首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Rice paddy soils are characterized by anoxic conditions, anaerobic carbon turnover, and significant emissions of the greenhouse gas methane. A main source for soil organic matter in paddy fields is the rice crop residue that is returned to fields if not burned. We investigated as an alternative treatment the amendment of rice paddies with rice residues that have been charred to black carbon. This treatment might avoid various negative side effects of traditional rice residue treatments. Although charred biomass is seen as almost recalcitrant, its impact on trace gas (CO2, CH4) production and emissions in paddy fields has not been studied. We quantified the degradation of black carbon produced from rice husks in four wetland soils in laboratory incubations. In two of the studied soils the addition of carbonised rice husks resulted in a transient increase in carbon mineralisation rates in comparison to control soils without organic matter addition. After almost three years, between 4.4% and 8.5% of the black carbon added was mineralised to CO2 under aerobic and anaerobic conditions, respectively. The addition of untreated rice husks resulted in a strong increase in carbon mineralisation rates and in the same time period 77%-100% of the added rice husks were mineralised aerobically and 31%-54% anaerobically. The 13C-signatures of respired CO2 gave a direct indication of black carbon mineralisation to CO2. In field trials we quantified the impact of rice husk black carbon or untreated rice husks on soil respiration and methane emissions. The application of black carbon had no significant effect on soil respiration but significantly enhanced methane emissions in the first rice crop season. The additional methane released accounted for only 0.14% of black carbon added. If the same amount of organic carbon was added as untreated rice husks, 34% of the applied carbon was released as CO2 and methane in the first season. Furthermore, the addition of fresh harvest residues to paddy fields resulted in a disproportionally high increase in methane emissions. Estimating the carbon budget of the different rice crop residue treatments indicated that charring of rice residues and adding the obtained black carbon to paddy fields instead of incorporating untreated harvest residues may reduce field methane emissions by as much as 80%. Hence, the production of black carbon from rice harvest residues could be a powerful strategy for mitigating greenhouse gas emissions from rice fields.  相似文献   

2.
Paddy soil management is generally thought to promote the accumulation of soil organic matter (SOM) and specifically lignin. Lignin is considered particularly susceptible to accumulation under these circumstances because of the recalcitrance of its aromatic structure to biodegradation under anaerobic conditions (i.e ., during inundation of paddy fields). The present study investigates the effect of paddy soil management on SOM composition in comparison to nearby agricultural soils that are not used for rice production (non‐paddy soils). Soil types typically used for rice cultivation were selected, including Alisol, Andosol and Vertisol sites in Indonesia (humid tropical climate of Java) and an Alisol site in China (humid subtropical climate, Jiangxi province). These soil types represent a range of soil properties to be expected in Asian paddy fields. All upper‐most A horizons were analysed for their SOM composition by solid‐state 13C nuclear magnetic resonance (NMR) spectroscopy and for lignin‐derived phenols by the CuO oxidation method. The SOM composition was similar for all of the above named parent soil types (non‐paddy soils) and was also not affected by paddy soil management. A substantial proportion (up to 23%) of the total aryl‐carbon in some paddy and non‐paddy soils was found to originate from condensed aromatic‐carbon (e.g ., charcoal). This may be attributed to the burning of crop residues. On average, the proportion of lignin was low and made up 20% of the total SOM, and showed no differences between straw, particulate organic matter (POM), and the bulk soil material. The results from CuO oxidation are consistent with the data obtained from solid‐state 13C NMR spectroscopy. The extraction of lignin‐derived phenols revealed low VSC (vanillyl, syringyl, cinnamyl) values for all investigated soils in a range (4 to 12 g kg−1 OC) that was typical for agricultural soils. In comparison to adjacent non‐paddy soils, the data do not provide evidence for a substantial accumulation of phenolic lignin‐derived structures in the paddy soils, even for those characterized by higher organic carbon (OC) contents (e.g ., Andosol‐ and Alisol (China)‐derived paddy soils). We conclude that the properties of the parent soil types are more important for the lignin content of the soils than the effect of paddy management itself.  相似文献   

