首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Sustainable soil and crop management practices that reduce soil erosion and nitrogen (N) leaching, conserve soil organic matter, and optimize cotton and sorghum yields still remain a challenge. We examined the influence of three tillage practices (no-till, strip till and chisel till), four cover crops {legume [hairy vetch (Vicia villosa Roth)], nonlegume [rye (Secaele cereale L.)], vetch/rye biculture and winter weeds or no cover crop}, and three N fertilization rates (0, 60–65 and 120–130 kg N ha−1) on soil inorganic N content at the 0–30 cm depth and yields and N uptake of cotton (Gossypium hirsutum L.) and sorghum [Sorghum bicolor (L.) Moench]. A field experiment was conducted on Dothan sandy loam (fine-loamy, siliceous, thermic, Plinthic Paleudults) from 1999 to 2002 in Georgia, USA. Nitrogen supplied by cover crops was greater with vetch and vetch/rye biculture than with rye and weeds. Soil inorganic N at the 0–10 and 10–30 cm depths increased with increasing N rate and were greater with vetch than with rye and weeds in April 2000 and 2002. Inorganic N at 0–10 cm was also greater with vetch than with rye in no-till, greater with vetch/rye than with rye and weeds in strip till, and greater with vetch than with rye and weeds in chisel till. In 2000, cotton lint yield and N uptake were greater in no-till with rye or 60 kg N ha−1 than in other treatments, but biomass (stems + leaves) yield and N uptake were greater with vetch and vetch/rye than with rye or weeds, and greater with 60 and 120 than with 0 kg N ha−1. In 2001, sorghum grain yield, biomass yield, and N uptake were greater in strip till and chisel till than in no-till, and greater in vetch and vetch/rye with or without N than in rye and weeds with 0 or 65 kg N ha−1. In 2002, cotton lint yield and N uptake were greater in chisel till, rye and weeds with 0 or 60 kg N ha−1 than in other treatments, but biomass N uptake was greater in vetch/rye with 60 kg N ha−1 than in rye and weeds with 0 or 60 kg N ha−1. Increased N supplied by hairy vetch or 120–130 kg N ha−1 increased soil N availability, sorghum grain yield, cotton and sorghum biomass yields, and N uptake but decreased cotton lint yield and lint N uptake compared with rye, weeds or 0 kg N ha−1. Cotton and sorghum yields and N uptake can be optimized and potentials for soil erosion and N leaching can be reduced by using conservation tillage, such as no-till or strip till, with vetch/rye biculture cover crop and 60–65 kg N ha−1. The results can be applied in regions where cover crops can be grown in the winter to reduce soil erosion and N leaching and where tillage intensity and N fertilization rates can be minimized to reduce the costs of energy requirement for tillage and N fertilization while optimizing crop production.  相似文献   

2.
High rates of nitrogen (N) fertilizer may increase N leaching with drainage, especially when there is no further crop response. It is often discussed whether leaching is affected only at levels that no longer give an economic return, or whether reducing fertilization below the economic optimum could reduce leaching further. To study nitrate leaching with different fertilizer N rates (0–135 kg N ha−1) and grain yield responses, field experiments in spring oats were conducted in 2007, 2008 and 2009 on loamy sand in south-west Sweden. Nitrate leaching was determined from nitrate concentrations in soil water sampled with ceramic suction cups and measured discharge at a nearby measuring station. The results showed that nitrate leaching per kg grain produced had its minimum around the economic optimum, here defined as the fertilization level where each extra kg of fertilizer N resulted in a 10 kg increase in grain yield (85% DM). There were no statistically significant differences in leaching between treatments fertilized below this level. However, N leaching was significantly elevated in some of the treatments with higher fertilization rates and the increase in nitrate leaching from increased N fertilization could be described with an exponential function. According to this function, the increase was <0.04 kg kg−1 fertilizer N at and below the economic optimum. Above this fertilization level, the nitrate leaching response gradually increased as the yield response ceased and the increase amounted to 0.1 and 0.5 kg kg−1 when the economic optimum was exceeded by 35 and 100 kg N ha−1, respectively. The economic optimum fertilization level depends on the price relationship between grain and fertilizer, which in Sweden can vary between 5:1 and 15:1. In other words, precision fertilization that provides no more or no less than a 10 kg increase in grain yield per kg extra N fertilizer can be optimal for both crop profitability and the environment. To predict this level already at fertilization is a great challenge, and it could be argued that rates should be kept down further to ensure that they are not exceeded due to overestimation of the optimum rate. However, the development of precision agriculture with new tools for prediction may reduce this risk.  相似文献   

