首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Iron chlorosis is a very common disorder of crops grown in calcareous soils. It is well known that the total iron concentration in leaves is not a valid index for iron nutritional status of crops and that the total iron concentration in chlorotic leaves are often similar or even greater than in the green leaves. In this study, we compare three extraction methods for iron deficiency diagnosis in young (two month old) avocado leaves: 1.5% phenanthroline (pH 3) extraction from fresh leaves, 1 N hydrochloric acid (HCl) extraction from fresh leaves, and 1N HCl extraction from oven-dry leaves. Relationships between the total and extractable iron concentrations in the leaves with the leaf color were examined by linear regression analysis. These regressions were statistically significant for the total iron and in the case of all three methods tested. However, the correlation coefficients suggest that phenanthroline extraction from fresh leaves was superior over other methods for diagnosis of iron deficiency in avocado.  相似文献   

2.
《Journal of plant nutrition》2013,36(11):2007-2018
Abstract

The objective of this study was to compare iron (Fe) concentrations (mg kg?1) of the leaves measured by different methods and to determine the most suitable method to be used in evaluation of iron chlorosis in apple trees. For this purpose, green and chlorotic leaves were collected from 76 apple orchards in 1998 and 1999. Iron concentrations (mg kg?1) of dried leaf samples were measured with 4 different methods, 1 N HCl (Method 1), 0.1 N HCl (Method 2), 0.005 M DTPA (Method 3), and 1.5% o-phenanthroline (Method 4). Total Fe concentrations (mg kg?1) of dried leaf samples were also analyzed. Total chlorophyll and peroxidase enzyme activity in fresh leaf samples were measured. The total chlorophyll, peroxidase enzyme activity, Fe concentrations (mg kg?1) determined by Method 1, Method 3, Method 4, and total Fe concentrations (mg kg?1) of green leaves were higher than those of chlorotic leaves. On the other hand, no significant difference was found between Fe concentrations (mg kg?1) of green and chlorotic leaves, measured with Method 2. Significant relationship observed amongst chlorophyll concentrations, peroxidase enzyme activity, and Fe concentrations (mg kg?1) of samples suggests that 1 N HCl method was the most suitable method amongst the methods used in this study for apple trees.  相似文献   

3.
Iron (Fe) though indispensable for the biosynthesis of chlorophyll, but its total content in the plant was not associated with the occurrence of chlorosis. Iron, which is the ferrous‐iron (Fe2+) form—termed “active”; Fe— and extracted with weak acids and some chelating agents, has been closely related to Fe chlorosis. In this study, three different methods were tested in order to determine suitable methods for extractable‐Fe analysis in a Dixired peach cultivar. In the first two methods, o‐phenantroline (o‐Ph) and 1N hydrochloric acid (HCl) were used to extract Fe2+ from fresh leaves. In the third method, 1N HCl were used as an extractant on dried leaf samples. The relationship between chlorophyll content of the leaves and Fe extracted by the three methods, was statistically significant. Hydrochloric acid extraction with dried leaves which gave the highest significant correlation (r = 0.930) with chlorophyll content, can be used for the determination of Fe2+ ("active”; Fe) status in peach trees.  相似文献   

4.
Desilication and leaching are processes that accompany plinthilization, leading to nutrient depletion. Soils from 12 profiles in a plinthitic landscape were analyzed for extractable micronutrients [iron (Fe), zinc (Zn), manganese (Mn), and copper (Cu)]. Soils of the landscape from crestal to lower‐slope position contain plinthite in the profile, whereas those of the valley floor are devoid of plinthite. The micronutrients were extracted using diethylenetriaminepentaacetic acid (DTPA) and 0.1 M hydrochloric acid (HCl). The results showed that 0.1 M HCl extracted more of the micronutrients than DTPA. The DTPA‐extractable Fe, Zn, Mn, and Cu in all the soils ranged from 1.15 to 12.44 (mean, 3.69); 0.71 to 2.75 (mean, 1.86); trace 12.44 (mean, 3.35), and trace 3.76 (mean, 0.63) mg kg?1, respectively. The DTPA‐extractable micronutrient contents were generally greater than the critical available level (4.5 mg kg?1 for Fe, 0.8 mg kg?1 for Zn, 1.0 mg kg?1 for Mn, and 0.2 mg kg?1 for Cu). The 0.1 M HCl‐extractable micronutrients in the landscape ranged from 8.00 to 30.40 (mean, 15.19); 0.30 to 6.49 (mean, 1.35); 1.00 to 27.20 (mean, 7.74); and 0.26 to 15.0 (mean, 2.77) mg kg?1 for Fe, Zn, Mn, and Cu, respectively. Both DTPA‐ and 0.1 M HCl‐extractable micronutrients were generally lower in the plinthitic horizons than in the nonplinthitic horizons and higher in the Ap than the subsoil horizons. Correlation analysis showed a significant relationship between DTPA‐Fe and DTPA‐Mn, Cu, and organic carbon (r = 0.913**, 0.411**, and 0.385**). There was a significant and positive relationship between 0.1 M HCl‐extractable Mn and organic carbon (C), total nitrogen (N), and available phosphorus (P) (r = 0.413**, 0.337**, and 0.350**, respectively).  相似文献   

