首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The southern flounder Paralichthys lethosligma is a high‐valued flatfish found in estuarine and shelf waters of the south Atlantic and Gulf coasts of the United States. Wide temperature and salinity tolerances exhibited by juveniles and adults make it a versatile new candidate for commercial culture, and studies are underway in the southeastern U.S. to develop hatchery methods for this species. The objectives of this study were to establish illumination and salinity conditions that optimize growth and survival of larval southern flounder reared through the yolk‐sac and first feeding stages to 15‐d post‐hatching (15 dph). Early embryos were stocked into black 15‐L tanks under light intensities of 5, 50, 100, and 1,000 Ix and at salinities of 24 and 34 ppt in a 4 ± 2 factorial design. Significant (P 0.05) effects of both light intensity and salinity on growth and survival were obtained, with no interaction between these effects. On 11 dph and 15 dph, growth was generally maximized at the intermediate light intensities (50 and 100 Ix) and minimized at the extremes (5 and 1,000 Ix). By 15 dph, growth was higher at 34 ppt than at 24 ppt. Survival to 15 dph showed trends similar to those of growth. Survival was higher at 100 Ix (avg. = 46%, range = 41–54%) than at 5 Ix (avg. = 11%, range = 6–17%) and higher at 34 ppt (avg. = 43%, range = 3145%) than at 24 ppt (avg. = 17%, range = 8–38%). Whole‐body osmolality (mOsmol/kg) was significantly lower in larvae reared at 24 ppt (avg. = 304, range = 285–325) through 11 dph than in larvae reared at 34 ppt (avg. = 343, range = 296–405). Larvae reared under the extreme light intensity treatments (5 and 1,000 Ix) at 34 ppt appeared to exhibit osmoregulatory stress, particularly on 11 dph, when a marked increase in whole‐body osmolality was observed. The mid‐intensity treatments (50 and 100 Ix) at 34 ppt optimized growth and survival of larval southern flounder in this study; and elicited the most stable osmotic response. These conditions appear to be consistent with those that southern flounder larvae encounter in nature during this early developmental period.  相似文献   

2.
The southern flounder (Paralichthys lethostigma) is a commercially important marine flatfish from the southeastern Atlantic and Gulf Coasts of the USA and an attractive candidate for aquaculture. Hatchery methods are relatively well developed for southern flounder; however, knowledge of the optimum environmental conditions for culturing the larval stages is needed to make these technologies more cost effective. The objectives of this study were to determine the effects of water turbulence (as controlled by varying rates of diffused aeration) on growth, survival, and whole‐body osmolality of larval southern flounder from hatching through day 16 posthatching (d16ph). Embryos were stocked into black 15‐L cylindrical tanks under four turbulence levels (20, 90, 170, and 250 mL/min of diffused aeration) and two salinities (24 and 35 ppt) in a 4 × 2 factorial design. Larvae were provided with enriched s‐type rotifers from d2ph at a density of 10 individuals/mL. Temperature was 19 C, light intensity was 390 lx, and photoperiod was 18 L:6 D. Significant (P < 0.05) effects of turbulence on growth (notochord length [NL], wet weight, and dry weight) were observed. On d16ph, NL (μm) increased with decreasing turbulence level and was significantly greater at 20 mL/min (64.2) and 90 mL/min (58.2) than at 170 mL/min (56.3) and 250 mL/min (57.2). Survival declined primarily during the prefeeding and first‐feeding stages from d0 to d8ph, then stabilized from d8 to d16ph. In contrast to growth trends, survival (%) on d16ph increased with increasing turbulence levels and was significantly greater at 170 mL/min (57.9) and 250 mL/min (54.0) than at 20 and 90 mL/min (21.4 and 26.2, respectively). Mean rotifer concentrations (individuals/mL) at 24 h postfeeding were significantly higher (P < 0.05) in the low‐turbulence treatments of 20 mL/min (4.48) and 90 mL/min (4.23) than in the high‐turbulence treatments of 170 and 250 mL/min (2.28 and 2.45, respectively). Under both salinities, larval whole‐body osmolality (mOsm/kg) increased with increasing turbulence levels and was significantly higher at 250 mL/min (427) than at 20 mL/min (381), indicating osmoregulatory stress at the higher turbulence levels. On d14ph, larvae in all treatments were positively buoyant in 35 ppt and negatively buoyant in 24 ppt. Results showed that growth of southern flounder larvae in 15‐L tanks was maximized under low turbulence levels of 20 and 90 mL/min, while survival was maximized at high turbulence levels of 170 and 250 mL/min. The data suggested that, in prefeeding‐ and early‐feeding‐stage larvae (which have weak swimming ability), higher turbulence levels improved buoyancy and prevented sinking. In feeding‐stage larvae (which are relatively strong swimmers), higher turbulence levels caused excessive swimming, osmoregulatory stress, and slower growth. Based on these results, we recommend that turbulence levels be maintained relatively high during prefeeding (yolk sac) and first‐feeding stages to maintain buoyancy and survival and then decreased for mid‐ to late‐feeding‐ and premetamorphic stage larvae to optimize prey encounters and feeding efficiency.  相似文献   