3.
水稻品种和砷污染对土壤溶解性有机碳氮的影响   总被引:2,自引:0,他引:2  
选取有机质含量和pH不同的2种水稻土(黄泥田和红泥田),通过盆栽实验研究砷(As)污染条件下,种植9个水稻品种对土壤溶解性有机碳(DOC)和溶解性有机氮(DON)含量的影响,分析水稻品种、As污染和土壤类型的相对影响与交互作用.结果表明,水稻品种显著影响了土壤DOC和DON的变化,在水稻收获后,DOC平均含量的大小顺序为杂交稻(41.09±0.92 mg kg-1)>籼稻(38.10±1.53 mg kg-1)>粳稻(37.74± 1.37 mg kg-1);DON平均含量的大小顺序为粳稻(2.94± 0.40 mg kg-1)>杂交稻(2.61±0.42 mg kg-1)>籼稻(1.45± 0.17 mg kg-1).As污染降低了土壤DOC和DON的含量,但不同品种水稻的响应不同.与对照相比,As污染条件下,黄泥田和红泥田中DOC平均含量分别下降了14.4%和11.1%,DON平均含量分别下降了65.0%和44.7%;DOC在种植杂交稻后降幅最小,而DON在种植籼稻后降幅最小.在两种水稻土中,黄泥田的DOC和DON平均含量高于红泥田,在没有As污染条件下,分别高22.4%和45.8%,这与黄泥田有机质含量和pH高有关.水稻品种、As污染和土壤类型对DOC和DON变化的影响不同,3个因子对DOC变化的相对贡献率分别为7.7%、15.5%和27.6%,对DON变化的相对贡献率分别为14.7%、24.2%和2.0%.  相似文献   

4.
生物质炭引起的土壤碳激发效应与土壤理化特性的相关性   总被引:1,自引:0,他引:1  
生物炭因含有丰富的惰性碳元素而被看作是一种极富应用前景的固碳材料,将其施入土壤后可以增加土壤稳定性碳库,减缓全球气候变化。前人研究表明,生物炭添加到土壤中后,将增加(正激发效应)或者减缓(负激发效应)土壤原有机碳的矿化速率。然而,生物炭对不同土壤的激发效应以及土壤性质与生物炭激发效应之间的关系还不明确。因此,本研究利用13C 稳定性同位素标记的小麦秸秆制作成生物炭,分别将等碳量的生物炭和标记秸秆添加到四种不同性质的土壤中,室内培养一年,测定生物炭及秸秆中的碳元素在不同土壤中的降解量及其对土壤原有机碳的激发效应量。研究结果表明:生物炭在黑土水稻土以及下位砂姜土水稻土中引发了显著的负激发效应,激发效应量分别为-284 mg/kg和-157 mg/kg,而在红壤水稻土以及低肥力红壤水稻土(长期定位不施肥的红壤水稻土)中引发正激发效应,激发效应量分别为33.3 mg/kg和58.0 mg/kg;秸秆在四种土壤中引发的激发效应量不同,均为正激发效应,正激发效应量远大于生物炭。生物炭激发效应量与土壤的Ec(r= -0.884)以及pH(r= -0.824)成极显著的负相关关系。生物炭-碳在不同土壤上的累积降解量存在显著差异,黑土水稻土中为15.6 mg/kg,红壤水稻土中为14.2 mg/kg,下位砂姜土以及低肥力红壤水稻土中相似,分别为10.4 mg/kg和9.92 mg/kg;秸秆-碳的累积降解量远大于生物炭-碳,其在低肥力红壤水稻土中的降解量显著低于其他三种土壤。生物炭添加在黑土水稻土中碳净损失量最低,下位砂姜土水稻土中次之,低肥力红壤水稻土中最高。研究表明,生物炭在土壤中的固碳效果不仅受到生物炭-碳自身降解速率的影响,还会受到生物炭引发的土壤碳激发效应量的影响。  相似文献   