5.
In order to study the effect of different growth rates of the shoot apex, i.e. shoot demand, on the remobilization of iron (Fe) from mature (primary) leaves, bean (Phaseolus vulgaris L.) plants were precultured with 8x10‐5 M FeEDTA for four days. Thereafter, plants were grown for another six days at various levels of Fe (0.0, 1.0, and 10.0μM FeEDTA), and simultaneously treated with or without shading of one primary leaf. Dry weight increment of the shoot apex decreased with decreased Fe in the nutrient solution. Shading of one primary leaf decreased total dry weight of plants irrespective of Fe supply, but increased the dry weight of the shoot apex of plants supplied without Fe or with only 1.0μM Fe. In these plants, the concentration of chlorophyll and Fe in the shoot apex corresponded with the treatment effects on dry weight of the shoot apex. Shading induced senescence of the shaded leaf, decreased the content of “active Fe”; (extractable in dilute acid), and also enhanced the remobilization of Fe and copper (Cu) from the shaded leaf. The remobilization of Fe from primary leaves was not related to the severity of chlorosis in the shoot apex (the Fe demand of sink tissue), indicating that only a certain fraction of the total Fe in mature leaves can be remobilized.  相似文献   

6.
This study was conducted to compare the most appropriate method for the evaluation of available iron (Fe) status of calcareous soils by using nine different chemical extraction methods. Leaf and soil samples were collected from nine peach (Prunus persica L.) orchards, each of which included green, slightly chlorotic, and severely chlorotic peach trees. According to the chlorosis degrees of the leaves, total and active Fe contents and some soil properties were determined. Relationships between these parameters and Fe amounts obtained from the methods were correlated. Among the methods tested, method 3 (M3) [0.05 N hydrochloric acid (HCl) + 0.025 N sulfuric acid (H2SO4)] and method 8 (M8) 0.05 M ethylenediaminetetraacetic acid (EDTA) (pH 7.0) were the most suitable methods to indicate the available Fe status of the soils.  相似文献   

7.
Abstract

If calcifuges are forced to grow on a calcareous soil, they usually develop chlorosis. However, total leaf iron (Fe) does not often correlate well with Fe deficiency symptoms. The extraction of ‘active’ Fe by 1 M HCl or Fe chelators, e.g., 1,10‐phenanthroline, may reflect the relation between chlorosis and Fe‐concentration in the leaves better than total Fe does. Extraction of ‘active’ Fe from leaves of wild plants by 1,10‐phenanthroline, citric acid and HC1 was compared. The 1,10‐phenanthroline was chosen for further methodological studies. All samples were extracted at indoor light conditions and analyzed by AAS because dark incubation did not influence the oxidation state of Fe and non‐specific light absorbance seemed to be high in colorimetric analysis. Washing of leaf material with H2O seemed to clean the leaf surfaces equally well as with 0.1 M HCl. Only fresh leaf material was extracted, as pretreatment (freezing or drying) changed the extractability of Fe. An extraction time of 16 h was adequate for the herbaceous plants tested but not for Carex pilulifera, where extracted Fe increased linearly with time. The age of the extractant solution may play a role because 1,10‐phenanthroline had lost part of its chelation capacity after 6 weeks. The ratio of leaf weight:extractant volume did not influence the amount of Fe extracted, provided the same amount of chelator was supplied. The 1,10‐phenanthroline did not interfere with the Fe determination by AAS, and HCl pH 3 as used for the preparation of the extractants had only a marginal influence on Fe extractability compared to 1,10‐phenanthroline at pH 3. To get comparable results the extraction method should be standardized as much as possible. Samples can be stored in the refrigerator for several hours before adding the extractant and the extracts can be stored for a few days or frozen and measured on the same day, with the same instrument setting.  相似文献   