3.
Farmers obtain high yield when proper crop management is matched with favourable weather. Nitrogen (N) fertilization is an important agronomic management practice because it affects profitability and the environment. In rainfed environments, farmers generally apply uniform rates of N without taking into account the spatial variability of soil available water or nutrient availability. Uniform application of fertilizer can lead to over or under-fertilization, decreasing the efficiency of the fertilizer use. The objective of this study was to evaluate the impact of variable rate nitrogen fertilizer application on spatial and temporal patterns of wheat grain yield. The study was conducted during the 2008/2009 and 2009/10 growing seasons in a 12 ha field near Foggia, Italy. The crop planted each year was durum wheat (Triticum durum, Desf.) cultivar Duilio. The field was subdivided into two management zones High (H), and Average (A). Three N rates were identified using a crop model tested on the same field during a previous growing season. The N rates were: low N (T1: 30 kg N ha−1), average N (T2: 70 kg N ha−1), and high N (T3: 90 kg N ha−1). The ANOVA test showed that there were no effects of the N levels for the first growing season for the H and A zone. For the 2009/10 growing season with higher rainfall there was a significant difference in grain yield for the A zone (2955 kg ha−1), but not in the H zone (3970 kg ha−1). This study demonstrates the optimal amount of N for a given management zone is not fixed but varies with the rainfall amount and distribution during the fallow and growing season.  相似文献   

4.
An experiment was conducted in order to investigate hay yield and nitrogen harvest in binary smooth bromegrass (Bromus inermis Leyss cv. Tohum Islah) mixtures with alfalfa (Medicago sativa L. cv. Kayseri) and red clover (Trifolium pratense L. cv. Tohum Islah) in Erzurum, Turkey for 5 years between 1991 and 1995. The Hay yield, nitrogen harvest, protein concentration and land equivalent ratio (LER) in the mixtures with alternating rows of 1:1, 2:1 and 1:2 of smooth bromegrass with alfalfa and red clover were compared to those in pure legume stands without any N-fertilizer application or pure smooth bromegrass stands that received 0, 50, 100 and 150 kg ha−1 N. The mixtures had no N fertilization apart from 40 kg N ha−1 in the establishment year. The dry matter production in all the mixtures receiving no N fertilizer application was higher than in pure legume stands. Pure grass stands were sustained only with the application of 150 kg ha−1 N. The highest hay yields were obtained from the mixtures of smooth bromegrass (Sb) with red clover (Rc) (2Rc 1Sb) (14.65 t ha−1) and with alfalfa (A) (1A 1 Sb) (14.49 t ha−1). Although N application increased Sb yields in pure stands, the highest yields obtained with N fertilization were still lower than the yields in the mixtures without N application. The superiority of the mixtures was also reflected by their large N harvests (e.g. 355.9 kg N ha−1 in 2Rc 1Sb plots) compared to pure Rc (317.8 kg N ha−1), pure A (294.3 kg N ha−1) and pure Sb stands that received 150 kg N ha−1. The nitrogen harvest increased in pure Sb plots as the N doses applied increased. Furthermore, the protein concentration of the hay from the mixtures (158.2–165.7 mg g−1) was equal to that of the pure A stands (165.7 mg g−1) and higher than that of pure Sb stands (122.9 mg g−1 at 150 kg N ha−1 application) although the hay from pure Rc plots had the highest protein concentration (179.3 mg g−1). The LER values were also higher in the mixtures (e.g. 1.28 in 1A 1Sb and 1.28 in 2Rc 1Sb plots) compared with the pure stands. The mixture plots also had a more balanced temporal distribution of hay. The grass component was more productive in early spring, whereas the legume fractions grew better in the summer. In conclusion, for a sustainable production of high-quality hay and greater N harvests without using N fertilizers, binary mixtures of Sb with A in alternating rows (1A 1Sb) were recommended for long-purpose stands and in alternation with double red clover rows (2Rc 1Sb) for short purpose stands under similar conditions. N application could be eliminated in the grass–legume mixtures without any yield depression.  相似文献   

