首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Soil organic matter was extracted by a mixture of O.IM Na4P2O: O.IM NaOH from a chronosequence of weakly weathered soils developed on aeolian sand, and fractionated into humin (non-extractable), humic acid, and fulvic acid. The mass of total organic carbon in the profiles, the 14C content and the 13C/12C ratios were also determined. The weight of total carbon increased rapidly at first and then gradually without attaining a steady state. This trend was also shown by the humin and fulvic acid fractions, but the humic acid fraction appeared to have reached a maximum after about 3000 years. The order of total weights of the organic fractions was humin > fulvic acid > humic acid. The evidence suggests that the proportions of the humic fractions formed by decomposition are related to soil differences but not to vegetation. The greater part of the plant material found in the soils appears in the humin and fulvic acid fractions.  相似文献   

2.
水稻种植对吉林省西部苏打盐碱土改良培肥效果   总被引:2,自引:2,他引:0  
通过田间调查取样和室内分析,研究了水稻种植(5~30年)对吉林省西部苏打盐碱土的改良和培肥效果。结果表明:与种稻前的荒地土壤相比,种稻后土壤的pH、全盐量、交换性钠、碱化度、CO32-、HCO3-、Cl-、Ca2+、Na+和<0.053 mm粉黏粒含量显著降低,而SO42-、总有机碳、水溶性有机碳、胡敏酸碳、富里酸碳、碱解氮和2~0.25 mm大团聚体含量显著增加;同时,有机碳组成中的烷基碳和烷氧碳含量增加,而芳香碳和羰基碳含量降低,脂族碳/芳香碳比值增加,而烷基碳/烷氧碳和疏水碳/亲水碳比值降低;随种稻年限的延长,以上变化规律通常表现的更为明显。上述结果表明,种稻不仅能够降低土壤碱性和盐分含量,而且有助于提高土壤有机碳的含量和品质,以及改善土壤结构性,因此是改良和培肥苏打盐碱土的有效方式。  相似文献   

3.
珠江三角洲平原农田土壤有机碳组分及剖面分布特征   总被引:3,自引:0,他引:3  
采集珠江三角洲平原20个农田不同发生层的土壤样品,研究了土壤有机碳(SOC)及其组分,包括高锰酸钾氧化碳(POXC)、不同浓度硫酸氧化的有机碳组分(CF1、CF2、CF3和CF4)、胡敏酸碳(HAC)、富里酸碳(FAC)和胡敏素碳(HMC)的分布特征及其相互关系和影响因素。结果表明:SOC含量变幅为1.88~52.78 g kg~(-1)。SOC、CF1、CF2、CF3、POXC、FAC、HAC含量均在耕作层(Ap1)中最高,平均值分别为17.87、7.29、4.32、2.57、0.58、1.72、2.60 g kg~(-1),在水耕氧化还原层(Br)中最低;CF4和HMC含量在Bg层土壤中最高,平均值分别为5.32、15.03 g kg~(-1)。Ap1、Ap2、Br、Bg层中POXC占有机碳比例平均值分别为3.2%、3.3%、3.5%、3.6%,活性有机碳(CF1+CF2)是土壤有机碳的主要组分,在各发生层土壤中所占比例均60%。土壤腐殖质以HMC为主,所占比例约80%。土壤有机碳及其各组分之间均呈极显著正相关,土壤有机碳及其组分与土壤全氮、碱解氮呈极显著正相关,与pH值呈显著负相关。  相似文献   

4.
王景燕  龚伟  胡庭兴 《水土保持学报》2012,26(2):155-160,164
通过对川南坡地进行退耕试验,研究坡地退耕成慈竹林、杂交竹林、桤木+慈竹林和弃耕地对土壤腐殖质及团聚体碳和氮的影响。结果表明,坡地退耕5年后土壤腐殖质(胡敏酸、富里酸和胡敏素)、活性腐殖质(活性胡敏酸和活性富里酸)及团聚体碳和氮含量、胡敏酸与富里酸比值和胡敏酸E4/E6值,以及可浸提腐殖质(胡敏酸和富里酸)、活性腐殖质及>0.25mm各粒径团聚体碳和氮分配比例均增加,并呈现出慈竹林>杂交竹林>桤木+慈竹林>弃耕地>农耕地的变化规律。土壤团聚体有机碳(氮)含量及其分配比例随土壤团聚体粒径的增加呈现出"V"形变化,其最小值分别出现在2~1mm和0.5~0.25mm粒径。说明川南坡地退耕对增加土壤腐殖质及团聚体碳和氮含量、改善土壤肥力状况和促进土壤碳固定具有重要的作用和意义。  相似文献   

