首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Eight methods to determine exchangeable cations and cation exchange capacity (CEC) were compared for some highly weathered benchmark soils of Alabama. The methods were: (1) 1N NH4OAc at pH 7.0 by replacement (for CEC only), (2) 1N NH4OAc at pH 7.0 (summation of basic cations plus 1N KCl extractable Al), (3) 1N NH4OAc at pH 7.0 (summation of basic cations plus exchangeable H+), (4) 0.1M BaCl2 (summation of basic cations plus exchangeable Mn, Fe and Al), (5) Mehlich 1 (summation of basic cations plus 1N KCl extractable Al), (6) Mehlich 1 (summation of basic cations plus exchangeable H+), (7) Mehlich 3 (summation of basic cations plus 1N KCl extractable Al), and (8) Mehlich 3 (summation of basic cations plus exchangeable H+). The 0.1M BaCl2 was chosen as the standard method for the highly weathered soils and the other methods compared to it. The results indicated that the 1N NH4OAc replacement method gave significantly higher CEC values compared to the summation methods. This was probably due to the overestimation of the field CEC caused by measurement of pH dependent cation exchange sites in these soils. There was, however, close agreement between the BaCl2 method and the summation methods that included extractable Al. The generally good agreement between these summation methods suggests that the Mehlich 1 and Mehlich 3 extractants, commonly used to determine available nutrients in the southeastem USA, may also be used to measure effective CEC of some acid‐rich sesquioxide benchmark soils of Alabama. However, 1N KCl extractable Al as opposed to exchangeable H+ should be included in the computation.  相似文献   

2.
Abstract

In soil samples from two study sites in southern Norway, exchangeable cations were determined using two different ammonium (NH4)‐salts as extractant. As expected, the cation exchange capacity (CEC) determined in 1M ammonium acetate (NH4OAc), buffered at pH 7.0 was higher than the CEC measured in ammonium nitrate (NH4NO3). By contrast, the amount of exchangeable calcium (Ca), magnesium (Mg), and barium (Ba) was lowest in the NH4OAc extract, in particular in the upper soil horizons high in organic matter (O‐ and E‐horizon). This suggests that NH4 in 1M NH4OAc does not compete effectively with multivalent base cations. The relatively high levels of exchangeable base cations in NH4NO3 could not be explained by increased weathering. An increase in selectivity of especially divalent cations may explain the relatively low amount of exchangeable base cations extracted by NH4OAc, as this involves increased deprotonation and thus a higher negative charge.  相似文献   

3.
Data on accumulated exchangeable H, Al, Fe and Mn (Ma) cations in rock fractions in German soil profiles are scarce. The objective of this study was to describe the sum of accumulated Ma cations of fine earth and rock fragments in 11 deep soil profiles of varying genesis. Soil profiles were laid out at the sites Solling, Eifel, Harz mountains and the Erzgebirge and the parent materials included sandstones, siltstones, quartzite, slate, greywacke, diabase, gneiss and quartz porphyry. Exchangeable cations in the fine earth and rock fragments were measured in depths down to 6 m. Additionally, effective porosity and specific surface of rock fragments were determined. The effective porosity of the different rock fragments ranged from 4 to 28% (v/v), indicating that the rocks were accessible to solutions. For most samples, the cation exchange capacities (CEC) of the fine earth fractions were larger than those of the rock fragments, and the CEC (fine earth)/CEC (rock) ratios decreased with depth. All 11 profiles had small (<40%) amounts of exchangeable Na, K, Mg and Ca (Mb) cations in the fine earth fraction. Exchangeable Ma and Mb cations in the rock fragments changed similarly with depth as in the fine earth fractions for all profiles. Cumulative (rock + fine earth) Ma cations from 0—200 cm ranged from 474 to 1592 kmolc ha−1. The contribution of the rock fraction to the cumulative exchangeable Ma cations accounted for 13 to 85% of the total. The sum of exchangeable Ma cations was much higher than the cumulative acid deposition in western Germany since the beginning of industrialization, suggesting that carbonic acid and organic acids contributed largely to soil acidification. The rocks contribute significantly to buffering the acidity of the seepage water by silicate weathering and cation exchange. Therefore, acidification models which consider the fine earth fraction only, may lead to an overestimation of the rate of soil and groundwater acidification.  相似文献   

