首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sorghum shoot fly, Atherigona soccata, is one of the important pests of postrainy season sorghums. Of the 90 sorghum genotypes evaluated for resistance to this pest, RHRB 12, ICSV 713, 25026, 93046 and 25027, IS 33844‐5, Giddi Maldandi and RVRT 3 exhibited resistance in postrainy season, while ICSB 463, Phule Anuradha, RHRB 19, Parbhani Moti, ICSV 705, PS 35805, IS 5480, 5622, 17726, 18368 and 34722, RVRT 1, ICSR 93031 and Dagidi Solapur showed resistance in rainy season, suggesting season‐specific expression of resistance to A. soccata. ICSB 461, ICSB 463, Phule Yasodha, M 35‐1, ICSV 700, 711, 25010, 25019 and 93089, IS 18662, Phule Vasudha, IS 18551 and 33844‐5 and Barsizoot had fewer deadhearts than plants with eggs across seasons, suggesting antibiosis as one of the resistance mechanism. Five genotypes exhibited resistance with high grain yield across seasons. Correlation, path and stepwise regression analyses indicated that leaf glossiness, seedling vigour, trichome density, oviposition and leaf sheath pigmentation were associated with the expression of resistance/susceptibility to shoot fly, and these can be used as marker traits to select and develop shoot fly‐resistant sorghums.  相似文献   

2.
Sorghum shoot fly, Atherigona soccata is an important pest of sorghum during the seedling stage, which influences both fodder and grain yield. To understand the nature of inheritance of shoot fly resistance in sorghum, we performed generation mean analysis using two crosses IS 18551 × Swarna and M 35-1 × ICSV 700 during the 2013–2014 cropping seasons. The F1, F2, BC1 and BC2 progenies, along with the parental lines were evaluated for agronomic and morphological traits associated with resistance/susceptibility to sorghum shoot fly, A. soccata. The cross IS 18551 × Swarna exhibited significant differences between the parents for shoot fly deadhearts (%) in the postrainy season. The progenies of this cross exhibited lower shoot fly damage, suggesting that at least one of the parents should have genes for resistance to develop shoot fly-resistant hybrids. Leaf glossiness, leafsheath pigmentation and plant vigor score during the seedling stage exhibited non-allelic gene interactions with dominant gene action, whereas 100 seed weight showed both additive and dominant gene interactions. Presence of awns showed recessive nature of the awned gene. Generation mean analysis suggested that both additive and dominance gene effects were important for most of the traits evaluated in this study, but dominance had a more pronounced effect.  相似文献   

3.
In recent years, cytoplasmic male‐sterility (CMS) has been recognized as a potential danger to the stability of crop production and resistance to insect pests in sorghum. Therefore, the influence of CMS on the expression of resistance to sorghum shoot fly was studied at the ICRISAT, Patancheru, India using the interlard fishmeal technique. The experimental material consisted of 12 restorer, 12 CMS and the maintainer lines, and their 144 F1 hybrids. Shoot fly‐resistant CMS lines were preferred for oviposition and had more damage because of deadhearts than the corresponding maintainer lines. The hybrids based on shoot fly‐resistant CMS × resistant restorer lines were significantly less preferred for oviposition than the hybrids based on other cross combinations and exhibited the highest frequency (69.1%) of shoot fly‐resistant hybrids. The hybrids based on glossy and trichomed parents had the highest frequency (>90%) of hybrids with glossy and trichome traits, emphasizing the need to transfer these traits into both parents for better expression in the F1 hybrids. The expression pattern of trichome density, leaf glossiness and leaf sheath pigmentation in the F1 hybrids and their parents suggested that the interactions between cytoplasmic and nuclear genes possibly control the expression of traits associated with resistance to sorghum shoot fly in the F1 hybrids.  相似文献   

4.
Summary The shoot fly, Atherigona soccata is an important pest of sorghum, and host plant resistance is one of the most effective components for managing this pest. Most of the hybrids grown in India based on milo cytoplasm (A1 cytoplasm) are highly susceptible to shoot fly. Therefore, the present studies were undertaken to evaluate different male-sterile cytoplasms (CMS) for their relative susceptibility to sorghum shoot fly. Oviposition and deadheart formation were significantly lower on the maintainer lines as compared to the corresponding male-sterile lines. Among the cytoplasms tested, A4M cytoplasm showed antixenosis for oviposition and suffered lower deadheart formation than the other cytoplasms tested. The A4G1 and A4M cytoplasms suffered lower deadhearts in tillers than the other cytoplasms. Recovery following shoot fly damage in A4M, A3, and A2 cytoplasms was better than in the other cytoplasms tested. The larval and pupal periods were longer and male and female pupal weights lower in A4M and A4VzM CMS backgrounds compared to the other CMS systems. Fecundity and antibiosis indices on CMS lines were lower than on the B-lines. The A4M cytoplasm was found to be relatively resistant to sorghum shoot fly, and can be exploited for developing shoot fly-resistant hybrids for sustainable crop production in future.  相似文献   