5.
APSIM Nwheat is a crop system simulation model, consisting of modules that incorporate aspects of soil water, nitrogen (N), crop residues, and crop growth and development. The model was applied to simulate above- and below-ground growth, grain yield, water and N uptake, and soil water and soil N of wheat crops in the Netherlands. Model outputs were compared with detailed measurements of field experiments from three locations with two different soil types. The experiments covered two seasons and a range of N-fertiliser applications. The overall APSIM Nwheat model simulations of soil mineral N, N uptake, shoot growth, phenology, kernels m−2, specific grain weight and grain N were acceptable. Grain yields (dry weight) and grain protein concentrations were well simulated with a root mean square deviation (RMSD) of 0.8 t ha−1 and 1.6 protein%, respectively. Additionally, the model simulations were compared with grain yields from a long-term winter wheat experiment with different N applications, two additional N experiments and regional grain yield records. The model reproduced the general effects of N treatments on yields. Simulations showed a good consistency with the higher yields of the long-term experiment, but overpredicted the lower yields. Simulations and earlier regional yields differed, but they showed uniformity for the last decade.In a simulation experiment, the APSIM Nwheat model was used with historical weather data to study the relationship between rate and timing of N fertiliser and grain yield, grain protein and soil residual N. A median grain yield of 4.5 t ha−1 was achieved without applying fertiliser, utilising mineral soil N from previous seasons, from mineralisation and N deposition. Application of N fertiliser in February to increase soil mineral N to 140 kg N ha−1 improved the median yield to 7.8 t ha−1 but had little effect on grain protein concentration with a range of 8–10%. Nitrogen applications at tillering and the beginning of stem elongation further increased grain yield and in particular grain protein, but did not affect soil residual N, except in a year with low rainfall during stem elongation. A late N application at flag leaf stage increased grain protein content by several per cent. This increase had only a small effect on grain yield and did not increase soil residual N with up to 40 kg N ha−1 applied, except when N uptake was limited by low rainfall in the period after the flag leaf stage. The economic and environmental optima in winter wheat were identified with up to 140 kg N ha−1 in February, 90 kg N ha−1 between tillering and beginning of stem elongation and 40 kg N ha−1 at flag leaf stage resulting in a median of 8.5 t ha−1 grain yield, 14.0% grain protein and 13 kg N ha−1 soil residual N after the harvest. The maximum simulated yield with maximum N input from two locations in the Netherlands was 9.9 t ha−1.  相似文献   

6.
In Jiangsu province, Southeast China, high irrigated rice yields (6–8000 kg ha−1) are supported by high nitrogen (N) fertilizer inputs (260–300 kg N ha−1) and low fertilizer N use efficiencies (recoveries of 30–35%). Improvement of fertilizer N use efficiency can increase farmers’ profitability and reduce negative environmental externalities. This paper combines field experimentation with simulation modeling to explore N fertilizer management strategies to realize high yields, while increasing N use efficiency. The rice growth model ORYZA2000 was parameterized and evaluated using data from field experiments carried out in Nanjing, China. ORYZA2000 satisfactorily simulated yield, crop biomass and crop N dynamics, and the model was applied to explore options for different N-fertilizer management regimes, at low and high levels of indigenous soil N supply, using 43 years of historical weather data.On average, yields of around 10–11,000 kg ha−1 were realized (simulated and in field experiments) with fertilizer N rates of around 200 kg ha−1. Higher fertilizer doses did not result in substantially higher yields, except under very favorable weather conditions when yields exceeding 13,000 kg ha−1 were calculated. At fertilizer rates of 150–200 kg ha−1, and at the tested indigenous soil N supplies of 0.6–0.9 kg ha−1 day−1, high fertilizer N recovery (53–56%), partial N productivity (50–70 kg kg−1) and agronomic N use efficiency (20–30 kg kg−1) were obtained with application in three equal splits at transplanting, panicle initiation and booting. Increasing the number of splits to six did not further increase yield or improve any of the N use efficiency parameters.  相似文献   

7.
Nitrogen (N) and plant density are two crucial factors that affect winter wheat (Triticum aestivum L.) yield and quality, but little is known regarding the effects of interactions between these two factors on the amount and size distribution of protein fractions and quality traits. We grew the bread wheat cultivar Jinan17 in two successive seasons (2012–2013 and 2013–2014) at three densities of 120 plants m−2 (low), 180 plants m−2 [the usual rate for a multiple-spike cultivar with high tillering ability in the North China Plain (NCP)], and 240 plants m−2 (high) and two levels of N fertilisation of 0 (low N availability treatment without N fertilisation) and 240 kg ha−1 (the usual N rate for winter wheat production in the NCP) to evaluate the effect of N level × plant density interaction on grain yield, grain protein concentration, the amount and composition of protein fractions, dough development time, dough stability time, and loaf volume. The effect of plant density on Jinan 17 grain yield and quality differed between the two N levels. As plant density increased, all the parameters listed above decreased under 0 kg ha−1 N fertilisation, but increased under 240 kg ha−1 N fertilisation. Stepwise regression analysis showed that the dough rheological properties and breadmaking quality of Jinan 17 were affected by plant density under both N levels, primarily through changes in the polymerisation degree of glutenins in the flour.  相似文献   