5.
Nitrogen and carbon dynamics in paddy and upland soils for rice cultivation and in upland soil for corn cultivation was investigated by using 13C and 15N dual-labeled cattle manure compost (CMC). In a soil with low fertility, paddy and upland rice took up carbon and nitrogen from the CMC at rates ranging from 0.685 to 1.051% of C and 17.6–34.6% of N applied. The 13C concentration was much higher in the roots than in the plant top, whereas the 15N concentration differed slightly between them, indicating that organic carbon taken up preferentially accumulated in roots. The 13C recovery in the plant top tended to be higher in upland soil than in paddy soil, whereas 15N applied was recovered at the same level in both paddy and upland soils. In the experiment with organic farming soil, paddy rice took up C and N from the CMC along with plant growth and the final recovery rates of 13C and 15N were 2.16 and 17.2% of C and N applied. In the corn experiment, a very large amount of carbon from the CMC was absorbed, accounting for at least 7 times value for rice. The final uptake rates of 13C and 15N reached about 13 and 10% of C and N applied, respectively. Carbon emission from the CMC sharply increased by 2 weeks after transplanting and the nitrogen emission was very low. It is concluded that rice and corn can take up an appreciable level of carbon and nitrogen from the CMC through roots.  相似文献   

6.
长期施肥红壤性稻田和旱地土壤有机碳积累差异   总被引:1,自引:1,他引:0  
  【目的】  提高土壤有机碳水平对提升农田生产力有重要意义。基于长期定位施肥试验,比较施肥影响下相同成土母质发育的红壤性稻田和旱地土壤的总有机碳 (TOC) 及其组分的积累差异,以深入理解红壤有机碳的固持及稳定机制。  【方法】  稻田和旱地长期施肥试验分别始于1981和1986年,包含CK (不施肥对照)、NPK (施氮磷钾化肥) 和NPKM (有机无机肥配施) 3个处理,在2017年晚稻和晚玉米收获后,采集两个试验上述处理的耕层 (0—20 cm) 土样,通过硫酸水解法分离土壤活性与惰性有机碳,测定并计算土壤中TOC及其组分的含量及储量,并利用Jenny模型拟合试验期间耕层土壤TOC含量的变化动态,估算土壤固碳潜力。  【结果】  与CK相比,长期施肥可提高稻田和旱地土壤各有机碳组分的含量,且NPKM处理的效果优于NPK处理。相比于稻田土壤,施肥对旱地土壤各有机碳组分含量的提升更加明显。NPK和NPKM处理下,旱地土壤活性有机碳组分Ⅰ、活性有机碳组分Ⅱ、惰性有机碳含量的增幅分别是稻田土壤的2.7、2.7、5.8倍和2.0、1.4和2.5倍。不论施肥与否,稻田土壤TOC的固存量和固存潜力均显著高于旱地土壤。施肥促进土壤固碳,在稻田和旱地土壤上,NPKM处理的TOC固存量分别是NPK处理的1.7和25.5倍,TOC固存潜力则分别是NPK处理的1.4和5.8倍。长期不同施肥均显著提高稻田和旱地土壤年均碳投入量,线性拟合方程表明,随碳投入量增加,土壤活性有机碳储量的累积对稻田、旱地土壤TOC储量累积的贡献率分别达64.7%、44.6%。不同处理间稻田与旱地土壤活性有机碳 (包括活性有机碳组分Ⅰ与活性有机碳组分Ⅱ) 含量的差异可解释其TOC含量差异的52.9%~60.0%。  【结论】  与施氮磷钾化肥相比,有机无机肥配施可更好的促进土壤固碳,且在旱地土壤上的促进作用比在稻田土壤上更为明显。与稻田土壤相比,旱地土壤各有机碳组分含量的变化对长期施肥的响应更敏感,且在施氮磷钾化肥条件下表现更为明显。红壤性稻田和旱地土壤TOC积累的主要贡献组分分别为活性有机碳和惰性有机碳。红壤植稻虽有利于有机碳固持,但红壤性稻田土壤的活性碳占比较高,可能易因不当管理而发生损失。  相似文献   