5.
The stability of biochemical constituents and their association with resistance to shoot fly (Atherigona soccata Rondani) was evaluated for reducing sugars, total sugars, nitrogen, phosphorus, potassium, chlorophyll and moisture contents at weekly intervals of seedling growth (7, 14, 21 and 28 days after emergence) in 14 selected grain sorghum genotypes [five resistant accessions (IS nos. 1054, 2146, 2312, 3962 and 4664); three susceptible checks (CK 60B, CSV 1 and CSH 1); one national variety (CSV 8R); and five post-rainy advanced generation (F6) breeding lines (148 × CS 3541, SPV 103 × IS 4664, CSV 8R × SPV 104, SPV 104 × M 35-1, and PD 3-1-11 derivative)]. The genotypes IS 2312 and IS 4664 showed stability of antixenosis for oviposition during post-rainy season advanced generation lines compared to the susceptible checks. Deadheart formation was low and the expression of resistance was stable across different seedling growth stages in IS 1054 and IS 2146. Depletion in levels of reducing sugars and phosphorus in resistant genotypes played a significant role in deadheart formation in the test genotypes. Positive association of nitrogen and potassium with oviposition at early seedling stages indicated their role in releasing chemical cues for oviposition. Low levels of reducing sugars and total sugars seemed to enhance the degree of resistance to sorghum shoot fly. The total chlorophyll content had no relationship with antixenosis for oviposition. No relationship was observed between moisture content of sorghum seedlings and shoot fly resistance. Low concentrations of reducing sugars, total sugars, nitrogen, phosphorus and potassium in sorghum seedlings greatly enhanced the degree of antixenosis for oviposition/feeding and deadheart formation, and can be used as selection criteria for resistance to shoot fly.  相似文献   

6.
Summary Simple sequence repeat (SSR) markers linked to quantitative trait loci (QTL) associated with resistance to sorghum shoot fly, Atherigona soccata resistance were used to characterize the genetic and phenotypic diversity of 12 cytoplasmic male-sterile (CMS) and maintainers, 12 restorer lines, and 144 F1 hybrids. The genetic diversity was quite high among the shoot fly-susceptible parents and the hybrids based on them, as indicated by high polymorphic information content (PIC) values, while limited genetic diversity was observed among shoot fly-resistant lines. The phenotypic and genotypic dissimilarity analysis indicated that the shoot fly-resistant and -susceptible parents were 73.2 and 38.5% distinct from each other, and the morphological and genetic distances of certain resistant and susceptible cross combinations was more than their resistant or susceptible parents. Genetic variability among the groups was low (10.8%), but high within groups (89.2%). The genetic and morphological distances suggested that the F1 hybrids were closer to CMS (5 to 12% dissimilar) than the restorer (11 to 87% dissimilar), suggesting that CMS influences the expression of resistance to sorghum shoot fly. The SSR markers can be used to characterize the homologous traits in sorghum germplasm.  相似文献   

7.
A. Anandan    H. Huliraj    P. Veerabadhiran 《Plant Breeding》2009,128(5):443-450
In sorghum, shoot fly resistance is important for grain yield and fodder value. An experiment was conducted to estimate genetic parameters of sorghum for resistance to shoot fly in 50 hybrids, by crossing 5 × 10 genotypes in line × tester manner. Plant height, number of leaves per plant, number of eggs per plant, trichomes on upper and lower surface per unit area of lamina and dead heart per cent were measured on 14 and 21 days after emergence (DAE) and glossiness of leaves was graded on 14 DAE. The correlation between midparent and hybrid performance, GCA : SCA ratio revealed predominance of non-additive gene effects for the traits studied, which could be exploited through hybrid breeding. Of the parents, SPSFPR 94004A and IS 4777 were the best general combiners for shoot fly resistance. Correlation and path analysis revealed the importance of resistance traits and phenol estimation confirms the resistances against shoot fly.  相似文献   

