首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Seedlings of Chamaecyparis obtusa, Cryptomeria japonica D. Don, and Abies firma Sieb. et Zucco were grown hydroponically for 4 weeks in the presence or absence of aluminum (Al) and with or without reduced pH. Under exposure to AI, root and shoot growth of C. obtusa was enhanced. A. firma showed the same tendency as C. obtusa, though not significantly. Only in C. japonica, growth was reduced with Al, especially shoot growth. In all the species, callose production in the root tips was observed in the presence of Al. A positive correlation was observed between the relative root callose content and relative root growth (r = 0.83), and significant root elongation with AI treatment was observed in all the species. Therefore, it is considered that callose deposition in the root tips of these species may not indicate the Al-induced root cell injury causing root growth inhibition. The highest callose content in the root tip and strong callose fluorescence in the epidermis and zones of cell contact were observed in C. obtusa. Since the Al translocation rate from roots to leaves was the lowest in C. obtusa and since significant growth enhancement was observed in the presence of Al, it is possible that the accumulation of callose in the root epidermis and in the zones of cell contact is related to Al-resistance in C. obtusa.  相似文献   

2.
The objective of this study was to examine whether aluminium (Al) induces callose formation in roots of Norway spruce as it does in soybean. Spruce seedlings were grown in Al-free nutrient solution under controlled conditions in a growth chamber at pH 3.8. After 21 days 170 μM Al was added or not (controls) to the complete nutrient solution (molar Ca/Al ratio: 0.75). Callose could be detected in outer root-tip cells of Al-treated plants within 3 h, using fluorescence microscopy after staining with aniline blue. Prolonged Al treatment up to 24 h increased both the density of the callose deposits and the number of affected cell layers. Control plants showed no comparable callose deposits. Ultrastructural examinations showed cell-wall appositions in Al-treated root cells but not in controls. The possible implications of Al-induced callose formation for nutrient and water uptake by roots are discussed.  相似文献   

3.
Changes in root morphology during root growth and concurrent bacterial colonization of the root surface were studied. Wheat seedlings were grown in soil so that their roots grew along a removable transparent plate on which root growth was recorded daily. The root surface microflora of 10mm lengths of root that had grown over 24 h, was counted on agar-plates and by fluorescence microscopy. Two maxima in bacterial colonization of the seminal axis of 10-day-old roots were demonstrated between root tip and root base. Fluorescence microscopy was also used to estimate at intervals along the root axis the proportions of lysing epidermis and cortex cells based on staining of nuclei with acridine-orange. Two regions of accelerated lysis of root tissue were demonstrated and are considered to be responsible for the two maxima in bacterial colonization of the root surface.  相似文献   

4.
In acid mineral soils excess of aluminium ions (AI) is one of the most important factors determining plant species and ecotype distribution, and limiting growth and yield of crops. Aluminium preferentially accumulates in the root tips as sites of cell division and cell elongation. Whether inhibition of cell-division rate is due to direct interaction of Al with the chromatin in the nuclei is rather questionable because of the low radial mobility of Al in the root and the rapidity of cessation of root elongation after Al addition to the growth medium. Externally applied Al instantaneously binds to binding sites in the apoplast. Cross binding of pectates by Al may affect extensibility and water permeability of the cell wall. Interaction of Al with other cell-wall constituents is most likely but needs clarification. Aluminium also affects plasma-membrane characteristics. Ca2+ influx and K+ efflux are inhibited, and synthesis of callose is induced. Induction of callose suggests an increase rather than a decrease in cytosolic Ca2+ as initial response to Al. There is little evidence suggesting major disruption of plasma membrane and cytoplasmic functions by AI. K+ uptake, H+ extrusion, Fe(III) reducing capacity and lipid peroxidation are hardly affected even in roots severely inhibited in elongation by Al. Al uptake and physiological/biochemical effects of Al on intact plant roots can be mimicked even more sensitively using cell suspension cultures which, therefore, represent a powerful tool for the study of Al toxicity. Large differences in Al resistance exist between plant species and cultivars of a species. Root elongation-rate and callose formation can be used as indicators for Al injury. Since short term Al injury is mainly expressed in the apoplast. Al resistance requires exclusion of Al from or/and inactivation of Al in the apoplast. Generally, Al-resistant genotypes are characterized by lower Al accumulation of the root apical meristems. This is achieved by a lower cation-exchange capacity/surface negativity or complexation of Al through root exudates (mucilage, organic acids). Long term exposure of plants to Al also inhibits shoot growth via induction of nutrient (Mg, Ca, P) deficiencies, drought stress and phytohormone imbalances. Such longer term effects have to be taken into consideration when selecting genotypes for high yielding capacity on acid soils high in available Al.  相似文献   

