开发了蛋鸡个体识别与自动计数系统。实验结果表明,改进的YOLO v5s模型的精准率、召回率、平均精度均值分别为89.91%、79.24%、87.53%,较YOLO v5s模型分别提高2.37、2.55、...  相似文献   

6.
玉米苗期杂草的实时检测和精准识别是实现精准除草和智能农业的基础和前提。针对保护性耕作模式地表环境复杂、杂草易受地表秸秆残茬覆盖影响、现有算法检测速度不理想等问题,提出一种适用于Jetson TX2移动端部署的秸秆覆盖农田杂草检测方法。运用深度学习技术对玉米苗期杂草图像的高层语义信息进行提取与分析,构建玉米苗期杂草检测模型。在YOLO v5s模型的基础上,缩小网络模型宽度对其进行轻量化改进。为平衡模型检测速度和检测精度,采用TensorRT推理加速框架解析网络模型,融合推理网络中的维度张量,实现网络结构的重构与优化,减少模型运行时的算力需求。将模型迁移部署至Jetson TX2移动端平台,并对各模型进行训练测试。检测结果表明,轻量化改进YOLO v5ss、YOLO v5sm、YOLO v5sl模型的精确率分别为85.7%、94%、95.3%,检测速度分别为80、79.36、81.97 f/s, YOLO v5sl模型综合表现最佳。在Jetson TX2嵌入式端推理加速后,YOLO v5sl模型的检测精确率为93.6%,检测速度为28.33 f/s,比模型加速前提速77.8%,能够在保证检...  相似文献   

7.
针对草原蝗虫图像具有样本收集困难、目标较小和目标多尺度等技术难点,基于YOLO v5网络,提出了一种复杂背景下多尺度蝗虫目标检测识别模型YOLO v5-CB,用于宁夏草原常见蝗虫检测。改进模型YOLO v5-CB针对蝗虫原始样本量较少的问题,使用CycleGAN网络扩充蝗虫数据集;针对蝗虫图像中的小目标特征,使用ConvNeXt来保留小目标蝗虫的特征;为有效解决蝗虫图像尺度特征变换较大问题,在颈部特征融合使用Bi-FPN结构,来增强网络对多尺度目标的特征融合能力。实验结果表明,在对宁夏草原常见亚洲小车蝗、短星翅蝗、中华剑角蝗进行检测识别时,YOLO v5-CB的识别精度可达98.6%,平均精度均值达到96.8%,F1值为98%,与Faster R-CNN、YOLO v3、YOLO v4、YOLO v5模型相比,识别精度均有提高。将改进的蝗虫检测识别模型YOLO v5-CB与研发的分布式可扩展生态环境数据采集系统结合,构建了基于4G网络的Web端蝗虫识别平台,可对观测点的蝗虫图像进行长期实时检测。目前,该平台已在宁夏回族自治区盐池县大水坑、黄记场、麻黄山等地的草原生态环境数据获取中得到了应用,可对包括宁夏草原蝗虫信息在内的多种生态环境信息进行长期检测和跟踪,为虫情防治等提供决策依据。  相似文献   

8.
针对鸡只个体较小、个体间存在遮挡,对蛋鸡日常行为识别造成干扰的问题,提出了一种基于SEEC-YOLO v5s的蛋鸡日常行为识别方法。通过在YOLO v5s模型输出部分添加SEAM注意力模块、在特征融合部分引入显式视觉中心模块(EVCBlock),扩大了模型的感受野,提高了模型对小个体遮挡情况下的目标识别能力,提升了模型对蛋鸡站立、采食、饮水、探索、啄羽和梳羽6种行为的识别精度。提出了一种基于视频帧数与视频帧率比值计算蛋鸡日常行为持续时间的统计方法,并对蛋鸡群体一天之中不同时间段及全天各行为变化规律进行了分析。将改进后的模型进行封装、打包,设计了蛋鸡日常行为智能识别与统计系统。试验结果表明,SEEC-YOLO v5s模型对6种行为识别的平均精度均值为84.65%,比YOLO v5s模型高2.34个百分点,对比Faster R-CNN、YOLO X-s、YOLO v4-tiny和YOLO v7-tiny模型,平均精度均值分别提高4.30、3.06、7.11、2.99个百分点。本文方法对蛋鸡的日常行为监测及健康状况分析提供了有效的支持,为智慧养殖提供了借鉴。  相似文献   

9.
为实现香梨自动化采摘,本文以YOLO v7-S为基础模型,针对果园中香梨果实、果叶和枝干之间相互遮挡,不易精准检测的问题,设计了一种轻量化香梨目标检测M-YOLO v7-SCSN+F模型。该模型采用MobileNetv3作为骨干特征提取网络,引入协同注意力机制(Coordinate attention,CA)模块,将YOLO v7-S中的损失函数CIoU替换为SIoU,并联合Normalized Wasserstein distance (NWD)小目标检测机制,以增强网络特征表达能力和检测精度。基于傅里叶变换(Fourier transform,FT)的数据增强方法,通过分析图像频域信息和重建图像振幅分量生成新的图像数据,从而提高模型泛化能力。实验结果表明,改进的M-YOLO v7-SCSN+F模型在验证集上的平均精度均值(mAP)、精确率和召回率分别达到97.23%、97.63%和93.66%,检测速度为69.39f/s,与Faster R-CNN、SSD、YOLO v3、YOLO v4、YOLO v5s、YOLO v7-S、YOLO v8n、RT-DETR-R50模型在验证集上进行性能比较,其平均精度均值(mAP)分别提高14.50、26.58、3.88、2.40、1.58、0.16、0.07、0.86个百分点。此外,改进的M-YOLO v7-SCSN+F模型内存占用量与YOLO v8n和RT-DETR-R50检测模型对比减少16.47、13.30MB。本文提出的检测模型对成熟期香梨具有很好的目标检测效果,为背景颜色相近小目标检测提供参考,可为香梨自动化采摘提供有效的技术支持。  相似文献   

10.
蛋鸭行为模式是判断笼养鸭养殖过程中健康状况及福利状态的重要指标,为了通过机器视觉实现识别蛋鸭多行为模式,提出了一种基于改进YOLO v4 (You only look once)的目标检测算法,不同的行为模式为蛋鸭的养殖管理方案提供依据。本文算法通过更换主干特征提取网络MobileNetV2,利用深度可分离卷积模块,在提升检测精度的同时降低模型参数量,有效提升检测速度。在预测输出部分引入无参数的注意力机制SimAM模块,进一步提升模型检测精度。通过使用本文算法对笼养蛋鸭行为验证集进行了检测,优化后模型平均精度均值达到96.97%,图像处理帧率为49.28 f/s,相比于原始网络模型,平均精度均值及处理速度分别提升5.03%和88.24%。与常用目标检测网络进行效果对比,改进YOLO v4网络相较于Faster R-CNN、YOLO v5、YOLOX的检测平均精度均值分别提升12.07%、30.6%及2.43%。将本文提出的改进YOLO v4网络进行试验研究,试验结果表明本文算法可以准确地对不同时段的笼养蛋鸭行为进行记录,根据蛋鸭表现出的不同行为模式来帮助识别蛋鸭的异常情况,如部分行为发...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号