7.
Rice straw is a major organic material applied to rice fields. The microorganisms growing on rice-straw-derived carbon have not been well studied. Here, we applied 13C-labeled rice straw to submerged rice soil microcosms and analyzed phospholipid fatty acids (PLFAs) in the soil and percolating water to trace the assimilation of rice-straw-derived carbon into microorganisms. PLFAs in the soil and water were markedly enriched with 13C during the first 3 days of incubation, which indicated immediate incorporation of rice-straw-derived carbon into microbial biomass. The enrichment of PLFAs in the percolating water with 13C suggested that microorganisms other than the population colonizing rice straw also assimilated rice-straw-derived carbon or that some bacterial groups were selectively released from the straw. The microbial populations could be categorized into two communities based on the carbon isotope data of the PLFAs: those derived from rice straw and those derived from soil organic matter (SOM). The composition of the PLFAs from the two communities differed, which indicated the assimilation of rice-straw-derived carbon by a subset of microbial populations. The composition of rice-straw-derived PLFAs in the percolating water was also distinct from that in the soil.  相似文献   

8.
Soil organic carbon (SOC) is the most important carbon pool in the terrestrial ecosystem. However, temporal variations in paddy SOC under a temperate continental monsoon climate are poorly understood. Here, we demonstrate that significant SOC variations occur in meadow soil (MS), black soil (BS) and planosol (PS) paddy soils. Several soil samples were collected from different regions where rice was cultivated for 1, 6, 10, 23 and 40 years for MS samples; for 1, 6, 10, 20 and 35 years for BS samples and 1, 5, 10, 15 and 25 years for PS samples. The total organic carbon (TOC) content and humus organic carbon (HOC) content were found to increase as the rice cultivation duration increased, while the mineralizable organic carbon (MOC) content and carbohydrate organic carbon (COC) content exhibited the opposite trend. The relationships between the relative carbon accumulation (Y) in the three soil types and time (X) were consistent with the following models: YTOC = 0.9973X0.0245, YHOC = 0.9936X0.0457, YMOC = 1.023X−0.073, and YCOC = 1.040X−0.059, describing the temporal variation in the various forms of organic carbon in paddy soils under a temperate continental monsoon climate. The results of this study provide a reference for soil carbon pool management and fertilization management.  相似文献   

9.
卢孟雅  丁雪丽 《土壤》2024,56(1):10-18
稻田土壤碳循环是我国陆地生态系统碳循环的重要组成部分。促进稻田生态系统碳的固定及稳定对减缓全球气候变化起着不容忽视的作用。微生物主导的有机碳转化过程是土壤碳循环研究的核心,微生物同化代谢介导的细胞残体迭代积累在土壤有机碳长期截获和稳定过程中发挥重要作用。与旱地土壤相比,关于稻田土壤中微生物残体积累动态对外源有机物质如作物秸秆输入的响应及主要影响因子的认识还相对有限,对微生物通过同化作用参与土壤固碳的过程和机制尚缺乏系统认识。基于此,本文介绍了微生物残体对土壤有机碳库形成和积累的重要性及评价指标,重点探讨了秸秆还田对稻田土壤微生物残体积累动态以及外源秸秆碳形成细胞残体转化过程的影响,分析了影响微生物残体积累转化的主要气候因素和土壤因素,最后提出了未来应借助先进的光谱和高分辨率成像技术并结合同位素示踪对微生物残体的稳定性与机理开展更为深入的研究。  相似文献   