5.
Aluminum toxicity and boron deficiency are the major factors that limit plant growth and development in acid soils and in B-deficient soils. Root growth inhibition is an early symptom of AI toxicity and B deficiency. Effects of AI and B supply and their interaction on the growth of wheat (Triticum aestivum L.) seedlings were investigated using hydroponics. Fifteen wheat cultivars commonly grown in Bangladesh were used and found to differ considerably in their tolerance to AI toxicity and B deficiency. The relative root length of all the wheat cultivars at 50 µM AI (pH 4.5) ranged from 27 to 71% relative to the control (0 µM AI). Among the cultivars, Inia66 and Kalyansona were found to be the most Al-tolerant and sensitive cultivars, respectively, based on the data of relative root length, malate exudation and AI content of roots. Malate was detected in all the cultivars in the presence of 100 µM AI (pH 4.3). Inia66 exuded a 6-fold larger amount of malate and the AI content of roots was 4 times lower than that in Kalyansona. The vigorous seedling growth was observed at 40 µM B among the series of B treatments. Considerable cultivar differences in response to 40 µM B were observed among the 15 cultivars. Kalyansona was considered to be the most sensitive and Kheri the most tolerant to B deficiency. The interaction effects of B ( 40 and 200 µM) and AI (50 µM) on seedling growth were also examined in Inia66 and Kalyansona. Root growth was inhibited in the presence of Al but B supply especially at 200 µM B in the Kalyansona cultivar caused a slight improvement.  相似文献   

6.
Maize cultivars (Zea mays L.) were evaluated for their aluminum (Al) sensitivity using intact plants and excised root tips exposed to 25 μM Al in nutrient solution of low ionic strength and pH 4.3. Aluminum supply increased callose formation and Al concentrations in root tips of intact plants as well as in excised root tips. Using intact plants, differences in Al sensitivity among cultivars could be characterized by Al‐induced callose formation, Al‐induced inhibition of root elongation, as well as Al contents in root tips as parameters. Significant correlations between Al‐induced callose formation and Al contents in root tips (r2 = 0.64**) and inhibition of root elongation (r2 = 0.80***) were found. Excised root tips did not show a significant Al‐induced inhibition of root elongation. While average Al‐induced callose formation was similar for root tips of intact plants and excised root tips, mean Al contents in excised root tips were up to 1.5‐fold higher than in root tips of intact plants after 24 h of Al treatment. Aluminum‐induced callose formation as found in excised root tips did neither correspond to Al‐induced callose formation nor to inhibition of root elongation of intact plants. The addition of 10 mM glucose to the incubation medium led to a significant increase in the elongation of excised root tips and a 2‐3‐fold increase in Al‐induced callose formation. Staining with triphenyl‐tetrazolium‐chloride (TTC) revealed increased viability of these root segments. However, these effects of glucose supply did not improve the characterization of the cultivars for Al resistance. The results presented suggest that Al exclusion mechanisms expressed in root tips of intact plants might be non‐operational in excised root tips. Therefore, the characterization of maize germplasm for Al resistance using excised root tips appears not to be reliable.  相似文献   

7.
Using an aluminum (Al)‐sensitive maize cultivar, we investigated the influence of Al on the apoplastic solute bypass flow and its relationship with Al‐induced (1 h, 50 μM) callose formation and root growth. We selected the fluorescent probes 8‐hydroxypyrene‐1,3,6‐trisulfonic acid, trisodium salt (MW 524) (HPTS) and dextran‐Texas Red (TR) conjugates (MW 3,000, 10,000, and 40,000) to monitor their apoplastic transport. Confocal laser–scanning microscopy (CLSM) analysis and spectrofluorometric quantification showed Al‐induced callose formation in peripheral root cells within 1 h. Pretreatment of plants with the callose synthesis inhibitor 2‐deoxy‐D‐glucose (DDG) reduced the callose formation by half. Uptake experiments with both HPTS and dextrans showed uniform dye distribution in control root apices. After Al treatment for 1 or 2 h, which inhibited root growth by 32% or 50%, respectively, the dyes accumulated in the epidermal and outer cortical cell layers, especially in the 1–2 mm apical root zone. Al treatment reduced the export of the dyes out of the apical 1 cm treatment zone. This was due to strong sorption of HPTS but not of dextrans by Al‐loaded cell walls. Aluminum treatment reduced loading into the xylem sap particularly of higher–molecular weight dextrans. Pretreatment of roots with DDG and presence of 50 mM mannitol during the Al treatment partially forestalled the inhibitory effect of Al on the dye transport, but only slightly reduced the Al‐induced growth inhibition. Exudation experiments revealed that xylem water flow remained unaffected by the Al treatment of the root tips. The results with dextran suggest that Al binding in cell walls of the root apex inhibits apoplastic bypass flow of higher–molecular weight solutes, which might contribute to Al‐induced inhibition of root growth.  相似文献   

