首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relative importance of specific plant properties versus soil characteristics in shaping the bacterial community structure of the rhizosphere is a topic of considerable debate. Here, we report the results of a study on the bacterial composition of the rhizosphere of the wild plant Carex arenaria (sand sedge) growing at 10 natural sites in The Netherlands. The soil properties of the sandy soils at these sites were highly disparate, most notably in pH, chloride and organic matter content. Rhizosphere and bulk soil bacterial communities were examined by culture-independent means, namely, 16S rDNA-directed PCR-DGGE profiling. Large differences were observed between the bacterial communities of the different sites for both bulk and rhizosphere soil. Cluster analysis of bacterial profiles revealed that the rhizosphere community of each site was generally more closely related to the bulk soil community of that site rather than to rhizosphere communities of other sites. Hence, bacterial community structure within the rhizosphere of C. arenaria appeared to be determined to a large extent by the bulk soil community composition. This conclusion was supported by a reciprocal planting experiment, where C. arenaria shoots of different sites yielded highly similar rhizosphere communities when planted in the same soil.  相似文献   

2.
《Applied soil ecology》2007,37(2-3):147-155
A number of studies have reported species specific selection of microbial communities in the rhizosphere by plants. It is hypothesised that plants influence microbial community structure in the rhizosphere through rhizodeposition. We examined to what extent the structure of bacterial and fungal communities in the rhizosphere of grasses is determined by the plant species and different soil types. Three grass species were planted in soil from one site, to identify plant-specific influences on rhizosphere microbial communities. To quantify the soil-specific effects on rhizosphere microbial community structure, we planted one grass species (Lolium perenne L.) into soils from three contrasting sites. Rhizosphere, non-rhizosphere (bulk) and control (non-planted) soil samples were collected at regular intervals, to examine the temporal changes in soil microbial communities. Rhizosphere soil samples were collected from both root bases and root tips, to investigate root associated spatial influences. Both fungal and bacterial communities were analysed by terminal restriction fragment length polymorphism (TRFLP). Both bacterial and fungal communities were influenced by the plant growth but there was no evidence for plant species selection of the soil microbial communities in the rhizosphere of the different grass species. For both fungal and bacterial communities, the major determinant of community structure in rhizospheres was soil type. This observation was confirmed by cloning and sequencing analysis of bacterial communities. In control soils, bacterial composition was dominated by Firmicutes and Actinobacteria but in the rhizosphere samples, the majority of bacteria belonged to Proteobacteria and Acidobacteria. Bacterial community compositions of rhizosphere soils from different plants were similar, indicating only a weak influence of plant species on rhizosphere microbial community structure.  相似文献   

3.
Soil microbial community composition is determined by the soil type and the plant species. By sequencing the V3-V4 region of the bacterial 16S rRNA gene amplicons, the current study assessed the bacterial community assemblage in rhizosphere and bulks soils of wild (Glycine soja) and cultivated (Glycine max) soybeans grown in the suspensions of three important soil types in China, including black, red and soda-saline-alkali soils. The alpha-diversity of the bacterial community in the rhizosphere was significantly higher than that of the bulk soils suggesting that bulk soil lacks plant nurturing effect under the current study conditions. Black and red soils were enriched with nitrifying and nitrogen-fixing bacteria but the soda-saline-alkali soil suspension had more denitrifying bacteria, which may reflect agronomic unsuitability of the latter. We also observed a high abundance of Bradyrhizobium and Pseudomonas, enriched cellulolytic bacteria, as well as a highly connected molecular ecological network in the G. soja rhizosphere soil. Taken all, the current study suggest that wild soybeans may have evolved to recruit beneficial microbes in its rhizosphere that can promote nutrients requisition, biostasis and disease-resistance, therefore ecologically more resilient than cultivated soybeans.  相似文献   

