首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
针对华北地区常见围护结构的冬季不供暖密闭种兔舍保温与通风的矛盾问题,该文通过试验研究该类型兔舍不通风及运行显热回收通风系统(sensible heat recovery ventilation,SHRV)2种状态下的舍内空气质量、SHRV节能通风效果,并对比分析了SHRV结合均匀开孔送风和一端开口送风方式对舍内温度及气流分布的影响,探究SHRV在该兔舍的适用性。结果表明,相比于舍内不通风状态,运行SHRV时,舍内平均温度无显著波动;运行1 h后NH_3和CO_2浓度分别从9.9 mg/m~3和0.23%下降到4.2 mg/m~3和0.09%,湿度从84%下降到56%适宜水平,舍内空气质量改善明显。在该地区舍外温度-6~5℃时,SHRV可使新风温度平均提高3.4℃,平均显热回收效率和能效比(coefficient of performance,COP)分别为65%和5.1,达到了国家节能标准(60%和2.5)。比较分析风管一端开口送风与管道均匀开口送风发现,均匀开口送风可使舍内平均风速降低到0.2 m/s以下,减少舍内气流和温度分层,提高送风均匀性,降低动物冷应激。研究表明,在该地区常见围护结构不供暖密闭种兔舍使用SHRV可有效缓解通风与保温的矛盾,但若要达到更理想的节能通风效果,需采取适宜的芯体片间距,增加饲养密度、加强畜舍围护结构的密闭性提高保温效果。  相似文献   

2.
为减少冷应激对犊牛健康的影响,降低冬季犊牛养殖中通风与保温的矛盾,该研究在新疆地区对牛舍热回收通风系统的通风效果及热回收性能进行了评价。试验舍采用2套相同的热回收通风系统进行通风,对照舍自然通风。试验结果表明:热回收通风系统可使舍外进入舍内的新鲜空气温度平均提高10.15℃,日均CO2和NH3浓度分别显著降低173.15和0.63 mg/m~3(P0.05)。2套系统共可为试验舍提供通风量1 097.83 m~3/h,送风管小孔出风口的平均风速为2.45 m/s,风管始末端风速分别为2.76和2.34m/s。该系统的热回收效率为76.17%,能效比为3.1。该系统可以保证良好舍内环境和较高的能量回收效率,缓解冬季犊牛生产中通风与保温的矛盾。  相似文献   

3.
热回收通风在寒冷地区畜舍中应用越来越广泛,但严寒地区热回收通风的热交换器的结冰问题限制其应用。为找到经济的办法解决热回收通风在严寒地区冬季运行的问题,探索严寒地区冬季兔舍通风与供暖合理搭配的模式,缓解通风与保温之间的矛盾,本研究在我国东北阿荣旗冬季兔舍开展了热回收通风结合锅炉供暖的试验。试验中利用锅炉散发的余热对寒冷空气预热后,再进入热交换器中进行排风热回收,防止热交换器结冰导致其无法运行。结果显示,当该系统运行时,兔舍内氨气和二氧化碳浓度分别降低了46% 和64%。室外温度为-15.8 ℃~-11.8 ℃时,通风带来的兔舍温度下降仅为1.8 ℃;家兔呼吸道和皮肤病冬季的发病率相比上一年分别降低了16%和4%。室外冷空气通过锅炉房预热,温度提高了10.1℃,再通过空气热交换器时,温度从提高了6.5 ℃,运行过程中未观察到热交换器结冰的现象。锅炉房预热和热回收通风对冷风的加热能量负荷分别为12.6 kW和5.0 kW。热回收通风系统的显热回收效率为75.6%,能效比为6.2,设备投资回收期为3年。将热回收通风系统结合锅炉房预热可以在不额外增加耗能的情况下,大幅改善冬季兔舍的环境,为改进严寒地区兔舍冬季通风与供暖模式提供了参考。  相似文献   

4.
为缓解中国南方湿热气候下夏季兔舍中降温与通风之间矛盾,一种改进的热回收通风设备应用于空调降温繁殖兔舍中,拟解决空调制冷运行能耗成本高的问题。在制冷空调运行阶段,室外气温在31~39℃时,兔舍内温度维持在22~27℃。选取两间均使用空调降温的兔舍分别作为处理舍和对照舍,处理舍中使用热回收通风设备降低通风带来的能量损失,对照舍中没有通风。试验结果表明,相比于对照舍,处理舍中因为通风的原因,温度提高了1.4℃,但同时舍内的NH3和CO2浓度分别降低10%和21%。在整个炎热季节中,热回收的应用能够降低10.2%的空调能耗,热回收效率达到63.3%。试验中,当室内外温度差高于5.1℃时运行热回收通风才是经济的,在中国东南地区典型夏季气候下,一年有501 h满足节能运行的要求,每平米兔舍总计能够节约电量为4.6 kWh。此外,热回收设备的压降和管道系统的通风组织,是提高热回收通风效果的潜在重要因素。  相似文献   