8.
To identify the best practice for nitrogen (N) fertilization of overwinter processing spinach, two field experiments were carried out in the Foggia plain (Southern Italy), one of the most vocated area for leafy vegetables production. The field trials were aimed to define and suggest the proper fertilizer dose, typology and the right time of application. Experiment 1 evaluated four N fertilizer doses (0, 150, 225, 300 kg ha−1) in a two-year field trial. Experiment 2 was aimed to assess the effect of the split distribution of prilled urea fertilizer in comparison with the application of nitrification inhibitor (DMPP) containing urea fertilizer, broadcasted at sowing.Spinach yield, yield quality (nitrate – NO3 – and carotenoids content), N-use efficiency and risk of soil nitrate (NO3-N) leaching were evaluated. The processing spinach yielded 37.8 and 3.6 t ha−1 of fresh and dry yield, respectively (average of the two experiments). Fresh and dry yield among the fertilizing treatments were similar. Also the β-carotene and the lutein content of spinach leaves (19.5 and 38.1 mg kg−1, respectively) were not affected by the N fertilizer dose. Conversely, the N dose strongly influenced the NO3 content of the leafy vegetable tissues (1286 mg kg−1 on average, 58% lower than the limits imposed by the EC regulation). As expected, the different rainfall pattern influenced both the leaf NO3 content and the risk of soil NO3-N leaching. The results achieved demonstrated that, in order to get a favorable trade-off, among yield, yield quality, N-use efficiency and environmental impact, the processing spinach growers of the Foggia plain area should be encouraged to apply 225 kg N ha−1 as maximum fertilization rate. Also, the split urea fertilizer application appeared as the more effective strategy for N fertilization of overwinter spinach in comparison with the use of the nitrification inhibitor containing urea fertilizer, being the last strategy not able to adequately match the N crop demand.  相似文献   

9.
Data from a field experiment (1995–2000) conducted on a fertile sandy loess in the Hercynian dry region of central Germany were used to determine the energy efficiency of winter oilseed rape (Brassica napus L.) as affected by previous crop and nitrogen (N) fertilization. Depending on the previous crop, winter oilseed rate was cultivated in two different crop rotations: (1) winter barley (Hordeum vulgare L.)–winter oilseed rape–winter wheat (Triticum aestivum L.), and (2) pea (Pisum sativum L.)–winter oilseed rape–winter wheat. Fertilizer was applied to winter oilseed rape as either calcium ammonium nitrate (CAN) or cattle manure slurry. The N rates applied to winter oilseed rape corresponded to 0, 80, 160 and 240 kg N ha−1 a−1.Results revealed that different N management strategies influenced the energy balance of winter oilseed rape. Averaged across years, the input of energy to winter oilseed rape was highly variable ranging from 7.42 to 16.1 GJ ha−1. Lowest energy input occurred when unfertilized winter oilseed rape followed winter barley, while the highest value was obtained when winter oilseed rape received 240 kg N ha−1 organic fertilization and followed winter barley. The lowest energy output (174 GJ ha−1), energy from seed and straw of winter oilseed rape, was observed when winter oilseed rape receiving 80 kg N ha−1 as organic fertilizer followed winter barley. The energy output increased to 262 GJ ha−1 for winter oilseed rape receiving 240 kg N ha−1 as mineral fertilizer followed pea. The energy efficiency was determined using the parameters energy gain (net energy output), energy intensity (energy input per unit grain equivalent GE; term GE is used to express the contribution that crops make to the nutrition of monogastric beings), and output/input ratio. The most favourable N rate for maximizing energy gain (250 GJ ha−1) was 240 kg N ha−1, while that needed for minimum energy intensity (91.3 MJ GE−1) was 80 kg N ha−1 and for maximum output/input ratio (29.8) was 0 kg N ha−1.  相似文献   

10.
Different preceding crops interact with almost all husbandry and have a major effect on crop yields. In order to quantify the yield response of winter wheat, a field trial with different preceding crop combinations (oilseed rape (OSR)–OSR–OSR–wheat–wheat–wheat), two sowing dates (mid/end of September, mid/end of October) and 16 mineral nitrogen (N) treatments (80–320 kg N ha−1) during 1993/1994–1998/1999, was carried out at Hohenschulen Experimental Station near Kiel in NW Germany. Single plant biomass, tiller numbers m−2, biomass m−2, grain yield and yield components at harvest were investigated. During the growing season, the incidence of root rot (Gaeumannomyces graminis) was observed. Additionally, a bioassay with Lemna minor was used to identify the presence of allelochemicals in the soil after different preceding crops.Averaged over all years and all other treatments, wheat following OSR achieved nearly 9.5 t ha−1, whereas the second wheat crop following wheat yielded about 0.9 t ha−1 and the third wheat crop following 2 years of wheat about 1.9 t ha−1 less compared with wheat after OSR. A delay of the sowing date only marginally decreased grain yield by 0.2 t ha−1. Nitrogen fertilization increased grain yield after all preceding crop combinations, but at different levels. Wheat grown after OSR reached its maximum yield of 9.7 t ha−1 with 210 kg N ha−1. The third wheat crop required a N amount of 270 kg N ha−1 to achieve its yield maximum of 8.0 t ha−1.Yield losses were mainly caused by a lower ear density and a reduced thousand grain weight. About 4 weeks after plant establishment, single wheat plants following OSR accumulated more biomass compared to plants grown after wheat. Plants from the third wheat crop were smallest. This range of the preceding crop combinations was similar at all sampling dates throughout the growing season.Root rot occurred only at a low level and was excluded to cause the yield losses. The Lemna bioassay suggested the presence of allelochemicals, which might have been one reason for the poor single plant development in autumn.An increased N fertilization compensated for the lower number of ears m−2 and partly reduced the yield losses due to the unfavorable preceding crop combination. However, it was not possible to completely compensate for the detrimental influences of an unfavorable preceding crop on the grain yield of the subsequent wheat crop.  相似文献   