4.
When plants establish in novel environments, they can modify soil microbial community structure and functional properties in ways that enhance their own success. Although soil microbial communities are influenced by abiotic environmental variability, rhizosphere microbial communities may also be affected by plant activities such as nutrient uptake during the growing season. We predicted that during the growing season, plant N uptake would explain much of the variation in rhizosphere microbial community assembly and functional traits. We grew the invasive C3 grass Bromus tectorum and three commonly co-occurring native C3 grasses in a controlled greenhouse environment, and examined rhizosphere bacterial community structural and functional characteristics at three different plant growth stages. We found that soil N availability and plant tissue N levels strongly correlated with shifts in rhizosphere bacterial community structure. It also appeared that the rapid drawdown of soil nutrients in the rhizosphere during the plant growing season triggered a selection event whereby only those microbes able to tolerate the changing nutrient conditions were able to persist. Plant N uptake rates inversely corresponded to microbial biomass N levels during periods of peak plant growth. Mechanisms which enable plants to influence rhizosphere bacterial community structure and function are likely to affect their competitive ability and fitness. Our study suggests that plants can alter their rhizosphere microbiomes through influencing nutrient availability. The ways in which plants establish their rhizosphere bacterial communities may now be viewed as a selection trait related to intrinsic plant species nutrient demands.  相似文献   

5.
黑土区大豆基因型的根际细菌群落结构时空动态变化   总被引:1,自引:0,他引:1  
The dynamics of rhizosphere microbial communities is important for plant health and productivity, and can be influenced by soil type, plant species or genotype, and plant growth stage. A pot experiment was carried out to examine the dynamics of microbial communities in the rhizosphere of two soybean genotypes grown in a black soil in Northeast China with a long history of soybean cultivation. The two soybean genotypes, Beifeng 11 and Hai 9731, differing in productivity were grown in a mixture of black soil and siliceous sand. The bacterial communities were compared at three zone locations including rhizoplane, rhizosphere, and bulk soil at the third node (V3), early flowering (R1), and early pod (R3) stages using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) of 16S rDNA. The results of principal component analyses (PCA) showed that the bacterial community structure changed with growth stage. Spatially, the bacterial communities in the rhizoplane and rhizosphere were significantly different from those in the bulk soil. Nevertheless, the bacterial communities in the rhizoplane were distinct from those in the rhizosphere at the V3 stage, while no obvious differences were found at the R1 and R3 stages. For the two genotypes, the bacterial community structure was similar at the V3 stage, but differed at the R1 and R3 stages. In other words, some bacterial populations became dominant and some others recessive at the two later stages, which contributed to the variation of the bacterial community between the two genotypes. These results suggest that soybean plants can modify the rhizosphere bacterial communities in the black soil, and there existed genotype-specific bacterial populations in the rhizosphere, which may be related to soybean productivity.  相似文献   

6.
[目的]运用高级别分类学分辨率揭示玉米根际和非根际土壤中细菌群落微多样性,并探讨微多样性与土壤有机碳矿化的关系,从更精细的分类学分辨率水平上为玉米根际土壤中微生物驱动的碳循环提供理论依据。[方法]以西北农林科技大学曹新庄试验农场为依托,采取田间生长条件下玉米根际和非根际两种土壤类型。利用高通量测序技术,比较OTUs和ASVs两种分类学分辨率水平上玉米根际和非根际土壤中的细菌群落结构,揭示细菌群落的微多样性。同时通过培养试验检测根际和非根际土壤的有机碳矿化特性。[结果]通过比较OTUs和ASVs两种分类学分辨率水平上的细菌群落,OTUs和ASVs两种方式显示出相似的细菌群落结构。在玉米根际和非根际土壤类型中,ASVs在更高分类学分辨率水平上描绘细菌群落组成,同时揭示了普遍存在于OTUs内的不同菌株或生态型。此外,两种不同生长策略(r-策略和K-策略)细菌物种的相对丰度差异是导致根际和非根际土壤细菌群落结构不同的主要因素。培养试验表明,根际土壤有机碳矿化量显著高于非根际土壤。3 a的连续采样分析结果表明,根系是田间成熟玉米根际和非根际土壤理化性质差异的主要因素而受时间(2019—2021年...  相似文献   