5.
冬季畜禽舍通风系统热能回收设备的试验研究   总被引:1,自引:0,他引:1  
该文对用于畜禽舍通风系统热能回收的板翅式空气热交换器的传热特性和阻力特性进行了试验研究,得出了该热交换器干工况下显热对流放热系数和干、湿工况下平均摩擦系数等性能参数随工作参数的变化规律,为用于畜禽舍通风系统热能回收的板翅式空气热交换器的设计提供了理论依据  相似文献   

6.
用热管换热器回收密闭式鸡舍冬季换气中的余热   总被引:1,自引:2,他引:1  
中国北方地区冬季气温低且冬季长,鸡舍结构上多采用密闭式以保温,使得冬季舍内空气质量恶化,须强制通风换气以保证空气质量,其结果使舍内气温降低。各种鸡舍在通风换气下舍温仅-2~3℃(东北地区舍温更低),导致蛋鸡舍在冬季的生产性能下降5%~10%。由于冬季舍内排出的废气与补充的新风温差可达10~25℃,废气与新风还有湿度差,废气余热(包括显热和极少量的潜热)有一定的利用价值。为解决通风换气与保温这一对矛盾,该文提出将热管换热器用于回收密闭式鸡舍冬季排出废气中的余热。利用热管换热器可以将废气的50%以上余热回收以加热由舍外强制送入鸡舍的新风,以适当提高新风的温度。文中对热管换热器作了传热及阻力设计计算,对一定工况进行了参数优化并编制了通用程序。将热管换热器系统运用在鸡舍中运行,热管换热器实测热效率可达50%~65%,可节能、节省饲料 、提高产蛋率,有一定的推广价值。  相似文献   

7.
干燥是很多行业生产流程中的必要环节。目前,干燥机加热箱、风道的主要材料为钢板,工作时热量散失多。传统方法是在钢板内层或外层铺设保温材料,这种方法存在只能延缓热量散失,无法回收热量的问题。针对该问题,该研究提出了通过温差电池(Thermoelectric generator,TEG)回收干燥机热量的节能模式,设计研发了安装在干燥机上回收热量的温差发电系统。使用Fluent软件对安装TEG前后的干燥机进行温度场仿真,并结合实测结果评估安装TEG对干燥机运行的影响。进一步搭建干燥机温差发电试验平台,测试发电系统的参数特性,试验结果表明安装TEG对干燥机功效影响不明显。当加热功率3.0 kW,风速12 m/s时,对应的最优水流量为22.3 L/min,此时水泵消耗功率6.4 W,系统输出功率31.8 W,净输出功率最高达到25.4 W,热电转换效率为3.9%,该研究为干燥节能技术提供了新思路。  相似文献   

8.
冬季猪舍热回收换气系统供暖的数值模拟   总被引:13,自引:10,他引:3  
为了研究冬季热同收换气系统的送风角度对猪舍供暖效果的影响,该文采用计算流体力学对空载猪舍的温度场和气流场进行数值模拟,并采取试验对模型进行验证.试验结果表明,模拟值与测定值拟合度较高,该模型较合理.在满足仔猪通风量情况下,基于建立的数学模型对热回收换气系统3种不同送风角度(30°、45°和60°)的温度场和气流场进行模拟.结果表明:与30°和60°送风角度比较,送风角度为45°时的舍内温度分布均匀,舍内气体交换较充分,满足猪的生长要求.该文为热回收换气系统在实际养猪生产中的应用提供依据.  相似文献   

