首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Evidence of anisotropy is reported for advective air and water permeabilities in soils. Thus, anisotropy is likely to exist also for diffusive gas fluxes. Information about direction‐dependent soil gas diffusivity is scarce and most modeling approaches assume isotropy. At hundreds of closely lying positions in a compacted and adjacent undisturbed forest soil, gas diffusivity (Ds/D0) was measured either in vertical or horizontal direction. The volume‐independent diffusion efficiency (i.e., diffusivity divided by air‐filled porosity) was fitted by a generalized additive model (GAM). Significant regressors were air‐filled porosity (?), soil depth, and the discrete diffusion direction. The model yields in all cases higher vertical diffusion efficiencies. The compaction factor did not yield a significant regressor of its own, i.e., the reduction of diffusivity in the compacted soil was the same as in low‐porosity samples of the undisturbed profile. To elucidate the role of sharing vertically and horizontally orientated pore space and a potential competition between diffusivity in different spatial directions, simple geometric models consisting of 3‐dimensionally crossed pores have been parameterized. These models provided a good explanation of the typical nonlinear Ds/D0(?) relationship. By simple one‐parameter correction (linear or power function), this mechanistic model could be fitted to the data. The one‐parameter correction of the geometric model could be a straightforward approach to consider direction dependence of measured diffusivities. However, by applying this approach to the observations the anisotropy effect was not clearly evident, which could be attributed to a changing Ds/D0(?) relationship with depth. As a reason for the preference of the vertical gas diffusion the dominance of vertical stresses and the activity of anecic earthworms are discussed. Direction dependency of gas diffusivity seems to be a basic feature of natural pore systems and has to be considered for modeling gas fluxes in soils. Generally, a preferential vertical diffusion direction reduces horizontal balancing and increases the heterogeneity of gas concentrations in the soil air.  相似文献   

2.
通过测定两种土壤和一种玻璃珠的两相热导率随气压的变化,分析变压条件下气体分子碰撞平均自由程和多孔介质孔隙结构间的关系。研究计算了表征土壤平均孔隙结构的孔隙特征长度(d),同时依据静态几何学方法计算获取了颗粒平均间距(D)。结果表明,基于热传输方法获取的d值是从气体分子碰撞传热的动态观点获取的孔隙结构表征,标识着土壤颗粒间的热分离特征,是表征土壤孔隙结构的有效指标。由于土壤的d和D值相差3个数量级,但在玻璃珠上无量级差异,这说明d值可能只能表征土壤团聚体间的平均孔隙结构,不能反映团聚体内部及黏土颗粒内部的微细孔隙结构。  相似文献   

3.
Spatial location of carbon decomposition in the soil pore system   总被引:5,自引:0,他引:5  
We sought to examine the distribution of carbon (C) decomposition within the framework of the soil pore system. Soils were sampled from a transect having a natural gradient in pore‐size distribution. After the addition of labelled wheat straw (13C) the repacked soil columns were incubated (25°C) at soil water matric potentials of either ?75 kPa or ?5 kPa and for either 4 or 90 days. Pore‐size distribution was determined for each soil column after incubation and soils were then analysed for soluble C, label‐derived residual C, label‐derived and native biomass C, nematode abundance, and ergosterol concentration as an indicator of fungal biomass. Overall, the data suggested that pore‐size distribution and its interaction with soil water give rise to a highly stratified biogeography of organisms through the pore system. This results in different rates of decomposition in pores of different size. Added plant material seemed to decompose most rapidly in soils with a relatively large volume of pores with neck diameters c. 15–60 µm and most slowly in soils with large volumes of pores with neck diameters < 4 µm. Regression analysis suggested that at matric potentials of both ?75 kPa and ?5 kPa the fastest decomposition of organic substrate occurred close to the gas–water interface. This analysis also implied that slower rates of decomposition occur in the pore class 60–300 µm. Correlations between the mass of soil biota and the pore volume of each pore class point to the importance of fungi and possibly nematodes in the rapid decomposition of C in the pores c. 15–60 µm during the early stages of decomposition.  相似文献   

4.
The geometry of pore space in soil is considered to be the key in understanding transport of water, gas and solute. However, a quantitative and explicit characterization, by means of a physical interpretation, is difficult because of the geometric complexity of soil structure. Pores larger than 40 μm within two soil horizons have been analysed morphologically on 3-dimensional digital representations of the pore space obtained by serial sections through impregnated specimens. The Euler-Poincaré characteristic has been determined as an index of connectivity in three dimensions. The pore connectivity is quantified as a function of the minimum pore diameter considered leading to a connectivity function of the pore space. Different pore size classes were distinguished using 3-dimensional erosion and dilation. The connectivity function turned out to differentiate between two soil materials. The pore space in an upper Ah horizon is intensely connected through pores between 40 and 100 μm, in contrast to the pore space in the AhBv beneath it. The morphological pore-size distributions were compared to the pore-size distribution obtained by water retention measurements. The discrepancy between these different methods corresponds to the expectation due to pore connectivity.  相似文献   