7.
薛壮壮  冯童禹  王超  沈仁芳 《土壤》2022,54(4):733-739
为了研究土地利用方式对酸性红壤丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)群落的影响,调查了酸性红壤4种土地利用方式 (草地、玉米、花生和大豆) 下非根际和根际土壤AMF群落多样性和组成结构。结果表明:土地利用方式显著影响了AMF群落优势属球囊霉属(Glomus)和巨孢囊霉属(Paraglomus)的相对丰度,但是根际作用影响不明显。土地利用方式而非根际作用显著影响了AMF群落香农指数和物种丰富度,其中大豆地表现出最低的香农指数和物种丰富度。土地利用方式和根际作用都显著影响AMF群落组成结构,但是土地利用方式的作用强度明显高于根际作用。球囊霉属主要解释了不同土地利用方式之间的AMF群落组成差异。土壤pH是影响土壤AMF群落结构的最关键因子。因此,土地利用方式比根际作用表现出对酸性红壤AMF群落更大的影响,展现了土地利用变化在影响土壤AMF群落方面的重要作用。  相似文献   

8.
The soil physicochemical properties, soil denitrification rates (PDR), denitrifiers via nitrite reductases (nirK and nirS) and nitrous oxide reductase (nosZ), abundance and community composition of denitrifiers in both the rhizosphere and bulk soil from a long-term (32 year) fertilizer field experiment conducted during late rice season were investigated by using the MiSeq sequencing, quantitative PCR, terminal restriction fragment polymorphism (T-RFLP). The experiment including four treatments: without fertilizer input (CK), chemical fertilizer alone (MF), rice straw residue and chemical fertilizer (RF), and organic manure and chemical fertilizer (OM). The results showed that the application of rice straw residue and organic manure increased soil organic carbon (C), total nitrogen (N), and NH4+-N contents. The nirK, nirS, and nosZ copy numbers with OM and RF treatments were significant higher than that of the MF and CK treatments in the rhizosphere and bulk soil (p < 0.05). The principal coordinate analysis (PCoA) analysis showed that the different parts of root zone are the most important factors for the variation of denitrifying bacteria community, and the different fertilization treatments is the second important factors for the variation of denitrifying bacteria community. The MiSeq sequencing result showed that nirK, nirS and nosZ-type denitrifiers communities within bulk soil had lower species diversity compared with rhizosphere soil, and were dominated by Rhizobiales, Rhodobacterales, Burkholderiales, and Pseudomonadales. As a result, the application of fertilization practices had significant effects on soil N and PDR levels, and affected the abundance and community composition of N-functional microbes.  相似文献   

9.
We evaluated changes occurring in the rhizosphere microbial communities of Scots pine (Pinus sylvestris L.) due to tree-felling and decrease of the photosynthetic C flow into the soil under field conditions over one growing season. Samples were taken from tree rhizospheres, freshly felled stump rhizospheres and bulk soil. We used culture dependent (CFU counts, community level physiological profiles, CLPPs) and independent methods (fluorogenic MUF-substrates, PLFA pattern and PCR-DGGE) to monitor the microbial communities in soil samples. The numbers of cultivable bacteria and amounts of phosphatase activity in the rhizosphere of trees were significantly higher compared with those in the bulk soil. The organic C consuming community measured by CLPP was stimulated directly after the tree-felling in stump rhizospheres; utilization of the disintegration components of cellulose, hemicellulose and chitin increased. Furthermore, bacterial and fungal biomass as well as chitin decomposers (CFU) increased in the stump rhizosphere. After 11 weeks of tree-felling the stump rhizosphere soluble PO4-P and NH4-N as well as amounts of total C and N began to resemble the concentrations measured in the bulk soil. However, the stump rhizosphere community structure detected by PLFA and PCR-DGGE still resembled that of the tree rhizosphere.  相似文献   