8.
The spotted stem borer, Chilo partellus, is one of the most important pests of sorghum, and host plant resistance is an important component for the management of this pest. Most of the sorghum hybrids currently under cultivation are based on cytoplasmic male-sterility (CMS). In order to develop a strategy for resistance to stem borer, we studied the traits associated with resistance, and their nature of gene action in F1 hybrids derived from resistant, moderately resistant, and susceptible CMS and restorer lines. The hybrids based on stem borer-resistant, moderately resistant, or susceptible CMS and restorer lines were equally resistant or susceptible as the parents for leaf feeding [Damage rating (DR) 5.8 to 6.6 vs. 5.9 to 6.6], and had significant and decreasing trend in deadheart formation (resistant CMS × resistant restorer lines < moderately resistant CMS × moderately resistant restorer lines < susceptible CMS × susceptible restorer lines), respectively. Proportional contributions of restorer lines were greater than those of the CMS lines for leaf feeding, deadhearts, recovery and overall resistance, stalk length, nodes per plant, stem borer holes per plant, and peduncle tunneling. The general (GCA) and specific combining ability (SCA) estimates suggested that leaf feeding score, number of nodes, overall resistance score, panicle initiation, recovery score, and stalk length (dominance type of gene action) have been found to be associated with resistance to spotted stem borer, governed by additive type of gene action, their correlation and direct effects in the same direction, and explained 65.3% of the variation in deadhearts, and thus could be used as marker traits to select and breed for resistance to C. partellus in sorghum. The parents having significant SCA effects for two or more resistance traits for either or more parents have also been discussed for their use in the stem borer resistance breeding.  相似文献   

9.
H.C. Sharma 《Euphytica》2001,122(2):391-395
Sorghum midge, Stenodiplosis (Contarinia) sorghicola (Coquillett), is an important pest of grain sorghum, and host plant resistance is an important aspect of control of this pest. This research investigated how cytoplasmic male-sterility and source of pollen influence the expression of resistance to sorghum midge. Sorghum midge emergence was significantly lower in panicles of midge-resistant and midge-susceptible cytoplasmic male-sterile lines when pollinated with AF 28 - a midge-resistant restorer line, than those pollinated with Swarna - a midge susceptible restorer line, indicating the presence of xenia effects. Maintainer lines (B-lines) of midge-resistant parents had significantly lower numbers of eggs and larvae than the B-lines of midge-susceptible parents. Male-sterile lines of the both midge-resistant and midge-susceptible lines were equally susceptible, indicating that resistance to sorghum midge is influenced by factors in the cytoplasm of the B-line. These findings will have an important bearing on the production of hybrids with resistance to insects. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Pigeonpea [Cajanus cajan (L.) Millsp.] is an important legume crop in the semi-arid tropics, and pod fly [Melanagromyza obtusa (Malloch)] is an important emerging constraint to increase the production and productivity of this crop under subsistence farming conditions. Host plant resistance can be used as an important tool for the management of this pest. Therefore, a set of ten pigeonpea genotypes from a diverse array of plant growth types and maturity groups including two appropriate commercial checks, was evaluated for resistance to pod fly under field conditions, and characterized for physico-chemical pod traits. The non-determinate type GP 75 (extra early maturing) and GP 118 (early maturing), and determinate type GP 233 (extra early maturing) and GP 253 (early maturing) genotypes had significantly lower pod and seed damage as compared to determinate (Prabhat) and non-determinate (Manak) early maturing checks, suggesting that resistance to pod fly is not linked to plant growth type and maturity period of the genotype in pigeonpea. Pod wall thickness, trichome density, reducing and non-reducing sugars, total phenols, tannins, and crude fiber were found to be negatively associated (r = −0.83** to −0.97**), while total protein positively associated (r = 0.88** to 0.97**) with pod fly infestation. Therefore, these traits particularly total phenols, tannins, crude fiber, trichome density, and pod wall thickness, can be used as physico-chemical markers to identify pigeonpea genotypes with resistance to M. obtusa, and use in pod fly resistant breeding program in pigeonpea.  相似文献   