5.
The structural voids in vertisols contain easily available water for plants and their volume can be calculated from the shrinkage curve. Access by plants to that water depends also on the geometric arrangement of the pores so that the water can flow through them. We have devised a method for studying the structural porosity by casting the pores in resin. The intraprism pore space of wet soil clods is impregnated with a UV fluorescent polyester resin under vacuum. When this has set we use the swelling properties of the clay to separate the clay matrix from the resin. A cast so obtained is the real three-dimensional solid reproduction of the structural porosity. This representation of the pore system is easier to study than results from computerized reconstitution of the three-dimensional space from two-dimensional images of soil in thin sections. Channels, packing pores and planar voids can be observed directly in three dimensions as the method saves the integrity and continuity of pores as small as 10 μm in diameter. The geometry of the cast shapes agrees with the interpretation of shrinkage and moisture characteristic curves. The method offers direct qualitative observation of pore organization and volume measurements of the intraprism structural porosity in vertisols.  相似文献   

6.
张靖  陈琳  周虎  马东豪  黄平 《土壤》2023,55(1):21-29
土壤孔隙结构是土壤孔隙的形态大小、数量搭配和空间分布状况的综合反映,其结构的复杂性和异质性决定着土壤水分迁移、气体扩散和生物活动等过程。近年来数字图像技术的发展虽然实现了土壤孔隙结构的直接可视化和定量化,但孔隙提取的精度仍然受采样方法、设备分辨率和分割技术的限制。本文基于现有土壤孔隙研究方法的发展历程,以图像获取、图像分割和量化分析为主线,综述了当前常用土壤孔隙研究方法(间接法和直接法)的基本原理、主要步骤和优缺点,剖析了从图像中提取孔隙结构的分割技术,概括了孔隙结构的常用量化指标,最后针对现有研究方法存在的问题和不足,对未来研究方法的发展方向进行了展望。  相似文献   

7.
Gas diffusion coefficients for hydrogen through air in packings of 1–2 mm crumbs from a clay loam (both under grass and under arable) and from a sandy loam were measured over a range of water contents as the soils were wetted. Diffusion coefficients decreased with increasing water content (decreasing air content) in three stages: in the first, to specific water contents of 0.08–0.10 gg1, decreases were small indicating the filling of pores less effective for diffusion; in the second, to crumb saturation, decreases were greater, and in the third, to complete saturation, decreases were greatest. Two of these stages are related to swelling: in the first, any slight swelling is contained within the crumb and there is loss to the gas of crumb pores only; in the second, the crumbs swell and there is simultaneous loss of crumb pore space and, more important, inter-crumb space; in the third, swelling is complete, so, as in nonswelling soil, there is loss of inter-crumb space only. Pore size and pore shape in the three soils, and pore distribution (intra-crumb structure) in the grassland clay loam, may also affect diffusion but to a lesser extent: these influences are discussed. On subsequent drying there was little evidence of hysteresis in diffusion with water content, and only a slight indication in the arable clay loam of decreases due to structural degradation during the measurements.  相似文献   

8.
Abstract

Soil compaction is a significant production problem for agriculture because of its negative impact on plant growth, which in many cases has been attributed to changes in soil N transformations. A laboratory experiment was conducted to study the effect of soil compaction and water‐filled pore space on soil microbial activity and N losses. A hydraulic soil compaction device was used to evenly compress a Norfolk loamy sand (fine‐loamy, siliceous, thermic Typic Kandiudults) soil into 50 mm diameter by 127 mm long cores. A factorial arrangement of three bulk density levels (1.4, 1.6, and 1.8 Mg/m3) and four water‐filled pore space levels (60, 65, 70, 75%) was used. Fertilizer application of 168 kg N/ha was made as 1.0 atom % 15N as NH4NO3. Soil cores were incubated at 25°C for 21 d. Microbial activity decreased with both increasing water‐filled pore space and soil bulk density as measured by CO2‐C entrapment. Nitrogen loss increased with increasing bulk density from 92.8 to 334.4 g N/m3 soil at 60% water‐filled pore space, for 1.4 and 1.8 Mg/m3, respectively. These data indicate that N loss and soil microbial activity depends not only on the pore space occupied by water, but also on structure and size of soil pores which are altered by compaction.  相似文献   