3.
Abstract.– Parameters associated with optimum larval-rearing conditions are important in developing the culturing protocol of potential aquacultural species, and have yet to be addressed in terms of water temperature and salinity for Spisula solidissima similis , the southern Atlantic surfclam. Hatchery spawned S. s. similis larvae were reared to late pediveliger stage in five simultaneously conducted water temperature and salinity treatments. This larval growth and survival experimentation consisted of three salinity treatments (15, 25 and 30 ppt) in conjunction with a water temperature of 20 C, and two water temperature treatments (15 and 25 C) in conjunction with a salinity of 25 ppt. In the 20 C temperature treatment, significantly higher larval survival and greater growth occurred (both, P < 0.0001) as compared to the 15 C and 25 C treatments by day 22. Complete larval mortality occurred in the 20 C, 15 ppt salinity treatment by day 4. No significant differences in larval survival occurred between the 25 ppt, 20 C and 30 ppt, 20 C treatments by day 22 (P = 0.714). However, significantly greater larval growth occurred in the 25 ppt, 20 C compared to the 30 ppt, 20 C treatment (P = 0.009). The optimum rearing temperature and salinity for hatchery spawned S s. similis larvae to late pediveliger stage are 20 C and 25 ppt, respectively, within the temperatures and salinities tested.  相似文献   

4.
High larval mortalities during rearing of gilthead bream, Sparus auratus L., led to experiments on the influence of salinity and temperature on eggs and yolk-sac larvae. Test salinities ranged from 5 to 70 ppt for eggs and from 15 to 45 ppt for larvae; experimental temperatures were 18–20°C for eggs and 18, 23 and 26°C for larvae. Spawning conditions were 18–20°C and 33–35 ppt salinity; the yolk-sac larvae were chosen from hatches obtained under similar conditions (18°C and 35 ppt salinity). For eggs the optimum survival range was found to be 30–50 ppt at 18°C and 15–60 ppt at 23°C, while that for yolk-sac larvae was 15–25 ppt at all three temperatures. Choosing normal development (no dorsal curvature) as the decisive criterion, the optimum salinity range for egg incubation was reduced to 30–40 ppt at 18°C and to 35–45 ppt at 23°C, while that for the yolk-sac stage remained 15–25 ppt at all test temperatures. Egg incubation was most successful at salinity-temperature combinations close to those during spawning, whereas salinity had to be reduced by at least 10 ppt for yolk-sac larvae.  相似文献   