10.
Permafrost thaw is expected to alter biogeochemistry and hydrology, potentially increasing the mobility of soil constituents. Northern latitude boreal forests where permafrost thaw is occurring also experience extreme changes in day length during the growing season. As the effects of photoperiod on plant uptake of soil constituents or interactions with the rhizosphere are unknown, our objective was to determine these interactions with three plant species from different functional groups. A tree, forb, and grass common to military training ranges in this region were grown in soil spiked with or without lead, antimony, or 2,4-dinitrotoluene and grown under 16, 20, or 24 h of light. Plant biomass, soil constituent uptake, and rhizosphere bacterial communities were compared between treatments. Photoperiod had no effect on plant uptake of any soil constituent or on rhizosphere community, indicating that plants and their associated microbial communities adapted to this environment are resilient to extremes in photoperiod. Lead uptake was not significant in any plant species and had no effect on the rhizosphere. Antimony increased the percentage composition of Saprospirales in the rhizospheres of two of the three plants, indicating an interaction between this bacterial order and antimony. Antimony uptake by white spruce (Picea glauca) was considerable, with a mean concentration of 1731 mg kg?1 in roots, while mean shoot concentration was only 155 mg kg?1, indicating its potential to phytostabilize this heavy metal. Although antimony had the strongest impact on the rhizosphere bacterial community, it was also readily accumulated by the grass and tree.  相似文献   

11.
Rice roots provide a specific habitat for microorganisms in the rhizosphere of a submerged field through supply of oxygen and organic matter. Many studies have focused on the microbial community in the rice rhizosphere, but less is still known about the microeukaryotic community structure of rice rhizosphere. This study explored the microeukaryotic community structure of a rice rhizosphere through denaturing gradient gel electrophoresis (DGGE) targeting 18S rRNA gene. The rice roots and the rhizosphere soil samples, which were collected from a field under rice-wheat rotation system, were separately analyzed. To characterize the rice rhizosphere-specific community, the bulk soil of rice field and the wheat rhizosphere samples were also examined. DGGE fingerprints showed that the microeukaryotic community of rice roots were distinct from the community of the bulk soil and showed a temporal shift with the growth stage. The rhizosphere soil community was distinct from the root and bulk soil communities, but this could be explained by that the root and bulk soil communities were shared in the rhizosphere. The rice rhizosphere community was also distinct from those in the wheat rhizosphere. Microeukaryotes that characterized the rice rhizosphere (roots and the rhizosphere soil) community could be affiliated to Polymyxa, flagellates, and oomycetes, which suggested that microeukaryotes with various ecological roles, e.g., parasites, bacterial grazers, and decomposers, inhabit the rice rhizosphere. The results showed that the rice root and its growth stages are key factors shaping the microeukaryotic community structure in the rhizosphere.  相似文献   

12.
There is an increasing concern about rice (Oryza sativa L.) soil microbiomes under the influence of mixed heavy metal contamination.We used the high-throughput Illumina MiSeq sequencing approach to explore the bacterial diversity and community composition of soils in four paddy fields,exhibiting four degrees of mixed heavy metal (Cd,Pb and Zn) pollution,and examined the effects of these metals on the bacterial communities.Our results showed that up to 2 104 to 4 359 bacterial operational taxonomic units (OTUs) were found in the bulk and rhizosphere soils of the paddy fields,with the dominant bacterial phyla (greater than 1% of the overall community) including Proteobacteria,Actinobacteria,Firmicutes,Acidobacteria,Gemmatimonadetes,Chloroflexi,Bacteroidetes and Nitrospirae.A number of rare and candidate bacterial groups were also detected,and Saprospirales,HOC36,SC-I-84 and Anaerospora were rarely detected in rice paddy soils.Venn diagram analysis showed that 174 bacterial OTUs were shared among the bulk soils with four pollution degrees.Rice rhizosphere soils displayed higher bacterial diversity indices (ACE and Chao 1) and more unique OTUs than bulk soils.Total Cd and Zn in the soils were significantly negatively correlated with ACE and Chao 1,respectively,and the Mantel test suggested that total Pb,total Zn,pH,total nitrogen and total phosphorus significantly affected the community structure.Overall,these results provided baseline data for the bacterial communities in bulk and rhizosphere soils of paddy fields contaminated with mixed heavy metals.  相似文献   