11.
The level of N fertilization and the content of leaf N in Cynodon dactylon × C. transvaalensis Burtt Davy cv. ‘Tifway 419’ bermudagrass were evaluated non-destructively with a fluorescence-based method. It was applied directly into the field by using the Multiplex portable fluorimeter during two consecutive seasons (2010 and 2011). In the 2010 experiment, the nitrogen balance index (NBI1) provided by the sensor was able to discriminate (at P < 0.05) six different N levels applied, up to 250 kg ha−1, with a precision (root mean square error, RMSE) in the rate estimate of 3.29 kg ha−1. In 2011, the index was insensitive to the N treatment between 150 kg ha−1 and 250 kg ha−1 N rates, and its precision was 39.98 kg ha−1. Calibration of the sensor by using the destructive analysis of turf samplings showed a good linear regression between NBI1 and the leaf N content for both 2010 (R2 = 0.81) and 2011 (R2 = 0.93) experiments. This allowed mapping of the leaf N spatial distribution acquired by the sensor in the field with a prediction error of 0.21%. Averaging the overall estimates of leaf N content per N treatment provided an upper limit of 200 kg ha−1 for the required fertilization, corresponding to a critical level of leaf N of about 2.3%. Our results confirm the usefulness of the new fluorescence-based method and sensor for a precise management of fertilization in turfgrass.  相似文献   

12.
Poor soil and drought stress are common in semiarid areas of China, but maize has a high demand for nitrogen (N) and water. Maize production using the technique of double ridges and furrows mulched with plastic film are being rapidly adopted due to significant increases in yield and water use efficiency (WUE) in these areas. This paper studied N use and water balance of maize crops under double ridges and furrows mulched with plastic-film systems in a semiarid environment over four growing seasons from 2007 to 2010. To improve precipitation storage in the non-growing season, the whole-year plastic-film mulching technique was used. There were six treatments which had 0, 70, 140, 280, 420 or 560 kg N ha−1 applied in every year for maize. In April 2011, spring wheat was planted in flat plots without fertilizer or mulch following four years of maize cultivation. After four years, all treatments not only maintained soil water balance in the 0–200 cm soil layer but soil water content also increased in the 0–160 cm soil layer compared to values before maize sowing in April 2007. However, under similar precipitation and only one season of spring wheat, soil water content in the 0–160 cm soil layer sharply decreased in all treatments compared to values before sowing in April 2011. Over the four years of maize cultivation, average yield in all treatments ranged from 4071 to 6676 kg ha−1 and WUE ranged from 18.2 to 28.2 kg ha−1 mm−1. In 2011, the yield of spring wheat in all treatments ranged from 763 to 1260 kg ha−1 and WUE from 3.5 to 6.5 kg ha−1 mm−1. The potential maximum grain yield for maize was 6784 kg ha−1 with 360 kg N ha−1 applied for four years, but considerable NO3N accumulated in the soil profile. A lesser application (110 kg N ha−1) to this tillage system yielded in 82% of the maximum, increased nitrogen use efficiency and mitigated the risk of nitrogen loss from the system. This study suggests that double ridge–furrow and whole-year plastic-film mulching could sustain high grain yields in maize with approximately 110 kg N ha−1 and maintain soil water balance when annual precipitation is >273 mm in this semiarid environment.  相似文献   

13.
The expansion of biogas production from anaerobic digestion in the Po Valley (Northern Italy) has stimulated the cultivation of dedicated biomass crops, and maize in particular. A mid-term experiment was carried out from 2006 to 2010 on a silt loamy soil in Northern Italy to compare water use and energy efficiency of maize and sorghum cultivation under rain fed and well-watered treatments and at two rates of nitrogen fertilization. The present work hypothesis were: (i) biomass sorghum, for its efficient use of water and nitrogen, could be a valuable alternative to maize for biogas production; (ii) reduction of irrigation level and (iii) application of low nitrogen fertilizer rate increase the efficiency of bioenergy production. Water treatments, a rain fed control (I0) and two irrigation levels (I1 and I2; only one in 2006 and 2009), were compared in a split–split plot design with four replicates. Two fertilizer rates were also tested: low (N1, 60 kg ha−1 of nitrogen; 0 kg ha−1 of nitrogen in 2010) and high (N2, 120 kg ha−1 of nitrogen; 100 kg ha−1 of nitrogen in 2010). Across treatments, sorghum produced more aboveground biomass than maize, respectively 21.6 Mg ha−1 and 16.8 Mg ha−1 (p < 0.01). In both species, biomass yield was lower in I0 than in I1 and I2 (p < 0.01), while I1 and I2 did differ significantly. Nitrogen level never affected biomass yield. Water use efficiency was generally higher in sorghum (52 kg ha−1 mm−1) than in maize (38 kg ha−1 mm−1); the significant interaction between crop and irrigation revealed that water use efficiency did not differ across water levels in sorghum, whereas it significantly increased from I0 and I1 to I2 in maize (p < 0.01). The potential methane production was similar in maize and sorghum, while it was significantly lower in I0 (16505 MJ ha−1) than in I1 and I2 (21700 MJ ha−1). The only significant effect of nitrogen fertilization was found in the calculation of energy efficiency (ratio of energy output and input) that was higher in N1 than in N2 (p < 0.01). These results support the hypothesis that (i) sorghum should be cultivated rather than maize to increase energy efficiency, (ii) irrigation level should replace up to 36% of ETr and (iii) nitrogen fertilizer rate should be minimized to maximize the efficiency in biomass production for anaerobic digestion in the Po Valley.  相似文献   