5.
Four separate studies were done on Southern flounder Paralichthys lethostigma larvae during first feeding and metamorphosis to determine the effects of stocking density, salinity, and light intensity on growth and survival. One study used stocking densities of 10, 20, 40, and 80 fish/L during first feeding; the second study compared the growth and survival of larvae stocked at 20 and 33 ppt; and a third experiment evaluated stocking densities of 1/L and 3/L under two different light intensities (1,600 lux vs 340 lux) during metamorphosis. The fourth experiment tested the effects of different salinities (0, 10, 20 and 30 ppt) on larval growth and survival during metamorphosis. Growth and survival (overall 6.9%) were not significantly different ( P > 0.05) for stocking rates up to 80/L. Larvae placed into 20 ppt salinity had survival through first feeding similar to that of larvae raised at 33 ppt. During metamorphosis, light intensity had no effect ( P > 0.05) on growth or survival, but fish stocked at 3/L had significantly lower ( P < 0.05) survival than fish at 1/L. Complete mortality of larvae occurred at 0 ppt. Growth and survival past metamorphosis were not significantly different ( P > 0.05) at 10, 20 and 30 ppt, but unmetamorphosed fish did not survive to day 60 at 10 ppt. Based on these results, practical larviculture of Southern flounder may require a two-step process with high stocking rates (80 fish/L) through first feeding and lower densities (1/L) through metamorphosis. Fingerling production in fertilized nursery ponds might he possible at salinity as low as 20 ppt.  相似文献   

6.
Two 10-day hatchery experiments were conducted to evaluate s-type (Hawaiian strain) and ss-type (Thailand strain) rotifers Brachionus plicatilis and cryogenically preserved oyster Crassostrea gigas trochophores as first feeds for larval Nassau grouper Epinephelus striatus. Newly hatched grouper larvae were reared at densities of 11.2–20.8/L in 500-L tanks at 36–38 ppt salinity, 25–26 C, and under a 11-h light: 13-h dark photoperiod. Beginning on day 2 posthatching (d2ph), prey were maintained at a density of 20 individuals/mL, while phytoplankton (Nanochloropsis oculata) was maintained at 500 × 103 cells/mL. In experiment 1, survival and growth were higher (P < 0.05) for fish fed small s-type rotifers (mean lorica length = 117 μm; fish survival = 7.96%) selected by sieving than for fish fed non-selected rotifers (mean lorica length = 161 μm; fish survival = 2.13%). These results demonstrated the advantage of small prey size and suggested that super-small (ss-type) rotifer strains would be beneficial. In experiment 2, three feeding regimens were compared: 1) ss-type rotifers (mean lorica length = 147 μm); 2) oyster trochophores (mean diameter = 50 μm) gradually replaced by ss-type rotifers from d5ph; and 3) a mixed-prey teatment of 50% oyster trochophores and 50% ss-type rotifers. Survival was higher (P < 0.05) for larvae fed mixed prey (15.6%) than for those fed rotifers (9.73%) or trochophores and rotifers in sequence (2.55%), which also showed the slowest growth. Oyster trochophores, although inadequate when used exclusively, enhanced survival when used in combination with rotifers, possibly by improving size selectivity and dietary quality. In a pilot-scale trial, larvae were cultured through metamorphosis in two 33.8-m3 outdoor tanks. Fertilized eggs were stocked at a density of 10 eggs/L and larvae were fed ss-type rotifers from d2ph-d20ph, newly hatched Artemia from d15ph-d18ph, 1-d-old Artemia nauplii from d18ph-d62ph. Survival on d62ph was 1.17%, with a total of 5,651 post-metamorphic juveniles produced.  相似文献   

7.
The aim of this study was to evaluate the growth and survival of pacu, Piaractus mesopotamicus, larvae reared in different salinities and to determine the Artemia nauplii life span in freshwater and in saline water. First feeding 5‐d‐old pacu larvae were reared in freshwater or at 2, 4, 6, 8, 10, 12, and 14 ppt salinities. The larvae were reared in 1.5‐L aquaria at a density of 10 larvae/L with three replicates per treatment. After 10 d of rearing, significant differences (P < 0.05) were observed for growth and survival. Larval growth was higher at 2 and 4 ppt, and survival at 2 ppt was 100%. In freshwater and at 4, 6 and 8 ppt, the survival was 91.1, 93.3, 73.3, and 39.9%, respectively. At higher salinities, there was 100% mortality after 2 h (12 and 14 ppt) and 8 h (10 ppt) of exposure. The slightly saline water of at least 2 ppt increased the Artemia nauplii life span compared to the life span in freshwater. Later, in a second trial, 5‐d‐old pacu larvae were reared in freshwater and at 2 and 4 ppt salinities during the first 5 or 10 d of active feeding, and then the fish were transferred to freshwater. At the end of 15 d, larval growth was lower in freshwater (42 mg) than in treatments 2 and 4 ppt (59–63 mg). The abrupt transfer of fish from freshwater to slightly saline water and the return to freshwater did not affect the survival rates (89–97%). The larvae were able to adapt to these saline environments and handle abrupt changes in salt concentration. We concluded that salinity concentration of 2 ppt can be used for pacu larval rearing, allowing the Artemia nauplii lifetime to last longer and cause faster fish growth.  相似文献   