9.
The anisotropy of the soil pores in texturally differentiated soils is an important soil-genetic index. The morphological study of thin soil sections with vertical and horizontal orientation showed that the pore space of a texturally differentiated light gray forest soil at the aggregate level of organization has isotropic, anisotropic, and partially anisotropic structures in the different horizons. In the horizons with a platy structure, the anisotropy of the pore space is largely determined by the anisometry of the structural units. In the horizons with a massive structure not separated into aggregates, the anisotropic indices can be related to the structural features of the recent and relic biogenic pores. To reveal the total anisotropy of the soil pore space, the most informative and genetically determined indices should be studied: the shape, area, and orientation of the pores. In the soil studied, the variation of the pore sizes in the vertical thin sections was higher than in the horizontal thin sections, which agreed with the concept of the anisotropy of the entire soil profile. The fixed vertical and horizontal orientation of the soil thin sections allowed the obtained results to be integrated into the full-profile anisotropy of the soil properties. The vertical thin sections were found to be of greater information value for the profile-genetic analysis of the structure and variability of the soil pore space than their horizontal analogues.  相似文献   

10.
Structural deformation of artificial macropores under varying load and soil moisture In the present study, the stability and deformation behavior of artificial macropores under varying load and soil moisture levels was investigated by means of X‐ray computed tomography (CT). The results should be a reference for similar studies on soil samples from field trials. The soil tested was a well structured humic silt loam with a bulk density of 1 g cm—3. Round‐shaped pores of vertical and 45 degree angle orientation were drilled into the samples with a plastic needle (∅︁ 5 mm). These samples were compacted in an uniaxial compression device at four different moisture levels and four pressure stages each. Stepwise CT imaging and its 3‐dimensional reconstruction enabled us to study systematically the mode and intensity of pore deformation. As a result four different deformation stages could be identified in dependence from load, soil moisture, and pore orientation. The deformation stage ”︁stable” was characterized by mostly unaffected pore dimensions and shapes. Increasing load and/or moisture content led to prominent bottle necks within the pores which was named ”︁structure deformation”. Due to the shape and size of these bottle necks it seems to be most likely that still intact aggregates were moved into the inner pore space, reducing the mean cross sectional areas. The deformation stage ”︁total deformation” appeared with further increase of load and/or moisture. The aggregated structure disappeared while the inner roughness of the pores became smoother again. This represents a viscoplastic deformation. Cross sectional areas, pore lengths, and volumes significantly decreased. The stage ”︁extinction” was finally reached at water contents around the liquid limit, where the pore structure was completely lost, at least on CT resolution level. The deformation stages could be attributed to load stages depending from pore orientation. Unexpectedly, all pores kept their originally round shape over all stages until extinction.  相似文献   

11.
The influence of biochar amendments on the physical quality of a clayey soil (Vertisol) was evaluated by aggregate‐size distribution and stability, water retention, and pore‐space structure of biochar‐amended soils. Clayey soil was treated with three kinds of biochars (straw biochar, woodchips biochar, and wastewater‐sludge biochar) at the rate of 0, 20, 40, and 60 g biochar (kg soil)–1 and incubated for 180 d in glasshouse. The application of straw biochar (SB) and wastewater‐sludge biochar (WSB) significantly enhanced the formation of 5–2 and 0.25–0.5 mm macroaggregates in the clayey soil relative to the control treatment, while the < 0.25‐cm microaggregate decreased with biochar additions. However, woodchips biochar (WCB) had no obvious effect on the formation of macroaggregate. The application of SB and WSB increased the mean weight diameter (MWD) and geometric mean diameter (GMD) of clayey soil, implying that biochar increased the aggregate stability. They improved the aggregate stability through an enhanced resistance to slaking and increased interparticular cohesion. The SB‐amended soils exhibited significant increases in the available water contents of soils. The application of SB significantly increased pore volume in the macropore (> 75 μm) and mesopore (30–75 μm) ranges, which may be the result of the reorganization of pore‐size distribution and aggregation processes induced by the addition of biochar. Results indicated that biochar had the potential to improve the physical quality and pore‐space status of clayey soil. It is suggested that biochar may be considered as a soil amendment for improving poor physical characteristics of clayey soil.  相似文献   