14.
In the rainfed mid-hill region of Nepal, most fields receive 2–3 t ha−1 of organic compost application every year. Despite efficient recovery and use of organics in the mixed crop-animal systems that predominant in the mid-hills, depleted soil fertility is widely understood to be a significant constraint to crop productivity, with most farmers achieving maize grain yields below 2 t ha−1. Increased use of fertilizer may arrest and even reverse long-term soil quality degradation, but few farmers in the mid-hills use them at present and existing recommendations are insufficiently responsive to site, varietal, and management factors that influence the productivity and profitability of increased fertilizer use. Moreover, policy makers and development practitioners often hold the perception that returns to fertilizer use in the mid-hills are too low to merit investment. In this study, on-farm experiments were conducted at 16 sites in the Palpa district, Nepal to assess the responsiveness of a maize hybrid (DKC 9081) and an ‘improved’ open-pollinated maize variety (‘OPV’, Manakamana-3) to four nitrogen (N) rates, i.e., 0, 60, 120 and 180 kg ha−1, with each N rate response evaluated at 30:30 and 60:60 kg ha−1 rates of phosphorus (P2O5) and potassium (K2O), respectively. With sound agronomy and high rates of fertilizer (180:60:60 kg N:P2O5:K2O ha−1), grain yields observed in the field experiments exceeded 8 t ha−1 with hybrids and 6 t ha−1 with OPV. Yield levels were lower for OPV than hybrid at every level of applied N, but both genotypes responded linearly to N with partial factor productivity for N (PFPN) ranging from 14 to 19 for OPV versus 26–30 for hybrid, with improved N efficiencies obtained when P and K rates were significantly higher. Averaged across phosphorus (P) and potassium (K) levels, a $ 1 incremental investment in fertilizer increased the gross margin (GM) by $ 1.70 ha−1 in OPV and by $ 1.83 ha−1 in the hybrid. For the full response of N, requires higher rate of P2O5:K2O and vice-versa and full response to P2O5:K2O does not occur if N is absent. These results suggest that, i) degraded soils in the mid-hills of Nepal respond favorably to macronutrient fertilizers – even at high rates, ii) balanced fertilization is necessary to optimize returns on investments in N but must be weighed against additional costs, iii) OPVs benefit from investments in fertilizer, albeit at a PFPN that is 36–47% lower than for hybrids, and, consequently iv) hybrids are an effective mechanism for achieving a higher return on fertilizer investments, even when modest rates are applied. To extend these findings across years and sites in the mid-hills, crop growth simulations using the CERES-maize model (DSSAT) were conducted for 11 districts with historical weather and representative soils data. Average simulated (hybrid) maize yields with high fertilizer rate (180:60:60 kg N:P2O5:K2O ha−1) ranged from 3.9 t ha−1 to 7.5 t ha−1 across districts, indicating a high disparity in attainable yield potential. By using these values to estimate district-specific attainable yield targets, recommended N fertilizer rates vary between 65 and 208 kg N ha−1, highlighting the importance of developing domain-specific recommendations. Simulations also suggest the potential utility of using weather forecasts in tandem with site and planting date information to adjust fertilizer recommendations on a seasonal basis.  相似文献   