4.
In upper mineral horizons, CEC by compulsive and isotopic exchange methods, using Ba2+ as the saturating cation, gave higher values than the effective CEC at natural soil pH, and much higher values than CEC determined with m NH4OAc at pH 7. Cumulative Al release during leaching was considerably higher using Mg2+ and Ba2+ chlorides than K+ and NH4+ chlorides, and gave a different shape extraction curve. Basal spacing of the dominant dioctahedral vermiculite in the soil clays contracted from 14.5Å to 10.0–10.9 Å when saturated with NH4+ and K+, restricting release of interlayer Al. Lower horizons, containing a large proportion of Al-chlorite in the clay fraction, which did not contract with any of the cations, showed more normal exchange behaviour. On leaching, Al release was slightly greater with K+ and NH4+, than with Mg2+ and Ba2+, chlorides. The implication of the results for CEC measurements is discussed.  相似文献   

5.
胡敏酸对铵钾在粘土矿物上交互作用的影响   总被引:1,自引:0,他引:1  
Interaction of ammonium (NH+4) and potassium (K+) is typical in field soils. However, the effects of organic matter on interaction of NH+4 and K+have not been thoroughly investigated. In this study, we examined the changes in major physicochemical properties of three clay minerals (kaolinite, illite, and montmorillonite) after humic acid (HA) coating and evaluated the influences of these changes on the interaction of NH+4 and K+on clay minerals using batch experiments. After HA coating, the cation exchange capacity (CEC) and specific surface area (SSA) of montmorillonite decreased significantly, while little decrease in CEC and SSA occurred in illite and only a slight increase in CEC was found in kaolinite. Humic acid coating significantly increased cation adsorption and preference for NH+4, and this effect was more obvious on clay minerals with a lower CEC. Results of Fourier transform infrared spectrometry analysis showed that HA coating promoted the formation of H-bonds between the adsorbed NH+4 and the organo-mineral complexes. HA coating increased cation fixation capacity on montmorillonite and kaolinite, but the opposite occurred on illite. In addition, HA coating increased the competitiveness of NH+4 on fixation sites. These results showed that HA coating affected both the nature of clay mineral surfaces and the reactions of NH+4 and K+with clay minerals, which might influence the availability of nutrient cations to plants in field soils amended with organic matter.  相似文献   

6.

Background

Cation exchange capacity (CEC) is a routinely measured soil fertility indicator. The standard NH4OAc (pH 7) extraction procedure is time-consuming and overestimates actual CEC values of variable charge soils. Unbuffered extractants have been developed to measure the effective CEC (eCEC), but they differ in the type of index cation and extraction procedures.

Aim

This study was set up to systematically compare CEC values and exchangeable cation concentrations among different procedures and evaluate their practical aspects.

Methods

Five procedures were compared for (e)CEC, that is, silver thiourea (AgTU), cobalt(III) hexamine (Cohex), compulsive exchange (CE, i.e., BaCl2/MgSO4), BaCl2 (sum of cations in single-extract), and NH4OAc (pH 7). We applied these methods to a set of 25 samples of clay minerals, peat, or samples from soils with contrasting properties.

Results

The CEC values correlated well among methods (R2 = 0.92–0.98). Median ratios of eCEC (AgTU as well as CE) to the corresponding eCEC (Cohex) value were 1.0, showing good agreement between eCEC methods, but NH4OAc exceeded Cohex values (ratios up to 2.5 in acid soil). For BaCl2-extracteable cations, the ratio ranged from low (<1.0) in acid soils (acid cations not measured) to high (>1.0) in high-pH soil (dissolution of carbonates). Multiple-extraction methods (CE and NH4OAc) yielded more variation and increased labor.