8.
Eight primary octoploid triticale genotypes (xTriticosecale Wittmack) derived from four wheat cultivars (Triticum aestivum L.) and two rye inbred lines (Secale cereale L.) differing in aluminum (Al) resistance were investigated with respect to their response to Al supply. Aluminum‐induced inhibition of root elongation (48 h, 25 µM Al supply), callose formation, and the accumulation of Al in root tips (4 h, 25 µM Al supply) were used as parameters to assess Al resistance. Using these parameters, the existing information on Al resistance of the wheat and rye cultivars was generally confirmed. The triticale cultivars showed a wide range of Al resistance amongst the Al‐sensitive wheat and the Al‐resistant rye cultivars. The rye parents and the Al‐resistant wheat parent Carazinho were characterized by Al‐induced exudation particularly of citrate but also of malate from whole root systems of 14 d old seedlings (8 h, 50 µM Al supply). Regression analysis revealed that the degree of Al resistance of the triticale genotypes was closely related to the Al‐induced citrate exudation, which was mainly controlled by the Al resistance of the wheat parent.  相似文献   

9.
The differences in Al tolerance between 12 maize cultivars were investigated using early stress indicators such as relative root elongation rate, induction of callose formation and Al concentrations in 5 mm root tips. Plants were grown in nutrient solution (pH 4.3) and exposed to 0 (control), 20 or 50 μM Al for 24 h. According to the relative root elongation rates, Regent, C 525 M and Adour 250 were the most Al-tolerant cultivars, while BR 201 F, Teosinte, Alarik, Burras and HS 7777 were Al-sensitive. Cultivars Brummi, HS 1230, Lixis and Aladin showed an intermediate behaviour. A significant inverse correlation between relative root-elongation rates and both Al concentration in root tips and callose concentrations could be established. The usefulness of callose as an early indicator of Al stress and the importance of Al exclusion from root tips as an Al tolerance mechanism are discussed.  相似文献   

10.
Common bean (Phaseolus vulgaris L.) proved to be very sensitive of low pH (4.3), with large genotypic differences in proton sensitivity. Therefore, proton toxicity did not allow the screening of common bean genotypes for aluminium (Al) resistance using the established protocol for maize (0.5 mM CaCl2, 8 μM H3BO3, pH 4.3). Increasing the pH to 4.5, the Ca2+ concentration to 5 mM, and addition of 0.5 mM KCl fully prevented proton toxicity in 28 tested genotypes and allowed to identify differences in Al resistance using the inhibition of root elongation by 20 μM Al supply for 36 h as parameter of Al injury. As in maize, Al treatment induced callose formation in root apices of common bean. Aluminium‐induced callose formation well reflected the effect of Ca supply on Al sensitivity as revealed by root‐growth inhibition. Aluminum‐induced callose formation in root apices of 28 bean genotypes differing in Al resistance after 36 h Al treatment was positively correlated to Al‐induced inhibition of root elongation and Al contents in the root apices. However, the relationship was less close than previously reported for maize. Also, after 12 h Al treatment, callose formation and Al contents in root apices did not reflect differences in Al resistance between two contrasting genotypes, indicating a different mode of the expression of Al toxicity and regulation of Al resistance in common bean than in maize.  相似文献   

