首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A Brassica juncea line carrying an introgression from Moricandia arvensis restored male fertility to two cytoplasmic male‐sterile (CMS) B. juncea lines carrying either M. arvensis or Diplotaxis catholica cytoplasm. Genetics of fertility restoration was studied in the F1, F2, F3 and backcross generations of the cross between CMS and fertility‐restorer lines. No male‐sterile plants were found in F1‐F3 generations of the cross between CMS [M. arvensis] B. juncea and the restorer. However, a 1: 1 segregation for male sterility and fertility was observed when the F1 was pollinated with non‐restorer pollen from a euplasmic line. These results clearly show that restoration is mono‐genic and gametophytic. In CMS lines carrying D. catholica cytoplasm, the restorer conferred male fertility to the F1 and showed 3: 1 and 1: 1 segregations for male fertility and sterility in F2 and BC1 generations, respectively, indicating a monogenic, sporophytic mode of fertility restoration. The results were also supported by pollen stainability in the F1 which was about 65% in M. arvensis‐based CMS and >90% in D. catholica‐based CMS. The above results are discussed in the light of previous molecular studies which showed association between CMS and atpA in both systems.  相似文献   

2.
Non‐pungent bell pepper (Capsicum annuum L.) lacks the cytoplasmic male sterility (CMS) nuclear restorer allele, Rf, and CMS cannot be employed in its F1 hybrid seed production. To demonstrate that the genic male sterility (GMS) system in non‐pungent bell pepper can be converted to the CMS male sterility system, the conversion of GMS to CMS for non‐pungent bell pepper line GC3 was conducted by introgression of S‐type cytoplasm and the Rf allele from tropical pungent donors. After morphological traits were evaluated, two lines from BC1F1 containing S‐type cytoplasm and four lines from BC2F2 containing Rf allele, phenotypically similar to GC3, were obtained and could be employed as CMS male sterile lines and restorer lines for non‐pungent bell pepper. Four molecular markers potentially linked to traits of interest were also evaluated in BC1F1 and BC1F2 populations. This is the first time that GMS has been successfully converted to CMS in bell pepper, a significant contribution for bell pepper hybrid seed production.  相似文献   

3.
李曙光  赵团结  盖钧镒 《作物学报》2010,36(7):1061-1066
利用大豆质核互作雄性不育系NJMCS3A的质、核供体亲本N21566和N21249构建F2和BC1F1育性分离群体进行雄性育性的遗传分析与基因定位。结果表明, F1正反交可育,F2和BC1F1的可育株与不育株分离比例经χ2测验分别符合3∶1和1∶1,表明NJCMS3A供体亲本雄性育性由一对基因控制,可育等位基因为显性。该基因可能是NJCMS3A的一个恢复基因。选用793对SSR引物对F2和BC1F1群体分别进行育性基因定位,发现该育性基因位于O连锁群上,在Satt331和Satt477标记之间,与Satt331、CSSR133和Satt477标记距离的次序一致,分别为8.1~10.4 cM、11.4~16.4 cM、13.3~19.2 cM。  相似文献   

4.
C. G. Liu    N. Hou    L. K. Liu    J. C. Liu    X. S. Kang    A. M. Zhang 《Plant Breeding》2006,125(5):437-440
A new cytoplasmic male‐sterile (CMS) system for hybrid wheat breeding, YA‐type CMS line with the cytoplasmic mutant from the common wheat variety ‘CA8057’, was developed by the Institute of Genetics and Developmental Biology, Chinese Academy of Sciences. The pollen sterility of YA‐type CMS line was easily maintained but difficult to restore. Some sterile lines with desirable agronomic performance, such as msYA‐‘CA8057’ (BC17), msYA‐‘Yuandong 6’ (BC9), msYA‐‘Jin 411’ (BC9), msYA‐‘WL1’ (BC10), msYA‐‘Yanshi 9’ (BC10), msYA‐‘BPm16’ (BC9), msYA‐‘Jindong 8’ (BC9) and msYA‐‘Jinmai 33’ (BC9), were bred and a restorer line GR1 was screened with 26 new restorer lines being developed by transferring restorer genes from GR1. It was found that abnormal phenomena occurred at the uninucleate‐pollen stage and the abortive pollen was poor in starch content and other components. The variance analysis of agronomic traits in eight sterile lines indicated that there was no general negative effect of cytoplasm. The genetic analysis for fertility restoration showed that two pairs of independent major genes (designated YARf1YARf1YArf2YArf2) and some minor genes could be involved in the fertility restoration in restorer line GR1, and YARf1 was epistatic over YARf2 for the genetic effect of fertility restoration. As a new CMS system, the YA‐type CMS line was of potential value for hybrid wheat breeding and should be further studied.  相似文献   