10.
红壤稻田土壤有机质的积累过程特征分析   总被引:38,自引:6,他引:38  
通过田间采样分析 ,研究了不同利用年限红壤稻田土壤有机质含量的变化及其过程和机理 ,确定达到平衡状态时红壤稻田土壤的有机碳含量水平。结果表明 ,在水耕条件下 ,土壤有机碳和全氮的积累过程可大致分为快速增长和趋于稳定阶段 ,水耕利用 30年 ,0~ 2 0cm土壤有机碳含量达到 2 0gkg- 1,全氮含量 1 6gkg- 1,随后 ,即使利用年限长达 80年 ,土壤有机碳和全氮含量变化趋于稳定 ,没有显著提高。 2 0天的培养期内 ,不同利用年限红壤稻田 0~ 1 0cm土层有机碳和有机氮的矿化率分别为 2 2 %~3 3%和 2 8%~ 6 7% ;总体来说 ,有机碳、氮的矿化率随红壤水稻土的熟化过程而升高。随着利用年限的增加 ,微生物生物量碳一直保持增加的趋势 ,而微生物生物量氮在利用 30年后其增加趋势明显趋缓 ;利用30年的红壤稻田 ,0~ 1 0cm土壤微生物生物量C、N为 332 8mgkg- 1和 2 3 85mgkg- 1,比利用 3年分别高1 1 1 %和 4 7%。与利用 3年的红壤稻田相比 ,利用 30年后细菌数量增加了 1 1倍 ( 0~ 1 0cm)和 3 8倍 ( 1 0~2 0cm) ,利用 80年后更显著地增加了 1 9倍 ( 0~ 1 0cm)和 1 2倍 ( 1 0~ 2 0cm) ;真菌的数量也呈上升的趋势 ,但在 30年利用后基本趋于稳定 ;此外 ,细菌的群落从荒草地的 4个种到 30~ 80年水田  相似文献   

11.
The overall processes by which carbon is fixed by plants in photosynthesis then released into the soil by rhizodeposition and subsequently utilized by soil micro-organisms, links the atmospheric and soil carbon pools. The objective of this study was to determine the plant derived 13C incorporated into the phospholipid fatty acid (PLFA) pattern in paddy soil, to test whether utilization of rice rhizodeposition carbon by soil micro-organisms is affected by soil water status. This is essential to understand the importance of flooded conditions in regulating soil microbial community structure and activity in wetland rice systems. Rice plants were grown in soil derived from a paddy system under controlled irrigation (CI), or with continuous waterlogging (CW). Most of the 13C-labelled rice rhizodeposition carbon was distributed into the PLFAs 16:0, 18:1ω7 and 18:1ω9 in both the CW and CI treatments. The bacterial PLFAs i15:0 and a15:0, both indicative of gram positive bacteria, were relatively more abundant in the treatments without rice plants. When rice plants were present rates of 13C-incorporation into i15:0 and a15:0 was slow; the microbes containing these PLFAs may derive most of their carbon from more recalcitrant C (soil organic matter). PLFAs, 18:1ω7 and 16:1ω7c, indicative of gram negative bacteria showed a greater amount incorporation of labelled plant derived carbon in the CW treatment. In contrast, 18:2ω6,9 indicative of fungi and 18:1ω9 indicative of aerobes but also potentially fungi and plant roots had greater incorporation in the CI treatment. The greater root mass concomitant with lower incorporation of 13C into the total PLFA pool in the CW treatment suggests that the microbial communities in wetland rice soil are limited by factors other than substrate availability in flooded conditions. In this study differing soil microbial communities were established through manipulating the water status of paddy soils. Steady state 13C labelling enabled us to determine that the microbial community utilizing plant derived carbon was also affected by water status.  相似文献   

12.

Purpose

Understanding the effects of temperature and moisture on soil organic carbon (SOC) dynamics is crucial to predict the cycling of C in terrestrial ecosystems under a changing climate. For single rice cropping system, there are two contrasting phases of SOC decomposition in rice paddy soils: mineralization under aerobic conditions during the off-rice season and fermentation under anaerobic conditions during the growth season. This study aimed to investigate the effects of soil temperature and moisture on SOC decomposition under the aerobic and subsequently anaerobic conditions.