9.
夏季鸡舍屋顶隔热改善舍内热环境及蛋鸡生产性能   总被引:2,自引:1,他引:1  
鸡舍屋顶夏季所接收辐射热最多,屋顶内表面与舍内空气对流换热作用较强,舍内垂直温差加剧,造成局部热应激影响蛋鸡生产性能。为探究屋顶隔热对蛋鸡舍内热环境及蛋鸡生产性能的影响,该文对比研究试验舍(100 mm保温玻璃棉毡彩钢板屋顶)与对照舍(200 mm加气混凝土屋顶)2种不同材料屋顶对鸡舍内环境及生产性能的影响,并讨论鸡舍屋顶成本与养鸡经济效益的关系。结果表明:1)试验舍内温湿度波动比对照舍内小,试验舍内平均温度比对照鸡舍低2.3℃,对照舍内温度空间上呈垂直分布且温差大于3℃,由地面向屋顶逐渐升高且距离地面3.2 m高度水平面温度与0.8、1.6、2.4 m高度水平面温度差异极显著(P0.01);2)试验舍内热应激程度低于对照舍,对照舍内温湿指标正常水平比试验舍内低15.7%,轻度热应激程度高12.1%,中度热应激程度高1.7%,高度热应激程度高0.9%。对照舍内3.2 m平面上蛋鸡受到不同程度的热应激,高度热应激占2.5%;3)试验舍蛋鸡产蛋率比对照鸡舍高1.5%,平均蛋质量高1.9 g。对照舍3.2 m平面上蛋鸡产蛋率与距离地面0.8、1.6、2.4 m平面蛋鸡产蛋率差异极显著(P0.01),周死淘率差异显著(P0.05);试验舍和对照舍0.8 m平面上蛋鸡平均蛋质量最高,对照舍底层0.8 m平面上蛋鸡平均蛋质量与距离地面1.6、2.4、3.2 m平面蛋鸡的平均蛋质量差异极显著(P0.01),但破蛋率之间差异不显著(P0.05);4)对照舍屋顶的冷负荷峰值是试验舍屋顶冷负荷峰值的2.1倍,对照舍屋顶内表面温度比试验舍高3℃。试验鸡舍采用隔热屋顶1~1.5 a可收回投入成本,维持舍内热环境以提高蛋鸡养殖户的收入。该研究可为集约化密集型饲养模式下蛋鸡舍的环境调控及节能措施提供参考。  相似文献   

10.
好氧发酵是目前有机固体废弃物处理的一种有效手段。人们对于好氧发酵的研究主要集中在高效有机肥的获取上,但发酵过程产生的热能不容忽视。发酵热作为一种“零碳”能源,可代替传统化石能源应用于加温供暖、生物干化等领域,助力实现“碳达峰、碳中和”。为将生物质能高效转化为热能利用,人们对发酵热回收利用进行了研究,但是没有将热生产、热回收和热利用三个阶段进行系统联系,导致热回收工艺效率不高。该文主要阐述了好氧发酵产热原理,并从菌剂、原料理化性质和发酵工艺三个方面对发酵热生产的影响进行了探讨,总结了现有热回收利用系统,最后对生物质好氧发酵热生产与回收利用系统的发展方向进行展望,以期为生物质发酵热能利用提供支持。  相似文献   

11.
该文针对水产生物工厂化育苗水体升温技术需求,开展了利用育苗废水作热源为育苗水体升温的海水源热泵集成技术应用示范,探讨了集成系统对海参育苗水体升温和废水热能的回收效果。结果表明,进入I级换热器的育苗废水和新鲜海水温度分别为10.3~14.9℃和-1.9~4.9℃时,新鲜海水出水温度提升4.6~5.8℃,废水热能最大回收率达到59.2%;海水源热泵的废水热源温度和流量一定时,新鲜海水的温升幅度随其入流流量和温度升高而降低,入流温度分别为7.3和10.3℃的新鲜海水,流量不超过15和20 m~3/h时,出水温度均保持在15℃以上,满足海参育苗水温要求。热泵对废水热能的最大回收率为40.7%,COP(coefficient of performance)在5.03以上;集成升温系统比传统锅炉升温综合节能37.6%以上,减排二氧化碳约2 200 t/a,当年内可收回设备投资费用。  相似文献   

12.
土壤蓄热-放热过程中地埋管周围土壤温度特性模拟   总被引:2,自引:1,他引:1  
为探索内蒙中部地区地源热泵蓄热-放热过程中地埋管周围土壤温度变化特性,以垂直U型地埋管周围土壤为研究对象,基于有限元分析法建立了二维非稳态传热物理数学模型。在与试验结果进行验证的基础上,对土壤蓄热、放热和蓄热-放热耦合过程进行模拟研究。分析了热作用半径、单位管长换热量和土壤温度随热泵运行时间及运行模式的变化规律;单一条件下的蓄热、放热以及蓄热-放热耦合模式下土壤热平衡问题,探讨了流体入口流速、温度、土壤类型和热泵运行模式等因素对土壤温度场的影响。研究结果表明:热作用半径随蓄热时间的增加而增大且逐渐趋于平缓,热泵运行25和28 d后,热作用半径分别为3.3和3.4 m;流体入口温度对热作用半径及单位管长换热量影响较大但流体流速影响较小,流体入口温度和速度分别为40、60℃和0.6、1.2 m/s时,对应热作用半径分别为3.7、4.5和3.5、3.6 m。合理的间歇运行模式对换热量及埋管周围土壤温度的恢复均有改善;土壤导热系数越大土壤温度恢复时间与效果越佳,土壤导热系数为3.1 W/(m?K)时恢复后温度为9.3℃(土壤初温9.5℃)。此外,蓄热-放热耦合模式下换热量不等对土壤热平衡具有较大影响。试验验证表明,所建模型具有一定的准确性其相对最大误差为5.35%。  相似文献   