12.
As shown by the example of loamy soils of the European territory of Russia, the geometric parameters of soil structure, along with the agrophysical soil parameters, should be taken into account for the comprehensive assessment of the physical degradation of cultivated soils. Different variants of the geometric transformation of soil structure in the plow horizons are analyzed. The shape and orientation of soil pores in thin sections prepared from undisturbed oriented soil samples are considered to be the main diagnostic indices. A computer-aided analysis of soil pores in thin sections made it possible to distinguish and characterize different levels of the geometric transformation of soil structure upon soil compaction: (a) without the disturbance of the shape and orientation of the aggregates, (b) with the transformation of soil aggregates from the crumb (granular) to the angular blocky shape, (c) with the development of a platy structure characterized by the predominantly horizontal orientation of the pores and aggregates, and (d) the complete disappearance of separate aggregates with the formation of a massive soil structure. The validity of the assessments of the geometric transformation of the soil pore space against the background of a considerable spatial variability in the geometric properties of soil structure in the plow horizon is discussed. The structural-functional specificity of the distinguished levels of the geometric transformation of soil structure is outlined.  相似文献   

13.
In a pre-alpine meadow in the Toggenburg (Switzerland), casts of the earthworm Aporrectodea nocturna, initially detected 20 years ago around a newly planted hedge, now extend 170 m from the hedge. The abundance of A. nocturma decreased between 140 and 170 m from the hedge from 237 (site: An+) to 0 (site: An?) individuals m?2. The worm's activity and the macroporosity it has created have been studied using CAT scanning followed by automated image analysis of pores from 1·5 to 9 mm diameter. Brightness values in images from CAT scanning showed distinct local frequency maxima for stones, soil matrix and macropores. Measured diameters of pores were strongly linearly correlated with diameters of needles used to produce artificial pores. Pores from 1·5 to 3 mm were most abundant. The maximum number of pores from 1·5 to 9 mm (about 1600 m?2) was larger than the maximum number of all earthworms (about 480 m?2). Modelling the cast production of A. nocturna indicated that 23·8 kg m?2 were deposited on the soil's surface within 3 months. The measured macroporosity (1·5–6 mm) was one-quarter to one-sixth of the pore volume corresponding to the removed casts. Thus, net production of pores by earthworms was a result both of the burrowing activity and of the refilling with eroded cast material. Depth distributions of bulk density, total porosity and pores from 1·5 to 9 mm were different at An+ from those at An?. However, diffusion of butane was equal at An+ and An?. Three-dimensional reconstruction suggested that the disposition (continuity, interconnectivity) of pores was more important for gas diffusion than the structure (size distribution, frequency) and bulk soil parameters.  相似文献   

14.
Simulating diffusion in a Boolean model of soil pores   总被引:2,自引:0,他引:2  
The diffusion of gas through a model of the structure of soil pores was simulated on a computer. This was done to test the model's usefulness for studying diffusion in real soil and to obtain insights into how soil pore geometry affects diffusion. A model of randomly-placed overlapping spheres was used to represent the soil solids, the pores being what remains. Various simulated porosities and average sphere radii produced pore networks which resembled those in real soil aggregates. Our diffusion simulations gave three results: steady-state flux, time delay and rate of increase of flux. The porosity and sphere size were varied to investigate their effects on these diffusion properties. Results were comparable with those from experimental work. Further analysis allowed us to express the geometry of pore simulations in terms of average pore path length and connectivity. Evidence of non-Fickian behaviour was obtained, particularly in the early stages of the simulated diffusion.  相似文献   

15.
Combining digital imaging, physical models and laboratory measurements is a step further towards a better understanding of the complex relationships between the soil pore system and soil functions. Eight natural 100-cm3 soil cores were sampled in a cultivated Stagnic Luvisol from the topsoil and subsoil, which we assumed had contrasting pore systems. Artificial 100-cm3 cores were produced from plastic or from autoclaved aerated concrete (AAC). Eight vertical holes of each diameter (1.5 and 3 mm) were drilled for the plastic cylinder and for one of the two AAC cylinders. All natural and artificial cores were scanned in an X-ray CT scanner and printed in 3D. Effective air-filled porosity, true Darcian air permeability, apparent air permeability at a pressure gradient of 5 hPa and oxygen diffusion were measured on all cores. The active pore system characteristics differed between topsoil (sponge-like, network of macropores of similar size) and subsoil (dominated by large vertical macropores). Active soil pore characteristics measured on a simplified pore network, that is, from artificial and printed soil cores, supported the fundamental differences in air transport by convection and diffusion observed between top- and subsoil. The results confirm the suitability of using the conceptual model that partitions the pore system into arterial, marginal and remote pores to describe effects of soil structure on gas transport. This study showed the high potential of using 3D-printed soil cores to reconstruct the soil macropore network for a better understanding of soil pore functions.  相似文献   