15.
In areas of Southern Europe with very intensive pig production, most of the pig slurry (PS) is applied as fertilizer. However, in the European Union, no more than 170 kg N ha−1 year−1 can be applied in nitrate vulnerable zones (NVZs) from livestock manures. In this context, a six-year trial was conducted for a maize-triticale double-annual forage cropping rotation under rainfed conditions. Four different N rates were applied (0, 170, 250 and 330 kg N ha−1 year−1), to evaluate their effect on crop yield, N uptake, unrecovered N and soil nitrate content. The corresponding PS rates were defined as zero (PS 0), low (PSL) medium (PSM) and high (PSH). The annual average dry matter (DM) yields (maize + triticale) for the PS fertilization treatments PS0, PSL, PSM and PSH were 12.6, 17.7, 20.2 and 22.0 Mg DM ha−1, respectively. Maize DM yield was influenced mainly by weather conditions, and triticale DM yield was clearly influenced by initial soil NO3-N and PS fertilization rates. Unrecovered N was affected by PS fertilization rate and initial soil NO3-N content. A residual effect of the PS when applied to maize had an important effect on soil NO3-N and subsequent triticale DM yield. Moreover, total annual average unrecovered N, considering the sum of both crops (maize + triticale), were 91, 144, and 222 kg N ha−1 in PSL, PSM and PSH, respectively. In order to avoid part of this unrecovered N, mainly by lixiviation of nitrates, PS fertilization in triticale should be applied as side dressing at tillering. The application of N, in the form of PS, at rates higher than the legally permitted maximum of 170 kg N ha−1 year−1, may result in better yields. However, high rates of PS fertilization may originate in significantly lower N use efficiency and a higher potential environmental impact in double-cropping systems, practiced in rainfed sub-humid Mediterranean conditions.  相似文献   

16.
Soybean (Glycine max (L.) Merr.) is able to fix atmospheric nitrogen in symbiosis with the bacteria Bradyrhizobium japonicum. Because these bacteria are not native in European soils, soybean seeds must be inoculated with Bradyrhizobium strains before sowing to fix nitrogen and meet their yield potential. In Central Europe soybean cultivation is still quite new and breeding of early maturing soybean varieties adapted to cool growing conditions has just started.Under these low temperature conditions in Central Europe the inoculation with different, commercially available Bradyrhizobium inoculants has resulted in unsatisfactory nodulation. The aim of this study was: (i) to test the ability of commercially available inoculants to maximize soybean grain yield, protein content and protein yield, (ii) to study the interaction of different inoculants with different soybean varieties for two different sites in Germany under cool growing conditions over three years and (iii) to determine the variability of biological nitrogen fixation. Field trials were set up on an organically managed site at the Hessische Staatsdomäne Frankenhausen (DFH) and on a conventionally managed site in Quedlinburg (QLB) for three consecutive seasons from 2011 to 2013. Three early maturing soybean varieties—Merlin, Bohemians, Protina—were tested in combination with four different Bradyrhizobium inoculants—Radicin No.7, NPPL-Hi Stick, Force 48, Biodoz Rhizofilm—and compared with a non-inoculated control. Effective inoculation with Bradyrhizobium strains increased grain yield, protein content and protein yield by up to 57%, 26% and 99%, respectively. Grain yield, protein content and protein yield were generally higher in DFH. Average grain yield was 1634 kg ha−1 in QLB (2012–2013) and 2455 kg ha−1 in DFH (2011–2013), average protein content was 386 g kg−1 in QLB and 389 g kg−1 in DFH and average protein yield was 650 kg ha−1 in QLB and 965 kg ha−1 in DFH. The percentage of nitrogen derived from air (Ndfa) ranged between 40% and 57%. Soybeans inoculated with Radicin No. 7 failed to form nodules, and crop performance was identical to the non-inoculated control. Biodoz Rhizofilm, NPPL Hi-Stick and Force 48 are suitable for soybean cultivation under cool growing conditions in Germany. Interactions between soybean variety and inoculant were significant for protein content and protein yield at both sites, but not for nodulation, grain yield, thousand kernel weight and Ndfa. The variety Protina in combination with the inoculant Biodoz Rhizofilm can be recommended for tofu for both tested sites, while Merlin and Protina in combination with Biodoz Rhizofilm are recommended for animal fodder production in DFH. Animal fodder production was not profitable in QLB due to low protein yields.  相似文献   

17.
Depending on soil and management, ploughing up grassland for use as arable land can lead to an increase in the release of mineralized nitrogen and a high risk of nitrogen leaching during winter. The amount of N leaching is also dependent on the N efficiency of following crops and the level of N fertilization.In a field experiment in northwest Germany permanent grassland was ploughed and used as arable land. The experiment was conducted over 2 years at three sites and investigated two main factors: (i) succeeding crops, either spring barley (and catch crop)–maize or silage maize–maize; and (ii) N-fertilization either nil or moderate (120 kg N ha−1 for barley or 160 kg for maize). Plant yields, the soil mineral nitrogen (SMN) content and the nitrate leaching losses over winter were determined. On average for the 2-year period, the SMN in autumn and the nitrate leaching losses during winter for the rotation barley–maize were 76 kg ha−1 SMN and 81 kg N ha−1 N leaching losses, and for maize–maize they amounted to 108 and 113 kg ha−1, respectively. The SMN and N leaching losses for the plots with no N fertilizer were 49 and 52 kg N ha−1 and for the plots fertilized at a moderate N level they were 135 and 142 kg N ha−1, respectively.We conclude that although the extent of nitrate leaching is influenced by the site conditions and management of the grassland prior to ploughing, the management after ploughing is the decisive factor. The farmer can significantly reduce nitrate leaching with his choice of succeeding crop and the amount of N fertilization.  相似文献   