13.
密闭式蛋鸡舍外围护结构冬季保温性能分析与试验   总被引:5,自引:4,他引:1  
蛋鸡舍围护结构的保温隔热性能是影响鸡舍温度的稳定性,进而影响蛋鸡健康和生产性能的关键因素。由于蛋鸡舍一般不采暖,依靠蛋鸡的自身显热产热量来维持冬季蛋鸡舍内温度,因此如果蛋鸡舍冬季饲养密度较低、通风过度或围护结构保温性能不足,都难以满足蛋鸡舍温度环境的要求。如何确定不同气候区鸡舍围护结构必要的保温性能和饲养密度要求是解决蛋鸡舍冬季通风和保温矛盾问题的关键。该文通过建立蛋鸡舍动态热平衡理论模型,系统分析了不同气候区鸡舍围护结构的最低热阻需求,得出不同气候区鸡舍围护结构的保温性能要求与蛋鸡饲养方式(密度)的关系。结果表明:冬季舍外计算温度分别为-25℃(东北、内蒙古)、-15℃(华北、西北)、0℃(长江以南)的地区,蛋鸡舍墙体、屋面的最小热阻应分别不小于0.778、0.972;0.573、0.716;0.266、0.333(m~2·℃)/W;对应3层全阶梯笼养、4层半阶梯笼养和4层叠层、6层叠层、8层叠层笼养等饲养模式最大饲养密度下,所能够适应的围护结构冬季室外计算温度应分别不低于-14、-17、-19、-22、-23℃。研究结果为不同气候地区选择适宜饲养模式以及密闭式蛋鸡舍围护结构保温系统的设计提供了理论依据。  相似文献   

14.
该文使用溶液热回收的方法提高太阳能集热/再生器(collector/regenerator)的再生效率。通过数值模拟的方法分析玻璃盖板高度、溶液参数、空气参数、太阳辐射强度等因素对溶液侧有热回收的太阳能集热/再生器再生效率的影响。结果显示,在模拟条件下,使用热回收器使装置的溶液再生段由1 m升高为1.5 m,再生效率增加约93.6%,相当于C/R板长近似增加0.8 m,且热回收器效率越高装置再生性能越好;流量参数存在最佳值使得再生效率最高,且空气流量(溶液流量)的最佳值随着溶液流量(空气流量)的提高而增加。空气流量的较佳范围为100~150 kg/h,溶液流量的较佳范围为8~15 kg/h;在流量参数的较佳范围内,分析玻璃盖板高度对系统性能的影响,发现玻璃盖板高度的较佳范围为0.08~0.1 m;加热溶液比加热空气更能有效的提高再生效率;减小溶液的浓度或减小再生用空气的相对湿度,均会提高再生效率;在全年太阳能辐射强度较强地区宜采用带热回收器的C/R装置。这些结果为太阳能集热/再生器的设计和性能分析提供了一定的理论依据。  相似文献   

15.
蓄能型振荡热管太阳能集热器的热性能   总被引:1,自引:1,他引:0  
太阳能集热器是太阳能热泵系统的核心部件.该文设计了一种蓄能型振荡热管太阳能集热器,将其应用于蓄能型太阳能热泵系统中,可根据太阳辐射强度切换工作模式,实现太阳能分季节全天候利用,能提高系统热力性能.搭建了蓄能型振荡热管太阳能集热器热性能测试试验台,对振荡热管换热器内充灌不同工质(R134a、乙醇/水、丙酮/水)、集热管内分别利用空气显热蓄能或者石蜡潜热蓄能的蓄能型振荡热管太阳能集热器在白天和夜间工况下的热性能开展了试验研究.结果表明:振荡热管换热器内充灌R134a的集热器,白天工况下集热效率最高,平均集热效率在0.45以上,利用石蜡蓄热时最高达到了0.90;日有用得热量最大,最低可达到7.14 MJ/(m2·d);夜间工况下供热水水温最高.无论利用空气和石蜡蓄能,白天工况下集热器瞬时集热效率均与太阳辐射强度的变化规律相反.真空管内利用石蜡蓄能的蓄能型振荡热管太阳能集热器,阴雨天其集热效率远高于利用空气蓄能的集热器,平均提高64.0%,夜间供水水温均能保持在50℃以上,高于利用空气蓄热的集热器.该研究可为蓄能型太阳能热泵的推广应用提供参考依据.  相似文献   