11.
Summary Sorghum midge, Contarinia sorghicola Coq. (Diptera: Cecidomyiidae) is one of the most important pests of grain sorghum worldwide. We studied the reaction of midge-resistant and midge-susceptible genic-cytoplasmic male-sterile (A-lines) and their maintainers (B-lines), and the effect of resistant and susceptible restorers on sorghum midge. Midge damage and adult emergence were significantly lower on the B-lines of midge-resistant genotypes (PM 7061 and PM 7068) than their corresponding A-lines, while the reverse was true for the midge-susceptible genotypes (296A and ICSA 42). Differences in midge damage and the number of midges emerged were not significant between the midge-resistant and midge-susceptible A-lines when infested without pollination (except midge emergence on PM 7061A). Pollination with a midge-resistant restorer (DJ6541) reduced midge emergence significantly in one of two seasons. Source of pollen did not influence midge emergence on the highly-resistant A-line, PM 7061A. The implications of these observations in the development of midge-resistant hybrids were discussed.  相似文献   

12.
Summary One of the most promising control options against the parasitic weed Striga hermonthica is the use of crop varieties that combine resistance with high levels of tolerance. The aim of this study was to clarify the relation between Striga infestation level, Striga infection level and relative yield loss of sorghum and to use this insight for exploring the options for a proper screening procedure for tolerance. In three pot experiments, conducted in Mali (2003) and The Netherlands (2003, 2004), four sorghum genotypes were exposed to a range of Striga infestation levels, ranging from 0.0625 to 16 seeds cm−3. Observations included regular Striga emergence counts and sorghum grain yield at maturity. There were significant genotype, infestation and genotype × infestation effects on sorghum yield. The relation between infestation level and infection level was density dependent. Furthermore, the relation between Striga infection level and relative yield loss was non-linear, though for the most resistant genotype Framida only the linear part of the relation was obtained, as even at high infestation levels only moderate infection levels were achieved. The results suggest that for resistant genotypes, tolerance can best be quantified as a reduced relative yield loss per aboveground Striga plant, whereas for less resistant genotypes the maximum relative yield loss can best be used. Whether both expressions of tolerance are interrelated could not be resolved. Complications of screening for tolerance under field conditions are discussed.  相似文献   

13.
Striga hermonthica (Del.) Benth. is a parasitic weed on tropical cereals causing serious yield losses in Africa. The use of host crop varieties with improved resistance and tolerance against this parasite is a key component of an integrated control strategy. Breeding for tolerance is however seriously hampered by the absence of reliable and yet practical selection measures. The observation that the photosynthetic rate of tolerant genotypes is less sensitive to Striga infection was used as a starting point to search for suitable selection measures. In a greenhouse pot experiment the effect of Striga infection on the photosynthesis of four sorghum (Sorghum bicolor [L.] Moench) genotypes, differing in Striga tolerance level, was measured at three moments in time (26, 48 and 75 days after sowing). Genotypes were CK60-B, E36-1, Framida and Tiémarifing. Measurements involved CO2-assimilation (A) and three chlorophyll fluorescence characteristics (electron transport rate through photosystem II [ETR], photochemical [Pq] and non-photochemical quenching [NPq]). Striga infection negatively affected A, ETR and Pq. Based on A and Pq, genotypes with superior levels of tolerance (Tiémarifing) could be discriminated from genotypes with superior level of resistance (Framida). Both A and Pq showed high heritabilities and consequently clear and predictable differences between genotypes. Using discriminative ability, heritability and cost effectiveness as main criteria, photochemical quenching (Pq) was concluded to possess the highest potential to serve as indirect selection measure for host plant tolerance to Striga. Screening should preferably be conducted at relatively high Striga infestation levels, between Striga emergence and host plant flowering.  相似文献   