5.
The male sterile plants that segregated in a BC5F2 of `C. sericeus × C. cajan var. TT-5' population were maintained by sib mating. The male sterile plants were crossed with ICPL-85012.Approximately 50% of the F1 plants were sterile. F2 plants derived from the fertile F1 plants did not segregate for male sterility. The reciprocal hybrid i.e. ICPL-85012 × Fertile derivatives from C. sericeus × TT-5, did not express male sterility. However, among the 12 F2 plant to row progenies, two segregated 25% male sterile plants and remaining 10 did not segregate. The segregation pattern in subsequent progenies revealed that the sterility was under control of a single recessive allele. Studies on the backcross and their BC1F2 and BC1F3progenies revealed another sterility gene which was found to be dominant in inheritance. This paper shows that what was thought to be cytoplasmic male sterility from C. sericeus cytoplasm is actually a single dominant gene possibly acting in concert with a single recessive gene to mimic cytoplasmic male sterility. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
S. Prakash    I. Ahuja    H. C. Upreti    V. Dinesh  Kumar  S. R. Bhat    P. B. Kirti  V. L. Chopra   《Plant Breeding》2001,120(6):479-482
An alloplasmic mustard, Brassica juncea, has been synthesized by placing its nucleus into the cytoplasm of the related wild species Erucastrum canariense to express cytoplasmic male sterility. To achieve this, the sexual hybrid E. canariense (2n=18, EcEc) ×Brassica campestris (2n= 20, AA) was repeatedly backcrossed to B. juncea (2n= 36, AABB). Cytoplasmic male‐sterile (CMS) plants were recovered in the BC4 generation. These plants are a normal green and the flowers have slender, non‐dehiscing anthers that contain sterile pollen. Nectaries are well developed and female fertility is > 90%. The fertility restoration gene was introgressed to CMS B. juncea from the cytoplasmic donor E. canariense through pairing between chromosomes belonging to B. juncea with those of the E. canariense genome. The restorer plants have normal flowers, with well‐developed anthers containing fertile pollen. Meiosis proceeds normally. Pollen and seed fertility averaged 90% and 82%, respectively. F1 hybrids between CMS and the restorer are fully pollen fertile and show normal seed set. Preliminary results indicate that restoration is achieved by a single dominant gene. The constitution of the organelle genomes of the CMS, restorer and fertility restored plants is identical, as revealed by Southern analysis using mitochondrial and chloroplast probes atp A and psb D, respectively.  相似文献   

7.
Cytoplasmic male sterility (CMS) system based on the cytoplasm from Moricandia arvensis (mori) was investigated for fertility restoration and agronomic potential. Fertility restorer gene for mori CMS was introgressed from cytoplasm donor species as all the evaluated Brassica juncea genotypes (155) acted as sterility maintainers. The allosyndetic pairing between Ma and the A/B genome chromosomes in the monosomic addition plants (2n= 18II + 1Ma) facilitated the gene introgression. Partial fertility restoration (43–52% pollen grain stainability) in F1 hybrids and absence of segregation for male sterility in F2 progenies suggested gametophytic control of fertility restoration. The pollen fertility in the F1 hybrids was, however, sufficient to ensure complete seed set upon bag selfing. Introgression from M. arvensis also helped in correction of chlorosis associated with mori cytoplasm in CMS and fertile alloplasmic B. juncea plants. Yield evaluation of thirty F1 hybrids having the same nuclear genotype but varied male sterilizing cytoplasms (mori, oxy, lyr, refined ogu), in comparison to respective euplasmic hand bred control hybrids, allowed an estimate of yield penalty associated with different CMS systems. It ranged from 1.8% to 61.6%. Hybrids based on cytoplasmically refined ogu were most productive followed by those based on cytoplasmically refined mori CMS. The male sterility systems emanating from somatic hybridization were found superior than those developed from sexual hybridization.  相似文献   