11.
The spatial distribution and speciation of iron (Fe), manganese (Mn) and arsenic (As) around rice roots grown in an As‐affected paddy field in Bangladesh were investigated on soil sampled after rice harvest. Synchrotron micro‐X‐ray fluorescence spectrometry on soil thin sections revealed that roots influence soil Fe, Mn and As distribution up to 1 mm away from the root–soil interface. Around thick roots (diameter around 500 µm), Mn was concentrated in discrete enrichments close to the root surface without associated As, whereas concentric Fe accumulations formed farther away and were closely correlated with As accumulations. Near thin roots (diameter < 100 µm), in contrast, a pronounced enrichment of Fe and As next to the root surface and a lack of Mn enrichments was observed. X‐ray absorption fine structure spectroscopy suggested that (i) accumulated Fe was mainly contained in a two‐line ferrihydrite‐like phase, (ii) associated As was mostly As(V) and (iii) Mn enrichments consisted of Mn(III/IV) oxyhydroxides. The distinct enrichment patterns can be related to the extent of O2 release from primary and lateral rice roots and the thermodynamics and kinetics of Fe, Mn and As redox transformations. Our results suggest that in addition to Fe(III) plaque at the root surface, element accumulation and speciation in the surrounding rhizosphere soil must be taken into account when addressing the transfer of nutrients or contaminants into rice roots.  相似文献   

12.
Aluminum (Al) toxicity is a major factor limiting yield production on acid soils (Foy 1983). The initial symptom of Al toxicity in many plants is manifested by the inhibition of root elongation (Ownby and Popham 1990; Llugany et al. 1994; Sasaki et al. 1994; Horst et al. 1997), which occurs during a very short period of time after exposure to Al (Llugany et al. 1994; Staß and Horst 1995). In a large number of recent reports, it was shown that the root apex plays a major role in the Al-sensitivity and response mechanisms (Zhang et al. 1994; Sasaki et al. 1997; Sivaguru and Horst 1998). However, it is interesting to note that stimulatory effects of Al on the growth of plants have also been reported in some studies (Chenery 1955; Konishi et al. 1985; Huang and Bachelard 1993; Osaki et al. 1997). In tea plant (Camellia sinensis L.) a stimulatory effect of Al on the growth was also demonstrated in some experiments, using intact plant (Chenery 1955; Konishi et al. 1985), cultured roots (Tsuji et al. 1994), and pollen tubes (Yokota et al. 1997). The growth of tea roots was typically more stimulated than that of shoots by Al (Konishi et al. 1985). It was assumed that Al effects might be due to the amelioration of phosphorus absorption (Konishi et al. 1985), secretion of malic acid from roots to dissolve aluminum phosphate in the rhizosphere (Jayman and Sivasubramaniam 1975), stimulation of growth of microorganisms on the root surface (Konishi 1990) or replacement of some functions of boron (Konishi 1992; Yokota et al. 1997). However, the stimulatory effects of Al on tea plant growth have not yet been el ucidated.

The formation of callose (1,3-β-glucan) has been reported as a common plant response to a variety of stresses, as well as mechanical, biophysical, chemical, and biological injury (Jaffe and Leopold 1984; Zhang et al. 1994). Increased synthesis of callose has been observed upon exposure to excess amounts of some elements, such as boron (McNairn and Currier 1965), cobalt, nickel, zinc (Peterson and Rauser 1979), and manganese (Wissemeier and Horst} 1987, 1992). Callose synthesis was also induced by Al in the roots of Triticum aestivum (Zhang et al. 1994) and Zea mays (Horst et al. 1997; Sivaguru and Horst 1998), suspension-cultured cells of Glycine max (Staß and Horst 1995), and protoplasts of Avena sativa (Schaeffer and Walton 1990) and Zea mays (Wagatsuma et al. 1995). Induction of callose synthesis in roots seems to be a very rapid physiological indicator of Al-induced injury or genotypical differences in Al sensitivity (Wissemeier and Horst 1992; Zhang et al. 1994; Horst et al. 1997). Nevertheless, Al-induced callose synthesis in tea plant, whose growth is stimulated by suitable Al concentrations, has not been described yet. Therefore, to elucidate the physiological basic effects of Al on tea plant, callose synthesis affected by Al in the root tips of intact plants was analyzed in the present study.  相似文献   

13.
It is well established that increasing soil bulk density (SBD) above some threshold value reduces plant root growth and thus may reduce water and nutrient acquisition. However, formation and elongation of maize seminal roots and first order lateral (FOL) roots in various soil layers under the influence of SBD has not been documented. Two studies were conducted on a loamy sand soil at SBD ranging from 1.25 g cm–3 to 1.66 g cm–3. Rhizotrons with a soil layer 7 mm thick were used and pre‐germinated plants were grown for 15 days. Over the range of SBD tested, the shoot growth was not influenced whereas total root length was reduced by 30 % with increasing SBD. Absolute growth rate of seminal roots was highest in the top soil layer and decreased with increasing distance from the surface. Increasing SBD amplified this effect by 20 % and 50 % for the top soil layer and lower soil layers, respectively. At the end of the experiment, total seminal roots attributed to approximately 15 % of the total plant root length. Increasing SBD reduced seminal root growth in the lowest soil layer only, whereas FOL root length decreased with SBD in all but the uppermost soil layer. For FOL, there was a positive interaction of SBD with distance from the soil surface. Both, increasing SBD and soil depth reduced root length by a reduction of number of FOL roots formed while the length of individual FOL roots was not influenced. Hence, increasing SBD may reduce spatial access to nutrients and water by (i) reducing seminal root development in deeper soil layers, aggravated by (ii) the reduction of the number of FOL roots that originate from these seminal roots.  相似文献   