14.
The parasitic weed Striga hermonthica (Del.) Benth. seriously limits sorghum [Sorghum bicolor (L.) Moench] production in Sub-Saharan Africa. As an outbreeder, S. hermonthica is highly variable with an extraordinary capacity to adapt to different hosts and environments, thereby complicating resistance breeding. To study genotype x environment (G x E) interaction for striga resistance and grain yield, nine sorghum lines, 36 F2 populations and five local checks were grown under striga infestation at two locations in both Mali and Kenya. Mean squares due to genotypes and G x E interaction were highly significant for both sorghum grain yield and area under striga severity progress curve(ASVPC, a measure of striga emergence and vigor throughout the season). For grain yield, the entry x location-within-country interaction explained most of the total G x E while for ASVPC, entry x country and entry x location-within-country interactions were equally important. Pattern analysis (classification and ordination techniques) was applied to the environment-standardized matrix of entry x environment means. The classification clearly distinguished Malian from Kenyan locations for ASVPC, but not for grain yield. Performance plots for different entry groups showed differing patterns of adaptation. The ordination biplot underlined the importance of entry x country interaction for ASVPC. The F2 derived from the cross of the striga-resistant line Framida with the striga-tolerant cultivar Seredo was the superior entry for both grain yield and ASVPC, underlining the importance of combining resistance with tolerance in striga resistance breeding. The observed entry x country interaction for ASVPC may be due to the entries' different reactions to climatic conditions and putative differences in striga virulence in Mali and Kenya. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Sorghum midge [Stenodiplosis sorghicola (Coquillett)] is an important pest of grain sorghum, and host plant resistance is one of the important components for the management of this pest. We studied the inheritance of resistance to this insect involving a diverse array of midge-resistant and midge-susceptible genotypes in India and Kenya. Testers IS 15107, TAM 2566, and DJ 6514, which were highly resistant to sorghum midge in India, showed a greater susceptibility to this insect in Kenya. The maintainer lines ICSB 88019 and ICSB 88020 were highly resistant to sorghum midge in India, but showed a susceptible reaction in Kenya; while ICSB 42 was susceptible at both the locations. General combining ability (GCA) effects for susceptibility to sorghum midge for ICSA 88019 and ICSA 88020 were significant and negative in India, but such effects were non-significant in Kenya. The GCA effects of ICSB 42 for susceptibility to sorghum midge were significant and positive at both the locations. The GCA effects were significant and positive for Swarna, and such effects for IS 15107 and TAM 2566 were negative at both the locations. GCA effect of DJ 6514 were significant and negative in India, but non-significant and positive in Kenya; while those of AF 28 were significant and positive during the 1994 season in India, but significant and negative in Kenya. Inheritance of resistance to sorghum midge is largely governed by additive type of gene action. Testers showing resistance to sorghum midge in India and/or Kenya did not combine with ICSA 88019 and ICSA 88020 to produce midge-resistant hybrids in Kenya. Therefore, it is essential to transfer location specific resistance into both parents to produce midge-resistant hybrids.  相似文献   

16.
Screening sorghum genotypes for salinity tolerant biomass production   总被引:1,自引:0,他引:1  
Genetic improvement of salt tolerance is of high importance due to the extent and the constant increase in salt affected areas. Sorghum [Sorghum bicolor (L.) Moench] has been considered relatively more salt tolerant than maize and has the potential as a grain and fodder crop for salt affected areas. One hundred sorghum genotypes were screened for salinity tolerance in pots containing Alfisol and initially irrigated with a 250-mM NaCl solution in a randomized block design with three replications. Subsequently 46 selected genotypes were assessed in a second trial to confirm their responses to salinity. Substantial variation in shoot biomass ratio was identified among the genotypes. The performance of genotypes was consistent across experiments. Seven salinity tolerant and ten salinity sensitive genotypes are reported. Relative shoot lengths of seedlings were genetically correlated to the shoot biomass ratios at all stages of sampling though the relationships were not close enough to use the trait as a selection criterion. In general, the whole-plant tolerance to salinity resulted in reduced shoot Na+ concentration. The K+/Na+ and Ca2+/Na+ ratios were also positively related to tolerance but with a lesser r 2. Therefore, it is concluded that genotypic diversity exists for salt tolerance biomass production and that Na+ exclusion from the shoot may be a major mechanism involved in that tolerance.  相似文献   