8.
王乃元  梁康迳  李毓  王颖  王洪飞  仇秀丽 《作物学报》2008,34(11):1929-1937
发掘水稻新型雄性不育细胞质源CMS-FA,育成系列优质米不育系和系列新质源恢复系,组配成强优势杂交稻组合的基础上研究新质源雄性不育恢复系的恢复基因遗传。采用新质源(CMS-FA)不育系金农1A与恢复系金恢3号杂交获得杂交F1代种子,种植F1代,收获自交F2代种子。用F1分别与不育系或保持系回交,获得(不育系//不育系/恢复系和不育系/恢复系//保持系)2个测交群体。同时种植P1、P2、F1、F2、B1F1和B2F1等群体,考察花粉染色率、套袋结实率和自然结实率,卡平方测验遗传分离适合度。结果表明,不育系与恢复系杂交F1代正常可育,育性恢复(可育)基因为显性遗传。F2代分离出可育︰不育适合3︰1,育性恢复(可育)基因为1对显性基因控制。B1F1和B2F1代2个测交群体的可育︰不育都适合1︰1分离规律,验证了F2代育性恢复(可育)单基因的遗传模式。暂时确定新质源(CMS-FA)核质互作三系的基因型为不育系S(SS)、保持系F(SS)和恢复系S(FF)。  相似文献   

9.
Safflower (Carthamus tinctorius L.) possesses the highest amount of linoleic acid among the 10 major vegetable oil crops of the world. Very high linoleic acid content is controlled by recessive alleles at a single locus Li. However, deviated segregations from the expected monogenic inheritance have been observed in crosses involving nuclear male‐sterile (NMS) lines. The present research was undertaken to study the inheritance of very high linoleic acid content in safflower and its relationship with nuclear male sterility. F1, F2, F3, BC1F1 and BC1F2 seed generations were evaluated in a cross between CR‐142 (a line with very high linoleic acid content, 88%) and CL1 (an NMS line with wild‐type linoleic acid content, 74%). The genetics of linoleic acid content in male‐sterile plants was determined by testcrossing with CR‐142. The results confirmed monogenic inheritance. The analysis of the F3 and BC1F2 to CL1 seed generations demonstrated a repulsion‐phase linkage between Li and Ms loci, the latter conferring the NMS trait. The recombination rate between Li and Ms was estimated to be 0.09.  相似文献   

10.
The male sterility system in hybrid seed production can eliminate the cost of emasculation and ensure seed hybridity through avoidance of self pollination. GMS and CMS are two types of male sterility system that currently employed in pepper breeding. Conversion from GMS to CMS will increase the male sterility proportion of female parent from 50 to 100%. In this study, segregation analysis of four male sterile mutants consisting of one CMS mutant (CA1) and three GMS mutants (GA1, GA3 and GA4) showed that each had single recessive gene inheritance. A modified complementation test was performed by replacing male sterile mutants with their maintainer line as male parent. The nuclear restorer gene for CMS was independent of all nuclear restorer genes for GMS and all nuclear restorer genes for GMS were independent each other. Further observation on CMS and GMS male sterility loci revealed that GA1 and GA3 had mutated in both nuclear restorer genes for CMS and GMS, while CA1 and GA4 each carried mutation in single male sterility system of nuclear restorer gene for CMS and GMS, respectively. Conversion from GMS to CMS in the case of lines carried mutations in both sterility systems required only S-type cytoplasm donor, while lines carried mutation in single nuclear restorer gene for GMS required not only S-type cytoplasm but also rf allele donors. The important finding is the broader function of maintainer line in certain male sterility system that can be used as a maintainer or restorer line for other male sterility systems. We also confirmed that line CC1 is the general restorer for both CMS and GMS systems.  相似文献   