5.
甘蔗酒精废液对土壤理化性状及氧化还原酶的影响   总被引:3,自引:0,他引:3  
在蔗地上设计不施肥(CK1)、施化肥(CK2)和4个直接喷施甘蔗酒精废液处理,研究不同用量废液施用对土壤理化性状及两种氧化还原酶活性的影响.结果表明:蔗地施用废液提高了土壤全氮、Cl-、有机质、腐殖质含量,使甘蔗苗期土壤过氧化氢酶和多酚氧化酶活性异常升高,随后迅速下降,成熟期下降到接近或小于CK2的土壤酶活性水平.甘蔗苗期土壤过氧化氢酶活性与全氮、有机质、腐殖质呈极显著正相关,与富里酸、胡敏酸、Cl-呈显著正相关(r0.05=0.811,r0.01=0.917,n=6);土壤多酚氧化酶活性与有机质、腐殖质、Cl-呈显著正相关.与不种植甘蔗的75 tCK废液处理相比,种植甘蔗的75 t废液处理甘蔗生长后期土壤全氮、有机质、Cl-含量和多酚氧化酶活性较低.说明与施用化肥或不施肥处理相比,蔗地施用废液有提高土壤肥力和有机质、腐殖质含量的作用,但也使施用初期过氧化氢酶和多酚氧化酶活性异常升高,施废液的土壤种植甘蔗对废液养分吸收和环境净化有一定作用.  相似文献   

6.
Abstract

Many of the cultivated soils of sub‐Saharan Africa typically have a surface horizon low in clay and with a low cation exchange capacity (CEC). In these soils, CEC is largely due to the soil organic matter (SOM). Measurements made on long‐term trials show that changes in CEC and SOM are positively correlated to one another, but not of same magnitude, suggesting that not all of the SOM plays an equal role as regards the soil CEC. To study the influence of the different SOM size fractions on the CEC, soils with or without application of manure or compost coming from trials in Chad and Côte d'Ivoire were separated without destruction of the SOM into five organo‐mineral fractions: “coarse sand”;, “fine sand”;, “coarse silt”;, “fine silt”;, and “clay”; made up of particles of sizes between 2,000 and 200, 200 and 50, 50 and 20, 20 and 2, and 2 and 0 μm, respectively. Fractionation was carried out by mechanical dispersion of the soil, wet sieving of the fractions larger than 20 μm, and decanting of the “clay”; and “fine silt”; fractions. The CEC of these fractions increases inversely with their size. The “clay”; fraction which contains half of the SOM contributes about 80% of the CEC of the soils. The CEC of the fractions is largely a function of their carbon (C) content, but the organic CEC per unit C of the “clay”; fraction appears to be four times greater than that of the other fractions (1,000 as against 270 cmolc kg‐1). Applications of manure or compost increase the CEC of the soils by increasing the soil C only when this C increase concerns the fine fractions of the SOM.  相似文献   

7.
通过对华北平原小麦–玉米轮作农田生态系统18年田间施肥试验,研究了长期不同施肥处理对耕层(0—20 cm)土壤腐殖质及活性腐殖质组分碳和氮的影响。试验设化肥NPK不同组合(NPK、NP、NK、PK),全部施用有机肥(OM),一半有机肥+化肥NPK(1/2OMN)及不施肥(CK)共7个处理。结果表明,各施肥处理均能在不同程度上增加土壤腐殖质(胡敏酸、富里酸和胡敏素)及活性腐殖质(活性胡敏酸和活性富里酸)组分碳和氮含量,提高可浸提腐殖质(胡敏酸和富里酸)及活性腐殖质组分碳和氮分配比例;但施肥对土壤活性腐殖质组分碳和氮含量的增加率均分别高于腐殖质组分碳和氮。各处理土壤腐殖质及活性腐殖质组分碳和氮含量均为OM处理最高,且有机肥与化肥NPK配施高于单施化肥各处理;而化肥处理中NPK均衡施用效果最好。说明施用有机肥、有机肥与化肥NPK配施及化肥NPK均衡施用是增加土壤腐殖质及活性腐殖质组分碳和氮的关键;活性腐殖质组分碳和氮较腐殖质组分碳和氮对施肥措施的响应更灵敏。  相似文献   