Materials and methods

Two Japanese paddy soils (Andisol and Inceptisol) were firstly incubated under four temperatures (±5, 5, 15, and 25°C) and two moisture levels (60 and 100% water-filled pore space (WFPS)) under aerobic conditions for 24 weeks. Then, these samples were incubated for 4 weeks at 30°C and under anaerobic conditions. Carbon dioxide (CO2) and methane (CH4) productions were measured during the two incubation stages to monitor the SOC decomposition dynamics. The temperature sensitivity of SOC was estimated by calculation of the Q10 parameter.

Results and discussion

The total CO2 production after the 24-week aerobic incubation was significantly higher in both soils for increasing soil temperature and moisture (P < 0.01). During the subsequent anaerobic incubation, total decomposed C (sum of CO2 and CH4 productions) was significantly lower in samples that had been aerobically incubated at higher temperatures (15 and 25°C). Moreover, CH4 production was extremely low in all soil samples. Total decomposed C after the two incubation stages ranged from 256.8 to 1146.1 mg C kg?1 in the Andisol and from 301.3 to 668.8 mg C kg?1 in the Inceptisol. However, the ratios of total decomposed C to SOC ranged from 0.29 to 1.29% in the Andisol and from 2.21 to 4.91% in the Inceptisol.

Conclusions

Both aerobic and anaerobic decompositions of SOC in two paddy soils were significantly affected by soil temperature and moisture. Maintaining optimal soil temperature and medium moisture during the off-rice season might be an appropriate agricultural management to mitigate CH4 emission in the following rice growth season. Although it is high in SOC content, Andisol has less biodegradable components compared to Inceptisol and this could be a probable reason for the distinct difference in temperature sensitivity of SOC decomposition between two paddy soils.
  相似文献   

13.
ABSTRACT

Hot-water- and water-extractable organic matter were obtained from soil samples collected from a rice paddy 31 years after the start of a long-term rice experiment in Yamagata, Japan. Specifically, hot-water-extractable organic carbon and nitrogen (HWEOC and HWEON) were obtained by extraction at 80°C for 16 h, and water-extractable organic carbon and nitrogen (WEOC and WEON) were obtained by extraction at room temperature. The soil samples were collected from surface (0–15 cm) and subsurface (15–25 cm) layers of five plots that had been treated with inorganic fertilizers alone or with inorganic fertilizers plus organic matter, as follows: PK, NPK, NPK plus rice straw (RS), NPK plus rice straw compost (CM1), and NPK plus a high dose of rice straw compost (CM3). The soil/water ratio was 1:10 for both extraction temperatures. We found that the organic carbon and total nitrogen contents of the bulk soils were highly correlated with the extractable organic carbon and nitrogen contents regardless of extraction temperature, and the extractable organic carbon and nitrogen contents were higher in the plots that were treated with inorganic fertilizers plus organic matter than in the PK and NPK plots. The HWEOC and WEOC δ13C values ranged from ?28.2% to ?26.4% and were similar to the values for the applied rice straw and rice straw compost. There were no correlations between the HWEOC or WEOC δ13C values and the amounts of HWEOC or WEOC. The δ13C values of the bulk soils ranged from ?25.7% to ?23.2% and were lower for the RS and CM plots than for the PK and NPK plots. These results indicate that HWEOC and WEOC originated mainly from rice plants and the applied organic matter rather than from the indigenous soil organic matter. The significant positive correlations between the amounts of HWEOC and HWEON and the amount of available nitrogen (P < 0.001) imply that extractable organic matter can be used as an index for soil fertility in this long-term experiment. We concluded that the applied organic matter decomposed more rapidly than the indigenous soil organic matter and affected WEOC δ13C values and amounts.  相似文献   