8.
For large-scale seed production of sea cucumbers through a hatchery system, it is imperative to know the effects of environmental parameters on larval rearing. Auricularia larvae (48 h post-fertilization) were obtained from induced spawning of Holothuria spinifera and used in experiments to ascertain the effects of temperature, salinity and pH on the growth and survivorship of the larvae. The larvae were reared for 12 days at temperatures of 20, 25, 28 and 32 °C; salinities of 15, 20, 25, 30, 35 and 40 ppt; and pH of 6.5, 7.0, 7.5, 7.8, 8.0, 8.5 and 9.0. The highest survivorship and growth rate and fastest development of auricularia indicated that water temperature of 28–32 °C, salinity of 35 ppt and pH of 7.8 were the most suitable conditions for rearing larvae of H. spinifera.  相似文献   

9.
The performance of Australian snapper, Pagrus auratus, larvae from 4 to 33 days posthatch (dph) under two environmental rearing regimes was evaluated in 2000‐L commercial‐scale larval rearing tanks (N = 3 tanks/treatment). The treatments were the following: (1) a varying regime of salinity (20–35 ppt), temperature (24 C), and photoperiod (12 light [L] : 12 dark [D] to swim bladder inflation and then 18L : 06D) and (2) a constant regime of salinity (35 ppt), temperature (21 C), and photoperiod (14L : 10D). The final total length (TL) and wet and dry weights (mean ± SEM) of larvae grown in the varying regime were greater (15.6 ± 0.5 mm; 42.4 ± 3.4 mg wet weight; and 7.3 ± 0.6 mg dry weight) than those of larvae grown in the constant regime (11.1 ± 0.2 mm; 12.9 ± 0.8 mg wet weight; and 2.1 ± 0.2 mg dry weight). By 33 dph, larvae in the varying regime were fully weaned from live feeds to a formulated pellet diet and were suitable for transfer from the hatchery to a nursery facility. In contrast, larvae in the constant regime were not weaned onto a pellet diet and still required live feeds. Neither survival (Treatment 1, 14.2 ± 3.0% and Treatment 2, 13.3 ± 1.9%) nor swim bladder inflation (Treatment 1, 70.0 ± 17.3% and Treatment 2, 70.0 ± 11.5%, by 13 dph) was affected by rearing regime. The incidence of urinary calculi at 7 dph was greatest initially in the varying regime; however, by 19 dph, when larvae were 8.0 ± 0.28 mm TL, very few larvae in this treatment had urinary calculi. In contrast, many larvae in the constant regime had developed urinary calculi and this continued until the end of the experiment. The incidence of urinary calculi was not associated with larval mortality. Extrapolation of the snapper larval growth curves for the constant larval rearing regime predicts that a further 15–18 d, or approximately 1.5 times longer, will be required until these larvae attain the same size and development of larvae reared in the varying regime.  相似文献   