13.
Fungi are key to the functioning of soil ecosystems, and exhibit a range of interactions with plants. Given their close associations with plants, and importance in ecosystem functioning, soil-borne fungi have been proposed as potential biological indicators of disturbance and useful agents in monitoring strategies, including those following the introduction of genetically modified (GM) crops. Here we report on the impact of potato crop varieties, including a cultivar that was genetically modified for its starch quality, on the community composition of the main phyla of fungi in soils, i.e. Ascomycota, Basidiomycota and Glomeromycota in rhizosphere and bulk soil. Samples were collected at two field sites before sowing, at three growth stages during crop development and after the harvest of the plants, and the effects of field site, plant growth stage and plant cultivar (genotype) on fungal community composition assessed using three phylum-specific T-RFLP profiling strategies and multivariate statistical analysis (NMDS ordinations with ANOSIM test). In addition, fungal biomass, arbuscular mycorrhizal colonization of roots and activities of extracellular fungal enzymes (laccases, Mn-peroxidases and cellulases) involved in degradation of lignocelluloses-rich organic matter were determined. Fungal community compositions, densities and activities were observed to differ significantly between the rhizosphere and bulk soil. The most important factors determining fungal community composition and functioning were plant growth stage for the rhizosphere communities and location and soil properties for the bulk soil communities. The basidiomycetes were the most numerous fungal group in the bulk soils and in the rhizosphere of young plants, with a shift toward greater ascomycete numbers in the rhizosphere at later growth stages. There were no detectable differences between the GM cultivar and its parental cultivar in terms of influence on fungal community structure of function. Fungal community structure and functioning of both GM- and parental cultivars fell within the range of other cultivars at most sampling moments.  相似文献   

14.
Silver nanoparticles hold great promise as effective anti-microbial compounds in a myriad of applications but may also pose a threat to non-target bacteria and fungi in the environment. Because microorganisms are involved in extensive interactions with many other organisms, these partner species are also prone to indirect negative effects from silver nanoparticles.Here, we focus on the effects of nanosilver exposure in the rhizosphere. Specifically, we evaluate the effect of 100 mg kg−1 silver nanoparticles on maize plants, as well as on the bacteria and fungi in the plant's rhizosphere and the surrounding bulk soil. Maize biomass measurements, microbial community fingerprints, an indicator of microbial enzymatic activity, and carbon use diversity profiles are used. Hereby, it is shown that 100 mg kg−1 silver nanoparticles in soil increases maize biomass, and that this effect coincides with significant alterations of the bacterial communities in the rhizosphere. The bacterial community in nanosilver exposed rhizosphere shows less enzymatic activity and significantly altered carbon use and community composition profiles. Fungal communities are less affected by silver nanoparticles, as their composition is only slightly modified by nanosilver exposure. In addition, the microbial changes noted in the rhizosphere were significantly different from those noted in the bulk soil, indicated by different nanosilver-induced alterations of carbon use and community composition profiles in bulk and rhizosphere soil.Overall, microorganisms in the rhizosphere seem to play an important role when evaluating the fate and effects of silver nanoparticle exposure in soil, and not only is the nanosilver response different for bacteria and fungi, but also for bulk and rhizosphere soil. Consequently, assessment of microbial populations should be considered an essential parameter when investigating the impacts of nanoparticle exposure.  相似文献   