Conclusions

The chemical properties of the sample cause method-specific interactions with chemical components of extractants. We found the Cohex method with ICP-MS detection to be the most efficient and cost-effective technique for determination of eCEC and exchangeable cations.  相似文献   

7.
A soil's cation exchange capacity (CEC) is expected to be relatively inert against changes in cation loading. In this study, we treated a soil sample originating from the organic layer of a forest soil with various bivalent cations after removing the native cations. Sorption isotherms and cation exchange capacity were determined, the latter using the BaCl2 method. Sorption showed Langmuir characteristics, with the maximum coverage (Qmax) increasing in the order Ba2+ < Ca2+ < Mg2+, but being clearly smaller than the initial load of native exchangeable cations. The Langmuir coefficient, kMe, depended oppositely to the order obtained for Qmax. CEC increased upon cation treatment and it varied by a factor of almost two. The unexpected variation of CEC was explained by the low cation exchange capacity of the organic matter such that not all functional groups are close enough to be bridged and the second charge of a bivalent cation is not neutralized by the organic functional group. The Langmuir sorption type, and Qmax being smaller than the content of sorption sites and being largest for Mg, suggested that only a part of the sites can be cross‐linked and at least part of the cross‐links are formed by hydrated cations. Thermodynamic considerations allowed reconstruction of two contrasting processes during CEC determination by Ba2+: Case A: the disruption of cross‐links, which increases with the cationic strength and the cation load before CEC determination, but does not require structural re‐orientation in the SOM matrix, and Case B: the formation of new cross‐links during CEC determination, depending only on the content of unoccupied sites before CEC determination and requiring structural re‐organization of the matrix and thus a minimum matrix flexibility. The use of bivalent cations for CEC determination may thus result in an overestimation of CEC for organic matter with low CEC. This has, however, promising potential when comparing CEC determined with monovalent cations and bivalent cations. Using a set of bivalent cations, may allow probing distribution of distances between functional groups in the organic matter and even characterize the matrix rigidity of the cation‐cross‐linked network.  相似文献   

8.
Abstract

Soil cation exchange capacity (CEC) measurements are important criteria for soil fertility management, vaste disposal on soils, and soil taxonomy. The objective of this research was to compare CEC values for arable Ultisols from the humid region of the United States as determined by procedures varying widely in their chemical conditions during measurement. Exchangeable cation quantities determined in the course of two of the CEC procedures were also evaluated. The six procedures evaluated were: (1) summation of N NH4OAc (pH 7.0) exchangeable Ca, Mg, K, and Na plus BaCl2 ‐ TEA (pH 8.0) exchangeable acidity; (2) N Ca(OAc)2 (pH 7.0) saturation with Mg(OAc)2 (pH 7.0) displacement of Ca2+; (3) N NH4OAc (pH 7.0) saturation with NaCl displacement of NH4 +; (4) N MgCl2 saturation with N KCl displacement of Mg2+; (5) compulsive exchange of Mg2+ for Ba2+; and (6) summation of N NH4OAc (pH 7.0) exchangeable Ca, Mg, K, and Na plus N KCl exchangeable AJ. The unbuffered procedures reflect the pH dependent CEC component to a greater degree than the buffered methods. The compulsive exchange and the summation of N NH4OAc exchangeable cations plus N KCl exchangeable Al procedures gave CEC estimates of the same magnitude that reflect differences in soil pH and texture. The buffered procedures, particularly the summation of N NH4OAc exchangeable cations plus BaCl2 ‐ TEA (pH 8.0) exchangeable acidity, indicated inflated CEC values for these acid Ultisols that are seldom limed above pH 6.5. Exchangeable soil Ca and Mg levels determined from extraction with 0.1 M BaCl2 were consistently greater than values for the N NH4Oac (pH 7.0) extractions. The Ba2+ ion is apparently a more efficient displacing agent than the NH4 + ion. Also, the potential for dissolving unreacted limestone is greater for the Ba2 + procedures than in the NH4 + extraction.  相似文献   

9.
On the determination of exchangeable cations in acid forest soils Different samples from acid forest soils were percolated with large amounts of H2O. Significant amounts of anions, especially sulfate, were found in the percolates mainly accompanied by Na. K, Ca and Mg (Mb-cations). The dissolution of Al-Sulfates and subsequent exchange of Mb-cations by Al as dominant mechanism is proposed. Thus the common method for determination of the cation exchange capacity (CEC) of acid forest soils, the percolation with NH4Cl may overestimate the CEC. The overestimation may be related to the sulfate content of the soil and also influences the calculation of relative CEC proportions of individual cations.  相似文献   