10.
Larvae of Metapenaeus monoceros (Fabricius) at protozoea 1 (PZ1) stage were stocked in 2‐L glass flasks to investigate the effects of various salinities (25, 30, 35, 40, 45, 50 and 55 ppt) on growth and survival until the post‐larval (PL) stages. The PZ larvae were not able to tolerate a sudden salinity drop of over 10 ppt. Yet, an abrupt salinity increase of over 10 or even 15 ppt did not cause mortality. The PZ larvae were successfully acclimated to different test salinities at a rate of 4 ppt h?1. The larvae displayed better tolerance to high rather than low salinities. The lowest and highest critical salinities appeared to be 22 and 55 ppt respectively. Taking into account survival, growth and development results, the optimal salinity for the larval culture of M. monoceros inhabiting the Eastern Mediterranean was 40 ppt. At this salinity, the PZ1 larvae were successfully cultured until PL1 stage within 11 days with 68% survival on a feeding regime of Tetraselmis chuii Kylin (Butcher) (20 cells μ L?1), Chaetoceros calcitrans Paulsen (50 cells μ L?1), Isochrysis galbana Parke (30 cells μL?1) and five newly hatched Artemia nauplii mL?1 from M1 onwards at 28 °C.  相似文献   

11.
Growth of juvenile Florida red tilapin (1.57 g average weight) spawned and sex-reversed (monosex male) at salinities of 4 ppt and 18 ppt was compared at rearing salinities of 18 ppt and 36 ppt in 200 L aquaria under controlled photoperiod (12 L:12 D) and temperature (28 C). Growth was significantly higher for progeny spawned at 18 ppt than those spawned at 4 ppt under both rearing salinities with no difference observed between 18 ppt and 36 ppt.
In another experiment, growth of juvenile progeny (0.98 g average weight) spawned and sex-reversed at salinities of 2 ppt and 18 ppt was compared in 24 m3 outdoor pools at 36 ppt. When water temperatures exceeded 27 C, growth and survival were not significantly different between these groups. However, when temperatures fell below 25 C, growth and survival were significantly higher among progeny spawned at 18 ppt.
The results showed that progeny spawned and reared through early ontqenetic development in brackishwater are better adapted for growth in brackish and seawater and suggested that these fish may have higher resistance to cold-stress in seawater than progeny spawned in freshwater.  相似文献   

12.
Along the Atlantic coast black sea bass occur from the Gulf of Maine to Florida and support important commercial and recreational fisheries. Interest in commercial production of black sea bass has increased in recent years due to high demand and limited seasonable availability. Efforts towards large-scale production have been hampered by a high incidence of early larval mortality. Two of the most important environmental variables affecting hatchery production of marine finfish larvae are temperature and salinity. In the wild, larval black sea bass are found in waters with temperatures of 12–24 C and salinity levels of 30–35 ppt. Studies were conducted to define the temperature and salinity ranges that support growth and development of black sea bass during early life stages. Three developmental phases were investigated: 1) fertilization to hatch: 2) hatch through yolk sac absorption: and 3) during the initial exogenous feeding stage (5–14 days post hatch: DPH). Fertilized eggs were obtained by manual spawning of fish following administration of LHRHa. Fertilized eggs were transferred to 300-mL glass Petri dishes or 500-mL beakers to assess the effects of salinity and temperature through hatch and yolk sac absorption, respectively. To determine environmental effects on growth and survival during initial exogenous feeding 400 actively feeding larvae were cultured in green water and fed enriched rotifers for a 9-d period. For investigation of the effect of salinity, sea water (35 ppt) was diluted gradually to 15, 20, 25, and 30 ppt and maintained at 21 C. For examination of the effect of temperature, seawater was adjusted from 21 C to 12, 15, 21, 27, or 30 C at a rate of 3 C/h. No eggs hatched at 12 C or when salinity was maintained at 0 or 5 ppt. Hatching was uniformly high (≥ 85%) at temperatures between 15 and 27 C and at salinities ≥ 15 ppt. Survival through yolk sac absorption was greatest at temperatures between 18 and 27 C and at salinities ≥ 20 ppt. Survival through first feeding stage was highest at temperatures ≥ 18 C and 30 ppt salinity. Larval growth through first feeding was not significantly affected by salinity level but did increase with rearing temperature. The results indicate that survival and development of black sea bass during early life stages are most favorable at temperatures >18 C with salinity levels approaching full strength seawater.  相似文献   