15.
Glasshouse bioassays were conducted to assess the impact of different inputs of oilseed rape plant material on soil and rhizosphere microbial diversity associated with subsequently grown oilseed rape (Brassica napus) plants. The first bioassay focussed on the effect of oilseed rape rhizodeposits and fresh detached root material on microbial communities, in a rapid-cycling experiment in which oilseed rape plants were grown successively in pots of field soil for 4 weeks at a time, with six cycles of repeated vegetative planting in the same pot. Molecular analyses of the microbial communities after each cycle showed that the obligate parasite Olpidium brassicae infected the roots of oilseed rape within 4 weeks after the first planting (irrespective of the influence of rhizodeposits alone or in the presence of fresh detached root material), and consistently dominated the rhizosphere fungal community, ranging in relative abundance from 43 to 88 % when oilseed rape was grown more than once in the same soil. Fresh detached root material also led to a reduction in diversity within the soil fungal community, due to the increased relative abundance of O. brassicae. In addition, rhizosphere bacterial communities were found to have a reduced diversity over time when fresh root material was retained in the soil. In the second glasshouse experiment, the effect of incorporating mature, field-derived oilseed rape crop residues (shoots and root material) on microbial communities associated with subsequently grown oilseed rape was investigated. As before, molecular analyses revealed that O. brassicae dominated the rhizosphere fungal community, despite not being prevalent in either the residue material or soil fungal communities.  相似文献   

16.
A better understanding of the relationships among different cropping systems, their effects on soil microbial ecology, and their effects on crop health and productivity is necessary for the development of more efficient, sustainable crop production systems. We used denaturing gradient gel electrophoresis (DGGE) to determine the impacts of crop rotations and crop types on bacterial and fungal communities in the soil. The communities of bacterial 16S rRNA genes and fungal 18S rRNA genes were analyzed in experimental field plots that were kept under 4 different crop rotation systems from 1999 to 2008 (continuous cabbage (Brassica oleracea var. capitata L.), cabbage–lettuce (Lactuca sativa L.) rotation, cabbage–radish (Raphanus sativus L. var. longipinnatus L.H. Bailey) rotation, and a 3-year crop rotation). A principal component analysis (PCA) and a canonical correspondence analysis (CCA) revealed that both the bacterial and fungal communities in bulk soils were influenced by the crop rotation systems. However, the primary factors influencing each community differed: bacterial communities were most affected by soil properties (especially carbon content), while fungal communities were influenced most strongly by rotation times. To elucidate factors that may cause differences in crop rhizosphere microbial communities, the microbial communities in the harvested cabbage rhizospheres were also analyzed. The results suggest that the fungal communities in bulk soil are related to the rhizosphere fungal communities. Our present study indicates that the microbial communities in bulk and rhizosphere soils could be managed by crop rotation systems.  相似文献   

17.
Phytoremediation systems for organic compounds such as petroleum hydrocarbons rely on a synergistic relationship between plants and their root-associated microbial communities. To determine the probable role of endophytic bacterial communities in these systems, this study examined both rhizosphere and endophytic communities of five different plant species at a long-term phytoremediation field site. Hydrocarbon degradation potential and activity were assessed using MPN assays, PCR analysis of catabolic genes associated with hydrocarbon degradation, and mineralization assays with C-14 labeled hydrocarbons. Microbial community structure in each niche was assessed by DGGE analysis of 16S rRNA gene fragments and subsequent band sequencing. Both endophytic degrader populations and endophytic degrader activity showed substantial inter-species variation, largely independent of that shown by the respective rhizosphere populations. Endophytic hydrocarbon degradation was linked to dominant bacterial endophytes. Pseudomonas spp. dominated endophytic communities exhibited increased alkane hydrocarbon degradation potential and activity, while Brevundimonas and Pseudomonas rhodesiae dominated endophytic communities were associated with increased PAH degradation potential and activity. In one plant species, Lolium perenne, increased endophytic alkane hydrocarbon degradation was associated with increased rhizosphere alkane degradation and decreased rhizosphere PAH degradation. Our results show that diverse plant species growing in weathered-hydrocarbon contaminated soil maintain distinct, heterogeneously distributed endophytic microbial populations, which may impact upon the ability of plants to promote the degradation of specific types of hydrocarbons.  相似文献   