8.
Labile carbon is the fraction of soil organic carbon with most rapid turnover times and its oxidation drives the flux of CO2 between soils and atmosphere. Available chemical and physical fractionation methods for estimating soil labile organic carbon are indirect and lack a clear biological definition. We have modified the well-established Jenkinson and Powlson's fumigation-incubation technique to estimate soil labile organic carbon using a sequential fumigation-incubation procedure. We define soil labile organic carbon as the fraction of soil organic carbon degradable during microbial growth, assuming that labile organic carbon oxidizes according to a simple negative exponential model. We used five mineral soils and a forest Oa horizon to represent a wide range of organic carbon levels. Soil labile organic carbon varied from 0.8 mg/g in an Entisol to 17.3 mg/g in the Oa materials. Potential turnover time ranged from 24 days in an Alfisol to 102 days in an Ultisol. Soil labile organic carbon contributed from 4.8% in the Alfisol to 11.1% in the Ultisol to the total organic carbon. This new procedure is a relatively easy and simple method for obtaining indices for both the pool sizes and potential turnover rates of soil labile organic carbon and provides a new approach to studying soil organic carbon.  相似文献   

9.
The humus state of rainfed chernozems affected by local waterlogging was studied. The total humus content in the hydromorphic chernozems increases, as well as the content of fulvic acids, whereas the content of nonhydrolyzable residue (humin) decreases. A significant increase in the portions of the third fractions of humic and fulvic acids is observed. The role of the fine silt and clay fractions in the binding of humic substances increases in the lower horizons of locally hydromorphic soils. The increase in the content of fulvic acids (fulvatization) is mainly due to their predominance in the clay fraction. The latter is specified by the significant narrowing of the Cha-to-Cfa ratio, the lower content of the nonhydrolyzable residue, and the increased content of the clay-bound (3rd fraction) fulvic and humic acids. The composition of the humus in the fine silt fraction of the studied soils is characterized by an increased amount of humic acids of the second fraction with a decrease in the relative content of fulvic acids.  相似文献   

10.
长白山不同林型土壤有机碳特征   总被引:2,自引:1,他引:1  
采用野外采样与室内分析相结合的方法,研究了长白山北坡6种不同林型(阔叶林、针叶林、云冷杉、岳桦林、岳桦-苔原、高山苔原)土壤有机碳及其组分的含量,分析了土壤有机碳分布与铁铝氧化物和黏粒矿物组成之间的关系。结果表明:不同林型之间,阔叶林土壤的有机碳、胡敏素碳、颗粒有机碳、2~0.25 mm大团聚体碳和0.25~0.053 mm微团聚体碳含量最高,云冷杉土壤的易氧化碳含量最高而水溶性有机碳、胡敏酸碳、富里酸碳和颗粒有机碳含量最低;此外,岳桦林土壤的胡敏酸碳和富里酸碳含量显著高于其他林型土壤,岳桦-苔原土壤的水溶性有机碳含量显著高于其他林型土壤,而高山苔原土壤的有机碳和易氧化碳含量显著低于其他林型土壤。相关性分析表明,土壤有机碳含量与非晶质氧化铝含量呈显著的正相关关系(P<0.05),富里酸碳含量与游离氧化铝含量呈显著的正相关关系(P<0.05),而0.25~0.053 mm微团聚体有机碳含量与2种形态氧化铝含量都呈显著的正相关关系(P<0.05)。上述结果指出,不同林型条件下各有机碳及其组分差异显著。  相似文献   