13.
The combined effects of temperature and salinity on larval survival and development of the mud crab, Scylla serrata, were investigated in the laboratory. Newly hatched larvae were reared under 20 °C temperature and salinity combinations (i.e. combinations of four temperatures 25, 28, 31, 34 °C with five salinities 15, 20, 25, 30, 35 g L−1). The results showed that temperature and salinity as well as the interaction of the two parameters significantly affected the survival of zoeal larvae. Salinity at 15 g L−1 resulted in no larval survival to the first crab stage, suggesting that the lower salinity tolerance limit for mud crab larvae lies somewhere between salinity 15 and 20 g L−1. However, within the salinity range of 20–35 g L−1, no significant effects on survival of zoeal larvae were detected (P>0.05). The combined effects of temperature and salinity on larval survival were also evident as at low salinities, both high and low temperature led to mass mortality of newly hatched larvae (e.g. 34 °C/15 g L−1, 34 °C/20 g L−1 and 25 °C/15 g L−1 combinations). In contrast, the low temperature and high salinity combination of 25 °C/35 g L−1 resulted in one of the highest survival to the megalopal stage. It was also shown that at optimal 28 °C, larvae could withstand broader salinity conditions. Temperature, salinity and their interaction also significantly affected larval development. At 34 °C, the mean larval development time to megalopa under different salinity conditions ranged from 13.5 to 18.5 days. It increased to between 20.6 and 22.6 days at 25 °C. The effects of salinity on larval development were demonstrated by the fact that for all the temperatures tested, the fastest mean development to megalopa was always recorded at the salinity of 25 g L−1. However, a different trend of salinity effects was shown for megalopae as their duration consistently increased with an increase in salinity from 20 to 35 g L−1. In summary, S. serrata larvae tolerate a broad range of salinity and temperature conditions. Rearing temperature 25–30 °C and salinity 20–35 g L−1 generally result in reasonable survival. However, from an aquaculture point of view, a higher temperature range of 28–30 °C and a salinity range of 20–30 g L−1 are recommended as it shortens the culture cycle.  相似文献   

14.
Abstract.— In South Carolina, studies have been conducted to develop rearing techniques for southern flounder Paralichthys lethostigma a candidate for aquaculture development and stock enhancement programs. To help define environmental tolerances, a variety of salinity studies were conducted with the early life stages of this species. Eggs were buoyant at 32 ppt and sank at 29 ppt with salinities of 30–31 ppt providing varying levels of suspension in the water column. Eggs incubated at 0 and 5 ppt all died, whereas 82.5% hatched at 10 ppt but larvae died shortly thereafter. At 63 h post-fertilization, there were no differences in hatch level for eggs incubated at salinities of 15 to 35 ppt (mean hatch level 98.5%). In a 72-h study, fish 3 wk post-metamorphosis (13.7 mm TL, 50-d-old) were acclimated to seven salinities ranging from 0–30 ppt. Fish held at 0 ppt salinity exhibited a statistically (P < 0.05) lower survival (20.0%) than those exposed to 5–30 ppt salinity concentrations. No differences were detected in survival (mean 99.1%) among fish held in the higher salinities. A second study examined the tolerance of older juveniles to lower salinities. Juvenile flounder (95.2 mm TL, 220-d-old) were acclimated to 0, 1,5 and 10 ppt salinities and reared for 2 wk. Results showed that fish could tolerate salinities of 0–10 ppt (100% survival). These data indicate that salinity tolerance of southern flounder increases with age. In addition to the short duration studies, a replicated 11-mo duration tank grow-out study was conducted at mean salinity 5.4 ppt and mean temperahue 22.6 C with an all male population. Flounder grew from a mean length of 100 mm to 213 mm TL and weight from 8.9 to 104.3 g. Growth of the cultured fish approximated that observed among male flounders in the wild.  相似文献   