18.
Increasing temperatures and variability of precipitation events due to climate change will lead in the future to higher irrigation demands in agroecosystems.However,the use of secondary treated wasterwater(TWW)could have consequences for the receiving soil environment and its resident microbial communities.The objective of this study was to characterize the importance of soil properties and habitats to the response of soil bacteria and archaea to irrigation with TWW.Two agricultural soils with contrasting textures(loamy sand or silt loam)and,for each,three variants differing in soil organic carbon and nitrogen,as generated by long-term fertilization,were analyzed.For each of these six soils,prokaryotic communities from two habitats,i.e.,root-free bulk soil and the rhizosphere of developing cucumber plants in the greenhouse,were characterized.Communities were analyzed by the quantity and diversity of their polymerase chain reaction(PCR)-amplified 16S rRNA genes.To account for TWW-associated nutrient effects,potable water(PW)served as a control.Amplicon sequence analysis showed that prokaryotic communities mainly consisted of bacteria(99.8%).Upon irrigation,regardless of the water quality,prokaryotic diversity declined,p H increased,and no bacterial growth was detected in bulk soil.In contrast,the growth of cucumbers was stimulated by TWW,indicating that plants were the main beneficiaries.Moreover,strong responses were seen in the rhizosphere,suggesting an indirect effect of TWW by altered rhizodepositions.The main bacterial responders to TWW were Proteobacteria,Bacteroidetes,Actinobacteria,and Planctomycetes.Changes in bacterial communities due to TWW were less pronounced in all variants of the silt loam,indicating the importance of clay and soil organic carbon for buffering effects of TWW on soil bacterial communities.Hence,soil organic carbon and soil texture are important parameters that need to be considered when applying TWW in agriculture.  相似文献   

19.
唐黎  张永军  吴晓磊 《土壤学报》2007,44(4):717-726
在一年内棉花的四个生长时期(苗期,蕾期,花铃期,吐絮期)分别采集转Bt基因抗虫棉GK12和非转基因亲本棉花泗棉3号根际土壤,以及未种植棉花的背景土壤,利用末端标记限制性片段长度多态性(T-RFLP)分析技术,分析三种土壤中细菌和古菌的16S rRNA基因片段多态性,结合克隆文库建立和测序,研究了土壤中细菌和古菌群落结构的变化.结果表明:在棉花生长的各个时期,背景土壤中细菌群落结构发生了明显的变化,生物多样性指数明显降低,古菌群落结构也有一定的变化,说明季节性变化对土壤中微生物群落产生了明显的影响.与背景土壤相比,棉花种植后根际土壤中细菌和古菌群落发生显著的变化.转基因棉花与非转基因棉花相比,根际土壤细菌和古菌的种类和种群大小的分布也发生了明显的改变.克隆文库和测序结果表明土壤中主体微生物为目前未培养的、功能特性未知的细菌和古菌,转基因棉花种植对这些细菌和古菌影响的原因、环境危害和生态风险目前尚不清楚.与古菌群落相比,棉花种植对细菌群落结构的影响较小.  相似文献   

20.
Different microbial communities characterized by the Biolog pattern were developed in the rhizosphere of radish grown on a rockwool hydroponic system treated with chloropicrinfumigated and non-fumigated soil suspensions although no differences were observed in their viable counts. Different microbial communities also were developed in the rhizosphere and non-rhizosphere. After the development of microbial communities in the rhizosphere, bud cells of Fusarium oxysporum that causes vascular wilt of radish plants were inoculated, and disease symptoms were examined. Treatment with the non-fumigated soil suspension was much more effective than that with the fumigated one in controlling the disease, indicating that the Biolog method might be applicable to characterize microbial communities that control the disease caused by F. oxysporum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号