11.
M. A. Hossain    M. A. K. Mian    M. G. Rasul 《Plant Breeding》2002,121(4):354-356
In a series of three experiments during 1998‐99 and 1999‐2000 at Gazipur, Bangladesh, the causes of segregation of Ogura cytoplasmic genetic male sterility in local cultivars of radish were studied. Male‐sterile populations at the BC5 and BC6 generations were grown under a range of field temperatures for 2 years and the results on pollen fertility tests revealed that the expression of male sterility was not affected by temperature. Neither was a genotype‐year interaction found. The unexpected segregation observed in the male‐sterile backcross generations might be due to the presence of restorer alleles in the maintainer parents.  相似文献   

12.
Eighteen genotypes of Brassica napus were crossed to a cytoplasmic male sterile (CMS) line of B. napus BO 15 carrying B. tournefortii cytoplasm (‘tour’ cytoplasm). Fourteen genotypes were found to be stable maintainers of the ‘tour’ CMS. Of the remaining four genotypes, GSL-1 and ‘Asahi-natane’ were found to be heterozygous and ‘Mangun’ and ‘Yudal’ were homozygous for the restorer gene. Analysis of the F1 and F2 progenies of (CMS) BO 15 בMangun’ and (CMS) BO 15 בYudal’ showed that fertility restoration is controlled by a single dominant gene. The availability of a number of stable maintainer lines and the simple inheritance pattern of fertility restorer gene makes ‘tour’ CMS a useful system for hybrid seed production in rapeseed.  相似文献   

13.
Summary A high frequency of male sterile mutants regeneration was shown in callus cultures derived from leaves and panicles of haploid sorghum (Msc1, A1 cytoplasm) and a spontaneous autodiploid obtained from this haploid. The cultures derived from the embryos of this autodiploid yielded significantly fewer mutants. Absolutely or partially male sterile mutants appeared among the regenerants or in the progeny of fertile regenerants. In the self-fertilized progenies of partially male sterile mutants and in the hybrids of sterile mutants with autodiploid line (i.e. under one and the same nuclear genome) male sterility mutations were inherited as cytoplasmic. Non-Mendelian segregation of sterile, partially male sterile and fertile plants was observed in these progenies. Partially male sterile plants were characterized by somatic segregation of male sterility genetic factors. In test-crosses with some CMS A1 fertility restorers, mutations were manifested as nuclear recessive while with others as nuclear dominant. These differences are supposed to be the result of interaction of fertility restorer genes of these testers with the novel cytoplasm. Male sterility mutations accompanied with female sterility were inherited as nuclear recessives.Abbreviations f fertile - ps partially male sterile - s male sterile plants  相似文献   

14.
Summary Identification and location of fertility restoring genes facilitates their deployment in a hybrid breeding program involving cytoplasmic male sterility (CMS) system. The study aimed to locate fertility restorer genes of CMSWA system on specific chromosomes of rice using primary trisomics of IR36 (restorer), CMS (IR58025A) and maintainer (IR58025B) lines. Primary trisomic series (Triplo 1 to 12) was crossed as maternal parent with the maintainer line IR58025B. The selected trisomic and disomic F1 plants were testcrossed as male parents with the CMS line IR58025A. Plants in testcross families derived from disomic F1 plants (Group I crosses) were all diploid; however, in the testcross families derived from trisomic F1 plants (Group II crosses), some trisomic plants were observed. Diploid plants in all testcross families were analyzed for pollen fertility using 1% IKI stain. All testeross families from Group I crosses segregated in the ratio of 2 fertile: 1 partially fertile+partially sterile: 1 sterile plants indicating that fertility restoration was controlled by two independent dominant genes: one of the genes was stronger than the other. Testcross families from Group II crosses segregated in 2 fertile: 1 partially fertile+ partially sterile: 1 sterile plants in crosses involving Triplo 1, 4, 5, 6, 8, 9, 11 and 12, but families involving triplo 7 and triplo 10 showed significantly higher X2 values, indicating that the two fertility restorer genes were located on chromosome 7 and 10. Stronger restorer gene (Rf-WA-1) was located on chromosome 7 and weaker restorer gene (Rf-WA-2) was located on chromosome 10. These findings should facilitate tagging of these genes with molecular markers with the ultimate aim to practice marker-aided selection for fertility restoration ability.  相似文献   