10.
Abstract

Fixation of the ammonium ion (NH4 +) by clay minerals is an alternate way of building the nitrogen (N) pool in soil to optimize N crop recovery and minimize losses. Clay minerals (illite, montmorillonite, and vermiculite) and an illitic Portnoeuf soil were used to compare NH4 + fixation abilities. Total N determination and X‐ray diffraction analysis were performed on each of the minerals and the Portnoeuf soil controls, and NH4 + saturated batches were subsequently desorbed by potassium chloride (KCl) after 4096 hours. Total N was determined for each employing either Kjeldahl digestion only, or pretreating with hydrofluoric‐hydrochloric acid (HF‐HCl) before the Kjeldahl digestion. The total N for the soil was 38% more after pretreatment with HF‐HCl. The total N determined after pretreatment with HF‐HCl for the NH4 + saturated and subsequently KCl desorbed minerals was found to be highest in vermiculite. The cation exchange acapacity (CEC) of each of the minerals was determined, and highest CEC was found in montmorillonite [83.07 cmol(+)/kg]. X‐ray diffraction analysis revealed collapse of the vermiculitic clay lattice from an initial d‐spacing of 13.1 angstrom to 10.4 angstrom after desorprion by KCl. This suggested the existence of sequestered NH4 + between the 2: 1 vermiculitic clay interlayer lattice.  相似文献   

11.
Different types of cation exchange capacity (CEC) and related chemical properties were determined in the main genetic horizons of meadow-chestnut soils in the mesodepressions at the Dzhanybek Research Station of the Institute of Forestry of the Russian Academy of Sciences. In the A horizon, the CEC is mainly due to the organic matter from the clay and coarse fractions, which provides 36% of the soil CEC, and to labile silicates and other clay minerals of the clay fraction. In the Bt horizon, the CEC is mainly provided by the labile minerals of the clay fraction and organic matter of the clay and coarse fractions. The standard soil CEC was found to be significantly higher than the sum of the exchangeable cations in the A horizon and slightly lower than the sum of the exchangeable cations in the Bt and Bca2 horizons. This difference can be related to the fact that the NH4+ ion, which is selectively adsorbed by clay minerals, is used as a displacing cation during the determination of the exchangeable bases, while the Ba2+ ion, which is more selectively adsorbed by organic matter, is used during the determination of the standard CEC. In all the genetic horizons, the experimentally determined value of the standard CEC almost coincides with the CEC value obtained by summing the standard CECs of the different particle-size fractions with account for their contents; hence, this parameter is additive in nature.  相似文献   

12.
Cation‐exchange–capacity (CEC) results of calcareous soils and clays can be erroneous if the ammonium acetate method is used. In this study, a model is proposed to explain the process for systematic underestimation of the CEC. Seven clayey sediments from Germany with varying calcite and low organic‐C content were studied. After several exchange treatments with concentrated ammonium acetate (NH4Ac) solutions, the exchange population is assumed to be in homoionic ammonium form. Throughout the cation‐exchange experiment, calcite reacts with the NH4Ac exchange solution generating Ca2+ cations. During the necessary washing steps to remove excess salt, calcite dissolution is lower but still occurs. The permanently added Ca2+ ions compete successfully with NH , especially during the washing steps. This leads to a more or less partial biionic exchange population resulting in an underestimation of the CEC which is calculated based on NH concentration of the clay by Kjeldahl analysis. The biionic exchange population was proven using the new silver thiourea technique with presaturation of calcite, AgTU calcite . The clay with 148 g kg–1 calcite had a fraction of 16.4 cmol+ kg–1 exchangeable Ca2+. This is ca. 50% of the CEC of this clay being 31.8 cmol+ kg–1. For clays with similar mineralogical composition, this trend is proportional to the calcite content.  相似文献   