16.
随着能源压力的日益增大,世界各国都十分重视可再生能源的利用与开发,地源热泵技术作为一种清洁、高效的可再生能源,近年得到了较快的发展。该文利用无限长线热源传热计算模型,讨论了介质内过余温度场的分布特性。结果表明:介质内温度响应在孔壁处最大,随离孔壁距离的增加呈指数衰减,随时间的增加而增大;热传播区域随时间的增加而增大,随介质的热扩散系数的增加而增大。针对工程中群埋管换热器情况,利用叠加原理计算群埋管的孔壁温度,定义换热器的热响应半径为其他钻孔引起的过余温度影响系数≤5%时相邻钻孔中心线之间的垂直距离。在大量计算分析基础上,提出了竖直埋管换热器热响应半径计算方法。计算结果表明该文方法具有较好的计算精度,竖直埋管换热器的热响应半径随岩土热扩散系数增大而增大,随持续运行时间增加而增大,随钻孔排数增加而增大,随着钻孔孔径增大而增大;钻孔布置方式不同对钻孔热响应半径的影响较明显,相同布置方式下钻孔直径对其热响应半径的影响较小。针对工程中常见的115和135 mm 2种孔径,绘制了不同岩土介质下钻孔单排、双排和三排以上布置时热响应半径-运行时间的关系曲线。工程算例表明该文方法简单方便,为工程设计提供了便利。  相似文献   

17.
鸡舍换气余热干燥鸡粪是指利用鸡舍换气时排出废气的余热来除去鸡粪中水分的热力干燥方法,该方法的主要特点为工艺简单、能耗低。该文主要对鸡舍换气余热干燥鸡粪的原理进行了阐述,探讨了鸡粪干燥过程中各种热量的计算方法,并针对中国的气候特点,结合鸡舍换气余热干燥鸡粪设备设计改造了一种可在夏季利用环境空气对鸡粪进行干燥的通风方式,最后对湖北应城的一套鸡粪干燥设备(manure drying system,MDS)进行了夏季应用效果的测试。结果表明:夏季不同天气条件下干燥设备的干燥速率差异较大;晴天天气下由于外界环境空气的混入,鸡粪含水率从初始含水量降至28%(湿基)耗时只需28 h左右,比阴雨天气下缩短约20 h;夏季阴雨天气下鸡舍换气余热可满足48 h内把鸡粪含水率降至30%以下的热量需求,但阴雨天气会降低鸡粪的干燥速率。晴天天气下由于湿帘的影响,鸡舍所排废气湿度过大,此时可结合环境热空气对鸡粪进行干燥,提高鸡粪干燥速率。研究结果可为优化鸡粪干燥工艺,探索节能环保的干燥方法提供理论参考。  相似文献   

18.
气-气换热器对太阳能再生装置性能的影响   总被引:1,自引:1,他引:0  
再生装置是太阳能蒸发除湿降温系统的重要组成部分,但普遍存在再生性能较低的问题。为了提高再生性能,将气-气换热器加装于再生装置中用于回收部分空气余热。讨论了两种再生装置的特点,测试了加装前后再生装置的性能。试验结果表明:再生装置的除湿增量、再生效率都随着太阳能热水温度的升高而提高;气-气换热器的加装能有效提高再生装置的再生性能,除湿量可以达到40~55 g/kg,较未加装时提高了35~45 g/kg;再生效率在热水温度90℃时可以达到60%,同等温度下高出未加装换热器50%。因此,余热的回收利用对于再生装置性能的提高至关重要。  相似文献   

19.
冰水混合间接换热系统中换热器参数试验   总被引:2,自引:1,他引:1  
利用北方地区冬冷夏热的特点,冬季冻冰蓄冷,夏季利用。采用间接换热冷量交换系统,有利于低碳节能和保护环境。该文对系统中换热器的参数进行了优化试验。以热交换器中的风速、流量、迎风面积、热管长度为影响因素,以热交换器的换热效率为目标,得到换热效率84%以上的较佳参数组合为风速2.54~2.93 m/s,流量0.72~0.80 m3/h,迎风面积11.93~13.51 dm2,热管有效长度7.99~9.95 m。该研究为利用自然冷资源间接换热冷量交换系统中热交换器的设计和应用提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号