11.
The effect of endogeic earthworms (Octolasion tyrtaeum) and the availability of clay (Montmorillonite) on the mobilization and stabilization of uniformly 14C-labelled catechol mixed into arable and forest soil was investigated in a short- and a long-term microcosm experiment. By using arable and forest soil the effect of earthworms and clay in soils differing in the saturation of the mineral matrix with organic matter was investigated. In the short-term experiment microcosms were destructively sampled when the soil had been transformed into casts. In the long-term experiment earthworm casts produced during 7 days and non-processed soil were incubated for three further months. Production of CO2 and 14CO2 were measured at regular intervals. Accumulation of 14C in humic fractions (DOM, fulvic acids, humic acids and humin) of the casts and the non-processed soil and incorporation of 14C into earthworm tissue were determined.Incorporation of 14C into earthworm tissue was low, with 0.1 and 0.44% recovered in the short- and long-term experiment, respectively, suggesting that endogeic earthworms preferentially assimilate non-phenolic soil carbon. Cumulative production of CO2-C was significantly increased in casts produced from the arable soil, but lower in casts produced from the forest soil; generally, the production of CO2-C was higher in forest than in arable soil. Both soils differed in the pattern of 14CO2-C production; initially it was higher in the forest soil than in the arable soil, whereas later the opposite was true. Octolasion tyrtaeum did not affect 14CO2-C production in the forest soil, but increased it in the arable soil early in the experiment; clay counteracted this effect. Clay and O. tyrtaeum did not affect integration of 14C into humic fractions of the forest soil. In contrast, in the arable soil O. tyrtaeum increased the amount of 14C in the labile fractions, whereas clay increased it in the humin fraction.The results indicate that endogeic earthworms increase microbial activity and thus mineralization of phenolic compounds, whereas clay decreases it presumably by binding phenolic compounds to clay particles when passing through the earthworm gut. Endogeic earthworms and clay are only of minor importance for the fate of catechol in soils with high organic matter, clay and microbial biomass concentrations, but in contrast affect the fate of phenolic compounds in low clay soils.  相似文献   

12.
Abstract

Organic matter in Urbic Anthrosols often contains chemically and biologically inert organic carbon. This material, called black carbon (BC), originates from municipal wastes, coal‐mine deposits and/or fly ash. This black carbon needs to be differentiated from the other soil organic substances because of its very different physical and chemical nature. In this paper, we propose a new method for determining BC, integrated into the humic fractionation procedure. The remaining organic carbon in the soil residue left after lipid extraction, alkaline extraction [0.5 M sodium hydroxide (NaOH)], and further oxidation with 30% hydrogen peroxide (H2O2) is defined as inert organic carbon or BC. The common fractions of soil organic matter, such as lipids, fulvic and humic acids, and humins are thus supplemented with a new fraction, BC. According to our results by 13C‐NMRspectroscopy, this fraction consists mainly of polyaromatic hydrocarbons with few functional groups.  相似文献   

13.
The influence of the soil mineral phase on organic matter storage was studied in loess derived surface soils of Central Germany. The seven soils were developed to different genetic stages. The carbon content of the bulk soils ranged from 8.7 to 19.7 g kg—1. Clay mineralogy was confirmed to be constant, with illite contents > 80 %. Both, specific surface area (SSA, BET‐N2‐method) and cation exchange capacity (CEC) of bulk soils after carbon removal were better predictors of carbon content than clay content or dithionite‐extractable iron. SSA explained 55 % and CEC 54 % of the variation in carbon content. The carbon loadings of the soils were between 0.57 and 1.06 mg C m—2, and therefore in the ”︁monolayer equivalent” (ME) level. The increase in SSA after carbon removal (ΔSSA) was significantly and positively related to carbon content (r2 = 0.77). Together with CEC of carbon‐free samples, ΔSSA explained 90 % of the variation in carbon content. Clay (< 2 μm) and fine silt fractions (2—6.3 μm) contained 68—82 % of the bulk soil organic carbon. A significantly positive relationship between carbon content in the clay fraction and in the bulk soil was observed (r2 = 0.95). The carbon pools of the clay and fine silt fractions were characterized by differences in C/N ratio, δ13C ratio, and enrichment factors for carbon and nitrogen. Organic matter in clay fractions seems to be more altered by microbes than organic matter in fine silt fractions. The results imply that organic matter accumulates in the fractions of smallest size and highest surface area, apparently intimately associated with the mineral phase. The amount of cations adhering to the mineral surface and the size of a certain and specific part of the surface area (ΔSSA) are the mineral phase properties which affect the content of the organic carbon in loess derived arable surface soils in Central Germany most. There is no monolayer of organic matter on the soil surfaces even if carbon loadings are in the ME level.  相似文献   

14.
The carbon-isotopic composition of fulvic and humic acid from the A horizons of eight soil types, developed under a wide variety of climatological conditions, was measured. The fulvic acid is always enriched in 13C as compared with the humic acid from the same soil by a rather constant factor of 0.9?. The fulvic acids are isotopically closer to the plant source of the organic matter and thus represent an intermediate stage in the formation of humic substances. Depth sections of peat soil showed that carbon isotopes can be used to evaluate the dynamic nature of the fulvic-acid fraction. With depth, a transfer of carbon groups from polysaccharides to fulvic acid is seen. Based on isotopic evidence it is shown that in addition to formation of β-humus, part of the fulvic acid is condensed with depth to a stable humic fraction — humin.  相似文献   