15.
Cobia Rachycentron canadum juveniles (119.7 mm TL, weight 8.5 g) were reared for 10 wk at three salinity levels: 5 ppt, 15 ppt. and 30 ppt. Growth and survival were determined through biweekly sampling. Blood samples obtained at termination of the study were analyzed to determine hematocrit, blood osmolality, and total protein. Results indicated that the overall growth of fish was significantly affected by salinity. Mean (± SE) total length (TL) and weight of fish reared at a salinity of 30 ppt were 201.7 ± 2.6 mm and 47.6 ± 1.9 g, respectively, followed by fish reared at 15 ppt (182.2 ± 1.7 mm, 34.1 ± 1.6 g). and 5 ppt (168.3 ± 5.8 mm TL, 28.3 ± 2.3 g). Differences in specific growth rates among treatments for the 10-wk period were also significant. No differences were detected in mean survival among fish reared at salinities of 5, 15, and 30 ppt (84, 94, and 94%, respectively). However, fish reared at salinity 5 ppt appeared to be in poor health as skin lesions, fin erosion, and discoloration were evident. Analysis of blood revealed that, while no differences existed among treatments with respect to plasma total protein, fish reared at a salinity of 5 ppt exhibited significantly reduced hematocrit (25% vs. > 30%) and plasma osmolality values (318 vs. > 353 mmolkg) relative to fish reared at higher salinities. Cobia can tolerate exposure to low salinity environments for short periods of time without mortality; however, moderate to high salinities are required for sustained growth and health of this species.  相似文献   

16.
Larval sinking causes larval mass mortality during seed production in the horsehair crab, Erimacrus isenbeckii. Under normal light conditions, horsehair crab larvae generally show negative phototactic behaviour and sink in their rearing seawater. It has been proposed that culturing larvae in the dark may prevent larval sinking. Herein, we examined the effect of photoperiods on horsehair crab larval survival and development to facilitate the development of larval rearing techniques that prevent sinking. Newly hatched larvae were reared with Artemia to the first crab stage in 2‐L beakers under five photoperiods: 0L:24D, 6L:18D, 12L:12D, 18L:6D and 24L:0D. Larvae survived and molted to the first crab stage under all tested photoperiod conditions. The survival rate improved with increasing light period, whereas the developmental period for each larval stage decreased with increasing light period. Longer light periods increased the carapace length at the first crab stage. Our results suggest that larvae could be cultured to the first crab stage in large‐scale tanks under constant darkness. However, significantly improved larval performance under longer photoperiodic conditions indicates a need for developing alternative culture techniques to control larval behaviour in the seed production tank.  相似文献   

17.
The purpose of this study was to analyse the influence of water salinity on the incubation of eggs and growth of the larvae of sichel Pelecus cultratus (L.) under controlled conditions. The following water salinity was considered: 3, 6, 9, 12, 15 and 0 ppt for the control. The eggs incubation time depended on the water salinity, lasting from 56.3°D [9 ppt] to 107.7°D [0 ppt]. The higher water salinity, shorter the incubation time. The highest survivability of larvae was obtained in water of the salinity equal 3 ppt and in freshwater, where respectively 87% and 84% of the larvae survived. No hatched larvae were obtained in water of the salinity of 12 and 15 ppt, as all embryos died during the experiment. Larvae were reared up for 21 days. The final body weight, depending on the water salinity, reached from 43.5 mg [9 ppt] to 74.6 mg [3 ppt], at the respective body lengths of 19.3 mm and 23.2 mm. The highest body gains and lengths of larvae were observed in water of the salinity of 3 ppt. The lowest survivability of sichel larvae occurred in water of the salinity 9 ppt, where it was only 53.2%. The survivability of larvae in freshwater and water of the salinity of 3 ppt was quite similar: 96.2% and 95.6% respectively. Water salinity degree of 12 and 15 ppt appeared to be lethal for both embryos and larvae of the sichel.  相似文献   