14.
Decreased root elongation and rupture of outer cells, major effects of soluble aluminum (Al), may be studied using digital microscopy with little interference by the experimental technique. Single roots of 3-d-old mungbean ( Vigna radiata L.) or soybean ( Glycine max (L.) Merr.) seedlings were marked with activated charcoal particles and grown for ca. 2 h in 500 mL 1 mM CaCl2 solution at pH 6, followed by the imposition of an Al treatment. A digital image at 25-time magnification was recorded every 5 min for up to 7 h. Examination of the digital images showed that Al exerted its rhizotoxic effects rapidly (ca. 20–50 min) by reducing cell expansion in the elongation zone. Rupture of epidermal and outer cortical cells occurred later (after≥4 h) and closer to the root tip. Digital microscopy has a number of inherent benefits and problems, but is overall a valuable technique that may find wide use in studies on root growth.  相似文献   

15.
Redox potentials (Eh) and pH values in the rhizosphere 0–2 mm from growing roots of field beans (Vicia faba L.) indicated reducing conditions near the root tip and along the zone of elongation which were probably caused by root exudates. For roots of other plant species (e.g. maize), a drop of Eh in the rhizosphere does not necessarily reflect reduction processes, but may be due to pH changes, according to the Nernst equation. Eh values near dying roots decreased due to the O2 consumption by microorganisms, this effect being detectable at a distance greater than 3 mm from the root surface.  相似文献   

16.
重庆四面山水源涵养林土壤抗冲性及影响因素   总被引:2,自引:0,他引:2  
采用原状土冲刷水槽法对重庆四面山4种水源涵养林土壤的抗冲性进行试验研究,并探讨土壤抗冲性动态变化规律以及坡度、根系的影响。结果表明:楠竹林土壤抗冲性最大,其次为针阔混交林、针叶林,阔叶林最小,其抗冲刷系数分别为20.153、14.717、10.819和4.615 L.min/g;林地土壤抗冲性A0层强于A层,并随水流冲刷时间的延长呈指数函数增大;在研究范围内,25°是林地土壤抗冲性的转折坡度;<3 mm根系是四面山水源涵养林表层土壤根系的主要成分,林地A0层土壤抗冲性受<1 mm、1~3 mm、3~5 mm根系根量及死生物量的影响,A层主要受3~5 mm根系根量及其根长的影响。  相似文献   

17.
Three hydroponic experiments were set up to study the rhizofiltration of cadmium (Cd) or nickel (Ni) from artificially contaminated nutrient solution with sunflower, squash, or Indian mustard. After 48 h of exposure with 2 mg L?1 Cd‐contaminated water, 460, 415, or 1092 µg Cd g?1 (dry weight) was detected in roots of 33‐day‐old sunflower and squash or in 50‐day‐old Indian mustard, respectively. As calculated, 1 g of root dry matter of the tested crop species removed 5.7–12.4% of total Cd content present in the nutrient solution. It was supposed that pseudomonads (soil rhizoplane bacteria) and the plant growth hormone ethylene can enhance the specific surface of roots and hence roots' metal adsorption capacity. As a trend, pretreatment of Indian mustard with Pseudomonas fluorescens bacteria enhanced slightly the Cd (from 1793 to 2346 µg g?1) or Ni (from 1088 to 1192 µg g?1) concentration of roots. Cadmium concentration in roots was also enhanced from 2694 to 3273 µg g?1 when the roots of Indian mustard were pretreated with Cd‐tolerant rather than Cd‐sensitive Pseudomonas cepacia. In spite of the occurrence of new root hairs, the pretreatment of roots with ethylene proved to be ineffective in enhancement of the Cd rhizofiltration capacity of Indian mustard.  相似文献   