14.
Paddy soils are subjected to periodically changing redox conditions. In order to understand better the redox control on long‐term carbon turnover, we assessed carbon mineralization and dissolved organic carbon (DOC) of paddy topsoils sampled along a chronosequence spanning 2000 years of rice cultivation. Non‐paddy soils were used as references. We exposed soils to alternating redox conditions for 12 weeks in incubation experiments. Carbon mineralization of paddy soils was independent of redox conditions. Anoxic conditions caused increasing DOC concentrations for paddy soils, probably because of desorption induced by increasing pH. We assume desorption released older, previously stabilized carbon, which then was respired by a microbial community well adapted to anoxic conditions. This assumption is supported by the 14C signatures of respired CO2, indicating larger mineralization of older carbon under anoxic than under oxic conditions. The increasing DOC concentrations under anoxic conditions did not result in an equivalent increase in carbon mineralization, possibly because of little reducible iron oxide. Therefore, net DOC and CO2 production were not positively related under anoxic conditions. The overall 20–75% smaller carbon mineralization of paddy soils than of non‐paddy soils resulted from less respiration under oxic conditions. We conclude that carbon accumulation in paddy as well as in other wetland soils results from a microbial community well adapted to anoxic conditions, but less efficient in mineralizing carbon during transient oxic periods. Carbon accumulation might be even larger when mineralization under anoxic conditions is restricted by a lack of alternative electron acceptors.  相似文献   

15.
绿肥还田在稻作生态系统的效应分析及研究展望   总被引:2,自引:1,他引:2  
王强盛  薄雨心  余坤龙  刘晓雪 《土壤》2021,53(2):243-249
绿肥种植利用是中国传统农业技术的精华,也是绿色生态循环农业发展的关键性举措,为中国粮食稳定和绿色增效发挥着十分重要的作用。水稻栽种之前的绿肥还田耕作模式就是将绿肥植物体直接耕翻于稻田中作为肥料或是将绿肥植物体沤堆成肥再施用于稻田土壤,这不仅能够培肥稻田土壤、增强土壤供肥能力和减少稻季化学肥料施用,而且能够减少稻田周年化学养分供给、减轻稻田营养物质流失、提高养分资源利用效率,是轻简种植、绿色高效的农作制度模式。本文概述了绿肥还田对稻田土壤质量、资源利用效率和温室气体排放等方面的影响,展望了绿肥在稻田资源利用中的潜力,为绿肥高效种植和合理还田提供参考。  相似文献   

16.
Considerable amounts of soil organic matter (SOM) are stabilized in paddy soils, and thus a large proportion of the terrestrial carbon is conserved in wetland rice soils. Nonetheless, the mechanisms for stabilization of organic carbon (OC) in paddy soils are largely unknown. Based on a chronosequence derived from marine sediments, the objectives of this study are to investigate the accumulation of OC and the concurrent loss of inorganic carbon (IC) and to identify the role of the soil fractions for the stabilization of OC with increasing duration of paddy soil management. A chronosequence of six age groups of paddy soil formation was chosen in the Zhejiang Province (PR China), ranging from 50 to 2000 years (yrs) of paddy management. Soil samples obtained from horizontal sampling of three soil profiles within each age group were analyzed for bulk density (BD), OC as well as IC concentrations, OC stocks of bulk soil and the OC contributions to the bulk soil of the particle size fractions. Paddy soils are characterized by relatively low bulk densities in the puddled topsoil horizons (1.0 and 1.2 g cm− 3) and high values in the plow pan (1.6 g cm− 3). Our results demonstrate a substantial loss of carbonates during soil formation, as the upper 20 cm were free of carbonates in 100-year-old paddy soils, but carbonate removal from the entire soil profile required almost 700 yrs of rice cultivation. We observed an increase of topsoil OC stocks from 2.5 to 4.4 kg m− 2 during 50 to 2000 yrs of paddy management. The OC accumulation in the bulk soil was dominated by the silt- and clay-sized fractions. The silt fraction showed a high accretion of OC and seems to be an important long-term OC sink during soil evolution. Fine clay in the puddled topsoil horizon was already saturated and the highest storage capacity for OC was calculated for coarse clay. With longer paddy management, the fractions < 20 μm showed an increasing actual OC saturation level, but did not reach the calculated potential storage capacity.  相似文献   