15.
Z. Liu    C. Guan    F. Zhao  S. Chen 《Plant Breeding》2005,124(1):5-8
A novel cytoplasmic male sterility‐fertility restoration system has been developed in rapeseed (Brassica napus). The cytoplasmic male sterile line 681A was derived from a spontaneous male sterile mutant in a newly released double‐low rapeseed cultivar ‘Xiangyou 13′. The restorer line 714R was identified in the interspecific progeny from a B. napus×B. juncea‐cross. Genetic analysis showed that fertility restoration for 681A cytoplasmic male sterility was controlled by a single dominant nuclear gene which might originate from B. juncea. The RAPD marker S1039‐520 was found to be linked to the restorer gene in F2 progeny of 681A × 714R with a recombination frequency of 5.45%.  相似文献   

16.
The cytoplasmic male sterility (CMS) system msm1 in barley is known to be thermosensitive, sometimes resulting in spontaneous fertility restoration in the absence of the corresponding restorer gene Rfm1. Here, we investigated genotypic differences concerning temperature sensitivity and the plant developmental stage at which elevated temperature induces spontaneous fertility restoration in three CMS mother lines. While one line stayed completely male sterile, a significantly higher fertility was observed in two lines after treatment from growth stage DC 41 until maturation. Microscopic analysis revealed that sterile anthers contained neither intact pollen, nor remains of aborted pollen grains, whereas pollen was visible in anthers of potentially fertile plants. We conclude that the barley CMS system affects anther and pollen development prior to meiosis. Elevated temperature during heading and flowering can lead to a spontaneous fertility restoration by reactivating pollen growth. Nevertheless, genotypic variation exists enabling the selection for stable CMS mother lines and the development of F1 hybrids with high hybridity. As spontaneous fertility restoration due to environmental effects is difficult to phenotype, further investigations will focus on the development of molecular markers for marker‐assisted selection.  相似文献   

17.
Wide crosses were made to identify new cytoplasmic male sterility (CMS) systems in faba beans, based on the interaction of cytoplasm with restorer and maintainer alleles. A total of 330 F1 hybrids were produced in both reciprocal forms. Male sterile segregates were observed in one reciprocal version in the F2 generation of six crosses. Two of these crosses with female parents originating from Afghanistan and Egypt expressed stable male sterility in subsequent backcross generations. Based on the female parents of the two crosses, these two CMS systems were designated CMS 199 and CMS 297. CMS 199 was more stable than CMS 297 during backcross generations and across different environments. Maintainer and restorer lines for both CMS systems were identified. Lower expression of male sterility occurred in CMS 297 in the greenhouse during the winter generations than in isolation cages during the summer generations, which may be utilized to maintain male sterile lines by selfing. Regarding practical applications, the CMS 199 shows great promise for hybrid breeding in faba beans.  相似文献   