18.
The aim of the present work was to evaluate the effect of soil water availability and nitrogen fertilization on yield, water use efficiency and agronomic nitrogen use efficiency of giant reed (Arundo donax L.) over four-year field experiment.After the year of establishment, three levels for each factor were studied in the following three years: I0 (irrigation only during the year of establishment), I1 (50% ETm restitution) and I2 (100% ETm restitution); N0 (0 kg N ha−1), N1 (60 kg N ha−1) and N2 (120 kg N ha−1).Irrigation and nitrogen effects resulted significant for stem height and leaf area index (LAI) before senescence, while no differences were observed for stem density and LAI at harvest.Aboveground biomass dry matter (DM) yield increased following the year of establishment in all irrigation and N fertilization treatments. It was always the highest in I2N2 (18.3, 28.8 and 28.9 t DM ha−1 at second, third and fourth year growing season, respectively). The lowest values were observed in I0N0 (11.0, 13.4 and 12.9 t DM ha−1, respectively).Water use efficiency (WUE) was significantly higher in the most stressed irrigation treatment (I0), decreasing in the intermediate (I1) and further in the highest irrigation treatment (I2). N fertilization lead to greater values of WUE in all irrigation treatment.The effect of N fertilization on agronomic nitrogen use efficiency (NUE) was significant only at the first and second growing season.Giant reed was able to uptake water at 160–180 cm soil depth when irrigation was applied, while up to 140–160 cm under water stress condition.Giant reed appeared to be particularly suited to semi-arid Mediterranean environments, showing high yields even in absence of agro-input supply.  相似文献   

19.
Experiments were carried out to study the effects of N fertilizer rates and timing of application on the yield and grain quality of a rainfed emmer crop (Triticum dicoccum Shübler) under Mediterranean conditions. The following parameters were analyzed: hulled and net grain yield, hulled index, spikes m?2, spikelets per spike, kernels m?2, thousand-kernel weight, biomass, plant height, lodging, grain protein and ash content. In the first experiment, different N rates (30, 60 and 90 kg N ha?1 plus a control not fertilized) were split at three phenological stages (seeding 20%, tillering 40% and stem elongation 40%). In the second experiment, three N doses (30, 60 and 90 kg N ha?1) were applied to three crop stages (seeding, tillering and stem elongation). In the third experiment, the rate of 90 kg N ha?1 was distributed in different amounts (90-0-0, 0-90-0, 0-0-90, 45-45-0, 45-0-45, 0-45-45, 30-30-30) at the three mentioned crop stages. Increasing N rates resulted in higher hulled and net grain yield, as well as protein content. Fertilization (from 60 to 90 kg N ha?1) applied to tillering maximized hulled and net grain yield. Fertilization (90 kg N ha?1) applied to stem elongation gave the highest grain protein content (%) while splitting application (30 kg N ha?1 each) at three phenological stages maximized protein yield per hectare. Application of half or one-third of 90 kg N ha?1 to stem elongation improved grain protein content in comparison with applications at sowing, or at both sowing and tillering. The main factor determining higher yields with increasing N rates in this emmer crop was the number of kernels m?2. None of the yield components accounted for differences in grain yield when timing and splitting application were varied.  相似文献   

20.
In dryland agricultural systems, pig slurry (PS) is usually applied to cereal crops only at sowing, and slurries accumulate for the rest of the year in pits. In this context, a four-year experiment was established in order to evaluate the feasibility of PS applications at the barley or wheat tillering stage. The main treatments were PS either applied at sowing (25 Mg ha−1) or not, but they alternated after a two-year period. Both were annually combined with eight side-dressing treatments at cereal tillering: mineral N as NH4NO3 (M; 60 or 120 kg N ha−1 yr−1), PS from fattening pigs (PSf; 17, 30, 54 Mg ha−1 yr−1), PS from sows (PSs; 25, 45, 81 Mg ha−1 yr−1) and a treatment without N. The combined fertilization treatments were 18 plus a control (no N applied). In the context of crop rotation, the biennial alternation of PS applied at sowing allowed the control of soil nitrate increments, while PS side-dressing improved N recovery compared with a unique application at sowing. The highest yields (>3.6 Mg ha−1 yr−1) were obtained with an annual average (4-yr) N rate close to 173 kg N ha−1 (±40 kg N ha−1). The best overall strategies corresponded to PSs side-dressings of 50–90 kg N ha−1. These PSs rates also recorded the highest values on the five calculated N-efficiency indexes, which were higher than or similar to results from M side-dressings or those recorded in the literature. These similarities (M vs. PSs) were also shown by the reduction of unaccounted-for N inside the overall N balance. Thus, split PS application during the crop cycle is a sound fertilization option in dryland systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号