17.
Host plant resistance is an effective means of controlling sorghum midge (Stenodiplosis sorghicola). We studied the influence of environmental factors on expression of resistance to sorghum midge in three midge-resistant and two midge-susceptible genotypes. Midge-resistant lines AF 28, ICSV 197, and TAM 2566 suffered 8.8 to 17.3% damage across seven so wings compared to 25.6%damage in ICSV 112, and 69.4% damage in CSH 5. Susceptibility of the midge-resistant lines (AF 28, ICSV 197, and TAM 2566) decreased with an increase in open pan evaporation, maximum and minimum temperatures, and solar radiation; while the midge-susceptible lines (ICSV 112 and CSH 5) showed a poor interaction with these factors. Midge damage in ICSV 197 showed a negative correlation with minimum temperature and relative humidity and positive correlation with sunshine hours,while the reverse was true for CSH 5. Grain growth rate between 0 and 3 days after anthesis was lower in crops sown on 1st October, when AF 28 and ICSV 197 suffered maximum midge damage. Maximum and minimum temperatures and maximum relative humidity influenced the moisture content of the grain, grain growth rate, and sorghum midge damage. There was considerable variation in genotype × environment interaction for expression of resistance to sorghum midge,and the implications of these results have been discussed in relation to development of sorghum cultivars with resistance to this insect. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Twelve maize genotypes with different degrees of resistance were evaluated in plots inoculated with seeds of the phytoparasite Striga hermonthica (Del.) Benth. and in Striga-free (control) plots for three seasons between 1991 and 1993. Resistant genotypes, although showing similar levels of underground infection as susceptible 9 weeks after maize planting (WAP), had significantly fewer emerged parasitic plants and sustained lower damage. Host damage was not determined by the severity of infection. Percent height and dry matter reductions increased from 3 to 6 WAP for resistant and susceptible genotypes. While percent height and dry matter reductions for resistant genotypes declined at 9 and 12 WAP, susceptible genotypes either maintained or increased their levels of damage. Correlation between the severity of height and dry matter reductions at the vegetative (3 and 6 WAP) and reproductive (9 and 12 WAP) stages of maize growth were not significant, indicating that damage at early stages of growth cannot be used to predict mature plant response. Maize damage score (1–9) at 8 WAP, a non destructive and composite shoot indicator of host performance under Striga infestation, was significantly correlated (r = 0.88, r = 0.82; p < 0.01) to the level of shoot reduction at mature plant stages. Emerged Striga count at 8 WAP was significantly correlated (r = 0.98, p < 0.01) to the count at 10 WAP, the time when parasite emergence was highest. Under high and uniform infestation, mature plant resistance can be detected at 8 WAP, the onset of flowering in maize. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
S. berthaulltii Hawkes, a wild potato species, possesses two types of glandular trichomes on its leaf surface: types A and B wich confer resistance to insects. Preliminary results indicated that the presence of glandular trichomes also confers resistance to Phytophthora infestans, the causal agent of late blight. In this paper we report the evaluation of trichome characteristics (density and exudate activities) performed on 8 lines of potato, including the control varieties Desirée and Tropicana, 5 hybrid lines derived from intercrosses and backcrosses between S. tuberosum and S. berthaultii and one accession of S. berthaultii. Whole plants of the 8 genotypes were inoculated with a spore suspension of Phytophthora infestans in order to evaluate their resistance to late blight. The resultant disease incidence correlated negatively with type A trichome density and with polyphenol-oxidase (PPO) activity of type A trichome glands. The removal of type B trichomes exudate by leaf dipping in ethanol did not influence the disease development after artificial inoculation of detached leaves. Type B trichome exudate was extracted and the fraction corresponding to Fatty Acids Sucrose Esters (FASE) was recovered after Thin Layer Chromatography and tested on the fungal mycelium in vitro. The FASE exhibited a slight inhibitory effect on mycelium growth. The results of the experiments are discussed, and several hypotheses regarding the possible role of types A and B trichomes are formulated. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Sooty stripe [Ramulispora sorghi (Ellis and Everhart) Olive and Lefebre] is a widespread foliar disease of sorghum [Sorghum bicolor (L.) Moench] in West Africa, responsible for grain yield losses up to 46%. We studied the inheritance of sooty stripe resistance in a 9 × 9 sorghum F2-population diallel grown together with parent lines and checks in1996 under natural disease pressure at two locations in Mali. The percentage of infected leaf area was determined twice over a two-week interval during the season. At the second evaluation, the mean sooty stripe severity amounted to 13% infected leaf area at Samanko and 12% at Cinzana. The frequency distribution of the entries was approximately normal for the mean disease severity, averaged across assessment dates and locations, pointing to the involvement of multiple genes. With the data combined across the two locations, genetic differences among lines and among F2 populations were highly significant. Genotype × location interaction variances were also significant but much smaller than the genetic variances. Broad-sense heritability estimates were 0.92 for lines and 0.94 for the F2 populations, for the mean percentage infected leaf area across the two assessment dates. General combining ability effects (GCA) determined most of the differences among the F2 populations. Specific combining ability effects (SCA), and the interactions of GCA or SCA with locations were also significant but less important. Line performance per se was highly correlated with GCA. Because of the high heritability and predominance of additive effects, prospects are good for the genetic improvement of resistance to sooty stripe in sorghum in Mali, using simple pedigree or recurrent selection procedures. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号