18.
T. J. Zhao  J. Y. Gai 《Euphytica》2006,152(3):387-396
Most of the cytoplasmic-nuclear male-sterile (CMS) lines of soybean were developed only from a limited cytoplasm sources and performed not as good as required in hybrid seed production, therefore, to explore new male-sterile cytoplasm sources should be one of the effective ways to improve the pollination and hybridization for a better pod-set in utilization of heterosis of soybeans. In the present study, total 80 crosses between 70 cultivated and annual wild soybean accessions and three maintainers (N2899, N21249, and N23998) of NJCMS1A were made for detecting potential new sources with male-sterile cytoplasm. The results showed that in addition to the crosses with N8855.1 (the cytoplasm donor parent of NJCMS1A) and its derived line NG99-893 as cytoplasm parent, there appeared three crosses, including N21566 × N21249 and N23168 × N21249, with male-sterile plants in their progenies. According to the male fertility performance of backcrosses and reciprocal crosses with the tester N21249, the landrace N21566 and annual wild soybean accession N23168 were further confirmed to have male-sterile cytoplasm. Accordingly, it was understood that the source with male-sterile cytoplasm in soybean gene pool might be not occasional. The results also showed that the genetic system of male sterility of the newly found cytoplasm source N21566 was different from the old cytoplasm source N8855.1, while N23168 was to be further studied. Based on the above results, the derived male-sterile plants from [(N21566 × N21249) F1 × N21249] BC1F1 were back-crossed with the recurrent parent N21249 for five successive times, and a new CMS line and its maintainer line, designated as NJCMS3A and NJCMS3B, respectively, were obtained. NJCMS3A had normal female fertility and stable male sterility. Its microspore abortion was mainly at middle uninucleate stage, earlier than that of NJCMS1A and NJCMS2A. The male fertility of F1s between NJCMS3A and 20 pollen parents showed that 7 accessions could restore its male fertility and other 13 could maintain its male sterility. The male sterility of NJCMS3A and its restoration were controlled by one pair of gametophyte male-sterile gene according to male fertility segregation of crosses between NJCMS3A and three restorers. The nuclear gene(s) of male sterility in NJCMS3A appeared different from the previously reported CMS lines, NJCMS1A and NJCMS2A. The development of NJCMS3A demonstrated the feasibility to discover new CMS system through choosing maintainers with suitable nuclear background.  相似文献   

19.
The three short duration cytoplasmic genetic male sterility (CGMS) hybrids developed using A2 (Cajanus scarabeoides) cytoplasm-based male sterile lines (CORG 990047A, CORG 990052A and CORG 7A) and the restorer inbred AK 261322 and their segregating populations (F2 and BC1F1) were subjected to the study of inheritance of fertility restoration in pigeonpea. The fertility restoration was studied based on three different criteria, namely, anther colour, pollen grain fertility and pollen grain morphology and staining. The F2 and BC1F1 populations of the three crosses, namely, CORG 990047A × AK 261322, CORG 990052A × AK 261322 and CORG 7A × AK 261322, segregated in the ratio of 3:1 and 1:1, for anther colour (yellow:pale yellow), pollen grain fertility (fertile:sterile) and for pollen grain morphology and staining. The above study confirmed that the trait fertility restoration was controlled by single dominant gene. This finding can be utilized for the identification of potential restorers, which can be further used in the development of CGMS-based hybrids in pigeonpea.  相似文献   

20.
Genetic male sterility (GMS) genes in wheat (Triticum aestivum L.) can be used for commercial hybrid seed production. A new wheat GMS mutant, LZ, was successfully used in the 4E-ms system for producing hybrid wheat, a new approach of producing hybrid seed based on GMS. Our objective was to analyse the genetic mechanism of male sterility and locate the GMS gene in mutant LZ to a chromosome. We firstly crossed male sterile line 257A (2n = 42) derived from mutant LZ to Chinese Spring and several other cultivars for determining the self-fertility of the F1 hybrids and the segregation ratios of male-sterile and fertile plants in the F2 and BC1 generations. Secondly, we conducted nullisomic analysis by crossing male sterile plants of line 257A to 21 self-fertile nullisomic lines as male to test the F1 fertilities and to locate the GMS gene in mutant LZ to a chromosome. Thirdly, we conducted an allelism test with Cornerstone, which has ms1c located on chromosome 4BS. All F1s were male fertile and the segregation ratio of male-sterile: fertile plants in all BC1 and F2 populations fitted 1:1 and 1:3 ratios, respectively. The male sterility was stably inherited, and was not affected by environmental factors in two different locations or by the cytoplasm of wheat cultivars in four reciprocal cross combinations. The results of nullisomic analysis indicated the gene was on chromosome 4B. The allelism test showed that the mutant LZ was allelic to ms1c. We concluded that the mutant LZ has common wheat cytoplasm and carries a stably inherited monogenic recessive gene named ms1g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号