15.
Because of its insolubility, heterogeneity and structural complexity, humin is the least understood among the three fractions of soil humic substances. This research aimed to evaluate the long‐term effect of combined nitrogen and phosphorus (NP) fertilizer addition on the chemical structure of humin under maize (Zea mays L.) monoculture in a Typic Hapludoll of northeast China. Soil samples were collected 12 and 25 years after the initiation of the fertilizer treatment. Soil humin was isolated using NaOH‐Na4P2O7 extraction to remove humic and fulvic acids, which was followed by HF‐HCl treatment to remove most of the inorganic minerals. Solid‐state 13C cross‐polarization magic angle spinning nuclear magnetic resonance (13C CPMAS NMR) spectroscopy was used to characterize the chemical structure of the humin isolates. Results showed that the organic carbon (C) content of humin increased after NP fertilizer addition, compared with a no‐fertilizer (CK) treatment. 13C CPMAS NMR indicated that O‐alkyl C and aromatic C of humin decreased, while alkyl C and the ratios of alkyl C/O‐alkyl C, aliphatic C/aromatic C and hydrophobic C/hydrophilic C all increased in the NP fertilizer treatment. The long‐term application of NP fertilizer changed the molecular structure of soil humin to be more alkyl and hydrophobic, and was thus beneficial to the sequestration and stability of organic C in soil.  相似文献   

16.

Purpose

The mineralization/immobilization of nutrients from the crop residues is correlated with the quality of the plant material and carbon compartments in the recalcitrant and labile soil fractions. The objective of this study was to correlate the quality and quantity of crop residues incubated in the soil with carbon compartments and CO2-C emission, using multivariate analysis.

Materials and methods

The experiment was conducted in factorial 4?+?2?+?5 with three replicates, referring to three types of residues (control, sugarcane, Brachiaria, and soybean), and two contributions of the crop residues in constant rate, CR (10 Mg ha?1 residue), and agronomic rate, AR (20, 8, and 5 Mg ha?1 residue, respectively, for sugarcane, soybean, and Brachiaria), evaluated five times (1, 3, 6, 12, and 48 days after incubation). At each time, we determined the CO2-C emission, nitrogen and organic carbon in the soil, and the residues. In addition, the microbial biomass and water-soluble, labile, and humic substance carbons fractionated into fulvic acids, humic acids and humin were quantified.

Results and discussion

Higher CO2-C emissions occurred in the soil with added residue ranging from 0.5 to 1.1 g CO2-C m?2 h?1 in the first 6 days of incubation, and there was a positive correlation with the less labile organic soil fractions as well as residue type. In the final period, after 12 days of soil incubation, there was a higher relation of CO2-C emission with carbon humin. The sugarcane and soybean residue (20 Mg ha?1) promoted higher CO2-C emission and the reduction of carbon residue. The addition of residue contributed to an 82.32 % increase in the emission of CO2-C, being more significant in the residue with higher nitrogen availability.

Conclusions

This study shows that the quality and quantity of residue added to soil affects the carbon sequestration and CO2-C emission. In the first 6 days of incubation, there was a higher CO2-C emission ratio which correlates with the less stable soil carbon compartments as well as residue. In the final period of incubation, there is no effect of quality and quantity of residue added to soil on the CO2-C emission.
  相似文献   

17.
Abstract

Determinations were made of total soil organic matter (SOM), stable and labile organic fractions, biomass carbon (C), and chemical composition of several humus‐soil‐fractions in Chilean volcanic soils, Andosols and Ultisols. Their physico‐chemical properties and humification degree at different stages in edaphic evolution were also assessed. In addition, organic matter models were obtained by chemical and biological syntheses and the structures and properties of natural and synthetic humic materials were compared with SOM. Results indicate that Andosols have higher SOM levels than Ultisols, but the fraction distribution in the latter suggests a shift of the more stable fractions to the more labile ones. Moreover, contents of humines, and humic and fulvic acids suggest that Chilean volcanic soil SOM is highly humified. On the other hand, among the SOM labile fractions, carbohydrate and biomass are about 15% of the SOM which are one of the most important fractions in soil fertility.  相似文献   