13.
Abstract

In laboratory experiments, effects of added Farm Yard Manure (FYM), sorbed cations and cation exchange capacity (CEC) on NH3 volatilization of anhydrous ammonia applied to a Vertisol were studied at 0.3 bar soil Moisture Tension and 25 ± 1°C. On addition of FYM or with increase in CEC the volatilization of retained ammonia was reduced while the effect of the sorbed cations was in the order : K‐Soil > Na‐Soil > Ca‐Soil > Mg‐Soil. The results suggest that the volatilization of retained NH3 followed First order reaction kinetics, with a rapid rate of volatilization in the initial 8 to 10 h followed by a retarded rate up to 144 h.  相似文献   

14.
Cation exchange is often studied with disturbed and dried soils, but the applicability of the results to undisturbed soils is not straightforward. We investigated the value of exchange coefficients obtained from standard procedures for predicting cation exchange in soil. Columns of undisturbed and disturbed subsoil of a Luvisol (SBt horizon) were leached under saturated conditions with 0.4, 4, 20, 41, 102 and 205 mm BaCl2 at a Darcy velocity of 1400 mm day?1. The model PHREEQC was used to calculate one‐dimensional transport, inorganic complexation and multiple cation exchange. Two model variants were tested: m1 (exchangeable cations obtained by percolation with NH4Cl) and m2 (exchangeable cations obtained by shaking the soil with BaCl2). The exchange coefficients (Gaines–Thomas formalism) were calculated from the ion activities in solution and exchangeable cations obtained by NH4Cl percolation (m1) or shaking with BaCl2 (m2). Variant m1 predicted cation exchange of the disturbed (homogenized) soil for the entire BaCl2 concentration range, whereas variant m2 resulted in a two‐fold overestimation of desorbed K for all experiments, which was related to large amounts of K released from the soil by shaking with BaCl2. In experiments with undisturbed soil, variant m1 predicted the concentrations of Mg, Ca, K, and Na in the solution phase and the sum of cations released from exchange sites. However, variant m2 predicted changes in ion concentrations and exchangeable cations somewhat less well. This study suggests that the amounts of exchangeable cations and exchange coefficients obtained from experiments with homogenized soil by percolation are useful to predict cation concentrations in column experiments with undisturbed soils.  相似文献   

15.
Abstract

Rapid determination of cation exchange capacity (CEC) of soils can be useful for soil testing to improve efficiency of fertilizer use. The methylene blue (MB) method of Wang et al. (1989) has been simplified for rapid determination of CEC of mineral soils in field. For the temperate and tropical soils used, the relationships between the CEC by the ammonium acetate (NH4OAc) method and the simplified MB method were linear (r2 = 0.97) with a slope ranging from 0.84 to 1.02. These results suggest that the simplified MB method has the potential for a rapid determination of the CEC of mineral soils.  相似文献   

16.
A Method for the Determination of Exchangeable Cations in Forest Soils A simple extraction method with NH4Cl was developed for determining exchangeable cations in forest soils. The influence of selected parameters (reaction time, concentration of NH4Cl, filter medium etc.) affecting the amount of extractable cations was tested and a standardisation was done. The cation exchange was completed in less than 4 h. For a quantitative extraction of K, Mg, Ca, and Mn a concentration of 0.05 M NH4Cl was sufficient. The extractable amount of these cations was always clearly defined. However, extracted Al and Fe increased with the NH4Cl-concentration. Depending on the soil samples, the exchange is not quantitative even when using a saturated solution. The extractable H+ is nearly independent of the NH4Cl-concentration. Probably considerable amounts are dissociated from organic acids. The optimized method is feasible and can be used for K, Mg, Ca, and Mn as an alternative to percolation methods.  相似文献   