18.
The effects of four light intensities on growth and survival of first‐feeding stage black sea bass larvae Centropristis striata were investigated in a controlled‐environment laboratory. Fertilized eggs, obtained from LHRHa‐induced spawning of captive broodstock, were stocked (72 eggs L?1) into twenty 15 L black tanks under light intensities of 100, 500, 1000 and 1500 lx, with five replicate tanks per treatment. The photoperiod was 12L:12D, the temperature was 20°C and the salinity was 35 g L?1. Larvae were fed rotifers Brachionus rotundiformis from day 2 post‐hatching (d 2ph) at 5–10 rotifers mL?1. Microalgae Nannochloropis oculata and Isochrysis sp. were added (1:1) daily to maintain a density of 300 000 cells mL?1. Hatching success and larval growth and survival from d 2ph through d 15ph were monitored. Hatching success was 28–38% under all light intensities, and notochord length at hatching ranged from 2.8 to 3.0 mm, with no significant differences among treatments. By d 15ph, growth (mg wet weight) was significantly higher in the 1000 lx (0.914) and 1500 lx treatments (0.892) than in 100 lx (0.483), and a highly significant trend (P<0.01) towards increased survival with increasing light intensities was observed, from 1.3% at 100 lx to 13.9% at 1500 lx. Higher light intensities within the range of 100–1500 lx improved growth and survival of early larval black sea bass, suggesting that even higher light intensities may improve culture performance. This is consistent with conditions in shallow, near‐shore locations where eggs and larvae are distributed in nature.  相似文献   

19.
The effect of seawater acclimation and adaptation to various salinities on the energetics of gill and kidney of Atlantic salmon (Salmo salar) was examined. Smolts and non-smolts previously reared in fresh water were exposed to a rapid increase in salinity to 30 ppt. Plasma osmolarity, [Na+], [Cl], [K+] and [Mg++] increased in both groups but were significantly lower in smolts than non-smolts. Gill Na+, K+-ATPase specific activity, initially higher in smolts, increased in both groups after 18 days in seawater. Kidney Na+, K+-ATPase specific activity was not affected by salinity in either group. Gill and kidney citrate synthase specific activity was not affected by seawater exposure in smolts but decreased in non-smolts. In a second experiment, Atlantic salmon smolts reared in fresh water were acclimated to 0, 10 or 30 ppt seawater for 3 months at a temperature of 13–14°C. Gill Na+, K+-ATPase was positively correlated with salinity, displaying 2.5- and 5-fold higher specific activity at 10 and 30 ppt, respectively, than at 0 ppt. Kidney Na+, K+-ATPase specific activity was not significantly affected by environmental salinity. Citrate synthase and cytochrome c oxidase specific activities in gill were slightly (6–13%) lower at 10 ppt than at 0 and 30 ppt, whereas kidney activities were lowest at 30 ppt. Oxygen consumption of isolated gill filaments was significantly higher when incubated in isosmotic saline and at 30 ppt than at 0 ppt, but was not affected by the prior acclimation salinity. The results indicate that although high salinity induces increased gill Na+, K+-ATPase activity, it does not induce substantial increases in metabolic capacity of gill or kidney.  相似文献   

20.
ABSTRACT: For the development of a stepwise cryopreservation technique for larvae of the Pacific oyster Crassostrea gigas , various conditions were examined. Larvae at 9, 12, 15, 18 and 21 h after insemination were cooled at a rate of −1°C/min (seeding at −8°C for 15 min) and then plunged into liquid nitrogen at −35 or −40°C using 1.5 M dimethyl sulfoxide (DMSO) and 250 mM trehalose as cryoprotectants. Among these larvae, 15 h after insemination (the trochophore stage before formation of the shell gland) showed the highest motility and the best external appearance after thawing. Trochophore larvae were cryopreserved in preservation media containing different dilutions (1/4, 1/6, 1/8, 1/10 and 1/30) of seawater. Larvae preserved in the 1/4 seawater medium showed the highest appearance of shelled larvae 4 days after thawing. Trochophore larvae reared in seawater at 21, 25 or 29°C were cryopreserved for 8 months and then reared at 26°C after thawing. Larvae reared at 25°C showed the highest survival rate and normal larval ratio at day 6 after thawing, although larvae reared at 21°C showed the highest rates until day 4. One larva developed at 25°C succeeded to settle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号