18.
Adequate contact with the soil is essential for water and nutrient adsorption by plant roots, but the determination of root–soil contact is a challenging task because it is difficult to visualize roots in situ and quantify their interactions with the soil at the scale of micrometres. A method to determine root–soil contact using X‐ray microtomography was developed. Contact areas were determined from 3D volumetric images using segmentation and iso‐surface determination tools. The accuracy of the method was tested with physical model systems of contact between two objects (phantoms). Volumes, surface areas and contact areas calculated from the measured phantoms were compared with those estimated from image analysis. The volume was accurate to within 0.3%, the surface area to within 2–4%, and the contact area to within 2.5%. Maize and lupin roots were grown in soil (<2 mm) and vermiculite at matric potentials of ?0.03 and ?1.6 MPa and in aggregate fractions of 4–2, 2–1, 1–0.5 and < 0.5 mm at a matric potential of ?0.03 MPa. The contact of the roots with their growth medium was determined from 3D volumetric images. Macroporosity (>70 µm) of the soil sieved to different aggregate fractions was calculated from binarized data. Root‐soil contact was greater in soil than in vermiculite and increased with decreasing aggregate or particle size. The differences in root–soil contact could not be explained solely by the decrease in porosity with decreasing aggregate size but may also result from changes in particle and aggregate packing around the root.  相似文献   

19.
Phosphorus is one of the most limiting macronutrients for plant productivity in agriculture worldwide. The main reasons are the limited rock phosphate reserves and the high affinity of phosphate (P) to the soil solid phase, restricting the P availability to the plant roots. Plants can adapt to soils low in available P by changing morphological or/and physiological root features. Morphological changes include the formation of longer root hairs and a higher root : shoot ratio both parameters increasing the root surface which provides the shoot with P. This may be successful if the P availability in soil, i.e., the P concentration of the soil solution is not extremely low (> 1–2 µM P). If the P concentration of the soil solution is lower, the diffusive flux to the root surface will be very low and may not satisfy the P demand of the shoots. Under these conditions plants have developed strategies to increase the rhizosphere soil solution concentration by secreting mobilizing agents. The most effective way of P mobilization is the release of di‐ and tricarboxylic acid anions, especially oxalate and citrate. Citrate can accumulate in the rhizosphere up to concentrations up to 80 µmol g?1 soil. Cluster root formation is an efficient way of carboxylate accumulation in the cluster root rhizosphere improving P mobilization. Cluster roots strongly improve the acquisition of the mobilized P. Considering a single root, around 80–90% of the mobilized P diffuses away from the root. From the rhizosphere of cluster roots, most of the mobilized P is taken up by the cluster roots. Both, the strong accumulation of carboxylates in and the effective P uptake from the cluster‐root rhizosphere are the basis of the unique ability of P acquisition by cluster root‐forming plants. Plants that do not form cluster roots, e.g., red clover, can also accumulate carboxylates in the rhizosphere. Red clover accumulates high quantities of citrate in the rhizosphere soil. Model calculations show that the release of citrate by red clover roots and its accumulation in the rhizosphere strongly improve P acquisition by this plant species in various soils. Similar results are obtained with alfalfa. In sugar beet, oxalate release can strongly contribute to P acquisition. In summary, P acquisition can be strongly improved by the release of carboxylates and should be taken as a challenge for basic and applied research.  相似文献   

20.
Al tolerance of horse bean, yellow lupin, barley and rye. II. Mineral element concentrations in shoots and roots as affected by Al supply Inhibition of seminal root elongation by Al in solution culture gave the following ranking for Al tolerance: yellow lupin (Lupinus luteus ?Schwako”?) ? rye (Secale cereale ?Kustro)”? « horse bean (Vicia faba ?Herz Freya”?) > barley (Hordeum vulgare ?Roland”?). Exclusion from uptake by inactivation of Al outside the root was not responsible for the higher Al tolerance of lupin and rye, because comparable inhibition of root elongation occured at much higher Al concentration of the root and the root tips (5 mm) compared to barley and horse bean. The plant species differed considerable in nutrient concentrations of the roots: higher Ca concentrations in horse bean and rye, higher Mg concentrations in rye and lupin and higher P concentration in lupin. Al supply reduced Ca and Mg concentrations (Ca > Mg) in shoots and roots of all species. P concentrations were hardly affected. The nutrient concentrations in the root tips did not indicate that induction of nutrient deficiency was responsible for the effect of Al on root elongation and Al sensitivity of barley and horse bean. The considerable differences in Ca, Mg and P concentrations of the roots between the Al-tolerant plant species rye and lupin do not suggest a common physiological mechanism responsible for Al tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号