17.
The addition of organic matter via green manure rotation with rice is considered a smart agricultural practice to maintain soil productivity and support environmental sustainability. However, few studies have quantitatively assessed the impact of green manure rotation and application on the interactions between agronomic management practice, soil fertility, and crop production. In this study, 800 pairs of data from 108 studies conducted in the agricultural region of the Yangtze River, China were...  相似文献   

18.
城郊土壤不透水表面有土壤机碳转化及其相关性质的研究   总被引:2,自引:0,他引:2  
Installation of impervious surface in urban area prevents the exchange of material and energy between soil and other environmental counterparts, thereby resulting in negative effects on soil function and urban environment. Soil samples were collected at 0-20 cm depth in Nanjing City, China, in which seven sites were selected for urban open soils, and fourteen sites with similar parent material were selected for the impervious-covered soils, to examine the effect of impervious surface on soil properties and microbial activities, and to determine the most important soil properties associated with soil organic carbon (SOC) transformation in the urban soils covered by impervious surfaces. Soil organic carbon and water-soluble organic carbon (WSOC) concentrations, potential carbon (C) and nitrogen (N) mineralization rates, basal respiration, and physicochemical properties with respect to C transformation were measured. Installation of impervious surface severely affected soil physicochemical properties and microbial activities, e.g., it significantly decreased total N contents, potential C mineralization and basal respiration rate (P 〈 0.01), while increased pH, clay and Olsen-P concentrations. Soil organic carbon in the sealed soils at 0-20 cm was 2.35 kg m-2, which was significantly lower than the value of 4.52 kg m-2 in the open soils (P 〈 0.05). Canonical correlation analysis showed WSOC played a major role in determining SOC transformation in the impervious-covered soil, and it was highly correlated with total N content and potential C mineralization rate. These findings demonstrate that installation of impervious surface in urban area, which will result in decreases of SOC and total N concentrations and soil microbial activities, has certain negative consequences for soil fertility and long-term storage of SOC.  相似文献   

19.
In a greenhouse study, methane emissions were measured from two diverse Indian rice-growing soils planted to five rice cultivars under similar water regimes, fertilizer applications and environmental conditions. Significant variations were observed in methane emitted from soils growing different cultivars. Total methane emission varied between 8.04 and 20.92gm–2 from IARI soil (Inceptisol) and between 1.47 and 10.91gm–2 from Raipur soil (Vertisol) planted to rice. In all the cultivars, emissions from IARI soil were higher than from Raipur soil. The first methane flux peak was noticed during the reproductive phase and the second peak coincided with the grain-ripening stage of the rice cultivars. Received: July 7, 1996  相似文献   

20.
大量研究证明稻田土壤比旱地土壤更具固碳潜力,但至今对稻田土壤固碳机制的认识尚不甚清楚。本研究于2007年利用两个开垦年代相似,近20多年分别一直种植双季稻和双季玉米的长期定位试验,来比较不同种植模式下土壤有机碳及其组分的差异。结果表明,水田土壤总有机碳和总氮的浓度分别是旱地的2.2倍和2.5倍。与试验前相比,水稻种植显著提高了土壤有机碳的含量,增幅达到30.8%,而旱地的前后差异不显著。在所有团聚体粒径水平上,水田有机碳的浓度均显著高于旱地。其中53~250μm微团聚体相差最大,水田是旱地的近3倍。水田微团聚体保护碳(iPOM_m)在土壤中的浓度是旱地的4.2倍,微团聚体保护碳在总有机碳中的比重也显著高于旱地,达到25.5%,是旱地的2倍。水田和旱地iPOM_m组分碳的差异能够解释其总有机碳差异的42.8%。上述结果可以增强我们对稻田土壤固碳机制的了解,为稻田土壤碳管理提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号