18.
Summary Two soils from Pakistan (Hafizabad silt loam and Khurrarianwala silt loam) and one from Illinois, USA (Drummer silty clay loam) were incubated with 15N-labelled soybean tops for up to 20 weeks at 30°C. Mineralization of soybean 15N was slightly more rapid in the Pakistani soils, and after 20 weeks of incubation, 50%, 53%, and 56% of the applied 15N was accounted for as (NH4 ++NO3 )-N in Drummer, Hafizabad, and Khurrarianwala soils, respectively. Potentially mineralizable N (determined by anaerobic incubation) varied between 1.5% and 10% of the applied 15N in the three soils at different stages of incubation; somewhat higher percentages were mineralizable in the Pakistani soils than in the Drummer soil. From 3.7% to 9% of the applied 15N was accounted for in the microbial biomass. From 10% to 32% of the applied N was recovered in the humic acid and fulvic acid fractions of the organic matter by sequential extraction with Na4P2O7 and NaOH; from 12% to 49% was recovered in the humin fraction. Of the three soils, Drummer soil contained more 15N as humic and fulvic acids. In all cases, the 15N was approximately equally distributed between the humic and fulvic acid fractions. A significant percentage of the humin 15N (52%–78%, equivalent to 8%–34% of the applied 15N) occurred in non-hydrolyzable (6 N HCl) forms. Of the hydrolyzable 15N, 42%–51% was accounted for as amino acid-N followed in order by NH3 (17%–30%), hydrolyzable unknown forms (20%–22%), and amino sugars (6%–2%). The recovery of applied 15N for the different incubation stages was 87±22%. Recovery was lowest with the Khurrarianwala soil, presumably because of NH3 volatilization losses caused by the high pH of this soil.  相似文献   

19.
A 2-year field experiment was conducted in wheat ecosystem to assess the key soil biological characteristics in inceptisols of northeastern region of India. Nine treatments using organic inputs (farmyard manure and vermicompost) and mineral fertilizers were applied by modulating the doses of organics and mineral N fertilizer. Soil enzymes (urease, phosphatase, dehydrogenase, fluorescein diacetate (FDA) and arylsulphatase), microbial biomass carbon (MBC), bacteria and fungi populations were measured before seed sowing (GS1), at flowering stage (GS2) and after harvest (GS3) of wheat, whereas total organic carbon (TOC) was studied at GS3. GS2 recorded significantly higher soil enzyme activities, except FDA, which increased considerably at GS3. Enzyme activities, available N and TOC significantly (p ≤ 0.05) enhanced with application of organic inputs even with reduced (50%) mineral N. Except urease and phosphatase, other enzymes did not respond significantly to mineral fertilization. Vermicompost application increased mean enzyme activities, MBC, microbial growth and TOC fractions (particulate organic carbon, humic acid and fulvic acid carbon) than farmyard manure. Significant (p ≤ 0.05) positive correlations (r = 0.61–0.87) were obtained between TOC and its fractions with studied soil enzymes. Thus, in conclusion, 5 t ha1 organics incorporation (especially vermicompost) in wheat fertility programme can uphold soil biological health, reduce (50%) N application and would be a sustainable option for wheat grown in inceptisols of northeastern region of India.  相似文献   

20.
The objective of this study was to investigate differences in organic matter fractions, such as dissolved organic carbon and humic substances, in soils under different land uses. Soil samples were collected from the upper layer of arable lands and grasslands. Humic substances (HS) were chemically fractionated into fulvic acids (FA), humic acids (HA) and humins (HUM), and based on the separated fractions, the humification index (HI) and the degree of HS transformation (DT) were calculated. Dissolved organic carbon (DOC) was determined by cold (CWE) and hot water (HWE) extractions. Regardless of land use, the results indicated significant differences in soil organic carbon (SOC) and HS composition, with HA and HUM as the dominant fractions. Total SOC was higher in grassland (median = 17.51 g kg?1) than arable soils (median = 9.98 g kg?1); the HI and DT indices did not differ significantly between land uses (HI = 0.3–10.3 and DT = 0.2–6.2 for grasslands, > 0.05; HI = 0.3–3.9 and DT = 0.2–20.1 for arable lands, > 0.05). This indicates the relatively high stability of organic carbon and efficient humification processes in both land uses. Additionally, in arable soils lower CWE‐C (0.75 g kg?1) and higher HWE‐C (2.59 g kg?1) than in grasslands (CWE‐C = 1.13 g kg?1, HWE‐C = 1.60 g kg?1) can be related to farming practice and application of soil amendments. The results showed that both labile and humified organic matter are better protected in grassland soils and are consequently less vulnerable to mineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号