17.
The roles of fine-earth materials in the cation exchange capacity (CEC) of especially homogenous units of the kaolinitic and oxyhydroxidic tropical soils are still unclear. The CEC (pH 7) of some coarse-textured soils from southeastern Nigeria were related to their total sand, coarse sand (CS), fine sand (FS), silt, clay, and organic-matter (OM) contents before and after partitioning the dataset into topsoils and subsoils and into very-low-, low-, and moderate-/high-stability soils. The soil-layer categories showed similar CEC values; the stability categories did not. The CEC increased with decreasing CS but with increasing FS. Silt correlated negatively with the CEC, except in the moderate- to high-stability soils. Conversely, clay and OM generally impacted positively on the CEC. The best-fitting linear CEC function (R2, 68%) was attained with FS, clay, and OM with relative contributions of 26, 38, and 36%, respectively. However, more reliable models were attained after partitioning by soil layer (R2, 71–76%) and by soil stability (R2, 81–86%). Notably FS's contribution to CEC increased while clay's decreased with increasing soil stability. Clay alone satisfactorily modeled the CEC for the very-low-stability soils, whereas silt contributed more than OM to the CEC of the moderate- to high-stability soils. These results provide new evidence about the cation exchange behavior of FS, silt, and clay in structurally contrasting tropical soils.  相似文献   

18.
The anionic nature and high cation exchange capacity (CEC) of clinoptilolite zeolite can be exploited to reduce ammonia (NH3) loss from urea and to improve soil chemical properties to increase nutrient utilization efficiency in lowland rice cultivation. A closed-dynamic airflow system was used to determine NH3 loss from treatments (20, 40, and 60 g clinoptilolite zeolite pot?1). Seed germination study was conducted to evaluate the effects of clinoptilolite zeolite on rice seed germination. A pot study was conducted to determine the effects of clinoptilolite zeolite on rice plant growth variables, nutrient uptake, nutrient recovery, and soil chemical properties. Standard procedures were used to determine NH3 loss, rice plant height, number of leaves, number of tillers, dry matter production, nutrient uptake, nutrient recovery, and soil chemical properties. Application of clinoptilolite zeolite (15%) increased shoot elongation of seedlings and significantly reduced NH3 loss (up to 26% with 60 g zeolite pot?1), and increased number of leaves, total dry matter, nutrient uptake, nutrient recovery, soil pH, CEC, and exchangeable Na+. Amending acid soils with clinoptilolite zeolite can significantly minimize NH3 loss and improve rice plant growth variables, nutrient uptake, nutrient recovery, and soil chemical properties. These findings are being validated in our ongoing field trials.  相似文献   

19.
Ion exchange preferences for NH4+ and K+ by soil exchanger surface can greatly affect the NO3? leaching into groundwater and nitrogen-use efficiency in agricultural production. Since NH4+ and K+ salts are usually applied together as fertilizers, the binary K→NH4 exchange of two benchmark Botswana soils, Pellustert and a Haplustalf, was studied to determine the selectivity coefficients and the thermodynamic exchange constant with special reference to N economy. The Vanselow and the Gaines and Thomas coefficients indicated preference for NH4+ by the Pellustert and K by the Haplustalf across the exchanger phase composition. The equilibrium constant (Kex) was 1.807 for the Pellustert and 0.174 for the Haplustalf. The exchange free energy (ΔGex0) was ?1.467 kJ mol?1 for the Pellustert and 4.334 kJ mol?1 for the Haplustalf. Negative ΔGex0 for the Pellustert is consistent with preference for NH4+ to K+ in contrast to positive ΔGex0 for the Haplustalf. The greater stability of NH4X than KX complex in the Pellustert, and KX than NH4X in the Haplustalf, would mean increased residence time of NH4+ in the Pellustert than the Haplustalf. The implication of short residence time of NH4+ in soil is rapid nitrification, thereby leading to NO3??N leaching losses and possible groundwater contamination.  相似文献   

20.
Zinc (Zn) sorption curves were established for 11 cultivated sandy soils from central Vietnam. Soil samples (10 g) were equilibrated with 5 mM calcium chloride (CaCl2) solutions (50 mL) at five zinc chloride (ZnCl2) concentrations (0 to 80 mg Zn L–1). The experimental sorption data were fitted with the Freundlich equation. The amounts of Zn sorbed by soil (QZn) at different Zn concentrations in the equilibrium solution (CZn) were closely related to cation exchange capacity (CEC) and pH, that is, to the available exchange sites at given pH values. More specifically, an excellent correlation was found between Zn sorption and exchangeable calcium (Caex), which evidently also depends on CEC and pH. A unique equation was proposed to predict QZn from CZn and Caex in the range of Zn loading covered in our research, that is, from traces to QZn ≈ 60 mg Zn kg–1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号