16.
17.
为解决膨胀土对工程结构以及农业生态环境的危害,进行煤矸石粉改良膨胀土的试验研究。对煤矸石粉掺量为0、3%、6%、9%的膨胀土土样进行压汞试验,测得微观孔隙特征值;选取Menger海绵模型建立孔隙分分形模型,计算土体孔隙分形维数,探究土体孔隙分形维数与孔隙特征参数以及煤矸石粉掺量变化的关系。结果表明:随着煤矸石粉掺量增加,土中大孔隙所占的含量较素膨胀减少61.5%,孔隙类型从团粒间孔隙转化为颗粒间孔隙;煤矸石粉的掺入改变了土体的孔隙结构特征,煤矸石粉与膨胀土发生胶结反应,孔隙连通性降低,使得总孔隙体积、孔隙率、孔隙平均孔径、孔隙临界孔径等孔隙特征参数呈减小趋势;基于分形理论分析孔隙分形维数,分形维数随煤矸石粉掺量的增加而增加,且与孔隙特征参数呈显著相关性。孔隙分形维数反应了孔隙特征参数以及孔隙发育程度,为土的孔隙表征提供方法借鉴。  相似文献   

18.
19.
A multiscale study of silty soil structure   总被引:3,自引:0,他引:3  
Dependency of soil properties on scale is a crucial issue in soil physics. In this paper, fractal approaches are used in two case studies in France and Australia, respectively, to study how measured physical soil properties change with the sample spacing and the scale of observation. At a scale of 10–1000 m (104 to 106 mm), fractals were applied to sample data from a linear transect, while at the 10?6 to 102 mm scale, fractals were applied in two dimensions to analyse both soil micro‐ and macrostructure, based on thin section samples. Porosity was characterized by short‐range spatial variations using sample spacings of 0.5 and 5 m (from the transect data), and a sample spacing of 1 cm (from the thin section analysis). The size of the representative elementary volume (REV) or representative elementary area (REA), required to represent statistically the elementary soil structure, was identified in three ways: (i) by the correlation length of a representative interconnected pore network, (ii) by the upper limit of the non‐linear increase with observation scale of mean porosity (upper limit of the solid mass fractal domain), and (iii) by the non‐linear decrease with observation scale of the coefficient of variation, CV, of mean porosity. Two embedded REAs were identified: the first (0.1–0.4 mm) related to the soil microstructure whereas a second (11–44 mm) related to the soil macrostructure. The solid mass fractal dimensions of the two embedded structural domains showed that hierarchical heterogeneity of soil structure was more pronounced for microstructures than for macrostructures. The mean area ratio of microstructural matrix/total surface and the CV of mean microporosity both scale similarly at observation scales smaller than the REA size. Their scaling exponents were both related to the fractal dimension of microstructural matrix. This preliminary study shows that the theory of fractals applied to soil structures at a specific scale range cannot be directly applied to predict soil physical properties at another scale range. This is because there are different interdependent structuring processes operating at different scales resulting in fractal dimensions being consistent only over particular domain limits.  相似文献   

20.
The high input of mechanical energy in common agricultural practice can negatively affect soil structure. The impact of compaction (P) and rotovation (R) on soil pore characteristics was compared with those in soil from untreated reference (U) plots of a loamy sand soil receiving for 14 yr, either only mineral fertilizer (MF) or, in addition, animal manure (OF). Undisturbed soil cores were taken from two separate fields in consecutive years at an identical stage in the crop rotation. We measured soil organic carbon (OC), soil microbial biomass carbon (BC), and hot‐water extractable carbon (Chot). Water retention, air permeability and gas diffusivity were determined at ?100 hPa in both years and for a range of water potentials in one of the years. The continued addition of animal manure had increased OC, BC, and Chot compared with the soil receiving only mineral fertilizer. Soil under treatment OF had larger porosity than that from treatment MF. Treatment P eliminated this difference and significantly reduced the volume of macropores. This interaction between soil organic matter content and mechanical impact was also reflected in the gas diffusion data. Specific air permeability was mainly influenced by mechanical treatment. Modelling the diffusion data normalized to the inter‐aggregate pore space showed no significant treatment effects on pore‐connectivity, although there was a tendency of more water blockage in soil under treatment MF. More studies are needed to confirm this interpretation. Our studies indicate that organic manure increases soil porosity, but compaction reduces the related gas exchange effects to the level of compacted soils receiving mineral fertilizer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号