8.
Boron (B) is an essential microelement, which is necessary for reproductive organs including pollen tube formation in wheat (Triticum aestivum L.), and flowering and boll formation in cotton (Gossypium hirsutum L.) The study was associated with wheat-cotton rotation in 80 farm fields, belonging to different soil series, in four districts of cotton belt of Punjab, Pakistan to assess concentrations of extractable B in soils [0.05 M hydrochloric acid (HCl) extractable B], and added fertilizer B and their relationship to some soil physico-chemical properties [pH, organic matter (OM), calcium carbonate (CaCO3) and clay content], yields and total B concentrations in wheat and cotton plants. All soils had alkaline pH (7.45 to 8.55), high CaCO3 content (2.14 to 8.65%), less than 1.0% OM (0.33 to 0.99%), low plant available-P (Olsen P less than 8 mg kg?1 soil) and medium ammonium acetate extractable potassium (K) (< 200 mg K kg?1 soil). Of the 80 soil samples, 65 samples (81%) were low in available B (<0.45 mg B kg?1, ranging from 0.11 to 0.43 mg B kg?1) Of the corresponding 80 plant samples, leaves B concentrations were below critical levels (<10 mg B kg?1 for wheat; <30 mg B kg?1 for cotton) for all the tested samples for wheat and cotton. The regression analysis between plant total B concentrations and soil extractable B concentrations showed strong linear positive relationships for both wheat (R2 = 0.509***, significant at P <0.001) and cotton (R2 = 0.525***, significant at P <0.001). Further regression analysis between extractable soil B and wheat grain yield as well as between wheat leaves total B and wheat grain yield also depicted strong linear relationships (R2 = 0.76 and 0.42, respectively). Boron fertilizer demonstration plots laid out at farmers’ fields low in extractable B, in each district not only enhanced grain yields of wheat crop but also contributed a significant increase towards seed cotton yield of succeeding cotton crop through residual B effect. In conclusion, the findings suggest that many soils in the cotton belt of Punjab may be low in extractable B for wheat and cotton, especially when these crops are grown on low OM soils with high CaCO3 content.  相似文献   

9.
Abstract

Five soil boron (B) extraction methods were evaluated for their ability to predict available B to kiwifruit plants in soils with high B concentration. The methods were hot water soluble (Hws‐B), 0.05M mannitol in 0.01M calcium chloride (CaCl2 extractable (Man‐B), 0.05M hydrochloride acid (HCl) soluble (HC1‐B), resin extractable (Resin‐B), and saturation extract (Sat‐B). The amounts of B recovered by the first four methods investigated were strongly correlated with each other, the highest correlation obtained being between Hws‐B and HC1‐B. Plant B was highly correlated to the B recovered by the first four extractants and poorly correlated to the B determined by the saturation method. Soil B concentrations corresponding with B toxicity in kiwifruit are 0.51, 0.80, 0.18, and 2.0 μg‐g‐1 soil for Hws‐B, Man‐B, HC1‐B, and Res‐B, respectively. The coefficients of determination in some cases were improved when in the regression equations, soil pH and clay content were included.  相似文献   

10.
Cynodon dactylon (L.) Pers. is a perennial rhizomatous grass (Poaceae), grown for cattle nutrition on the riverbanks of Río Tinto (Southwest Iberian Peninsula, Spain), a highly acidic area with high concentrations of iron (Fe) and other metals. This study focuses on the absorption, distribution, and accumulation of Fe in the root, rhizome, and leaves of C. dactylon under controlled conditions. Plants collected from Río Tinto were grown in a Hoagland solution containing 500 mg kg–1 of ferrous Fe. Samples were collected up to 2 months after exposure and analyzed for total Fe concentration using inductively coupled plasma–mass spectrometry (ICP‐MS) and for Fe distribution and bioformations by scanning electron microscopy (SEM) with an energy‐dispersive x‐ray analyzer (EDX). The results show high concentrations of Fe in all plant organs, with fast Fe translocation from roots to leaves. Iron bioformations composed mainly of Fe, S, and K were detected in all plant organs and were especially apparent in roots and leaves. These results differ from those reported for another species of Poaceae, Imperata cylindrica, which grows under the same environmental conditions, suggesting the existence of different resistance strategies between species of the same family.  相似文献   

11.
Seedlings of sour orange (Citrus aurantium L.) and Carrizo citrange (C. sinensis L. cv. Washington navel x Poncirus trifoliata)] were grown in plastic pots containing a sand: perlite mixture and watered with a modified Hoagland No 2 nutrient solution throughout the experiment. Three-months-old plants were divided in three groups and sprayed with 0.018 M iron sulfate (FeSO4 .7H2O), 0.018 M manganese sulfate (MnSO4 .H2O), or deionized water. Two months later, plants were harvested and divided into top leaves that grown after the treatments, basal leaves that existed prior to the treatments, stems that partially came in contact with the spray, and roots. The manganese (Mn) spray resulted in a significant increase of Mn concentrations in top leaves, basal leaves, stems and roots of sour orange, and in top leaves, basal leaves, and stems of Carrizo citrange. The iron (Fe) spray significantly increased the concentrations of Fe in the stems and basal leaves of both genotypes. For both genotypes, transport of Mn from basal (sprayed) leaves to top (unsprayed) ones was found. However, the results of this experiment did not give any evidence neither for Mn translocation from sprayed tissues to roots nor for Fe transport from sprayed tissues to unsprayed ones (top leaves, roots). Mn and Fe were found to be relatively mobile and strictly immobile nutrients, respectively, within citrus plants after their foliar application as sulfate salts.  相似文献   

12.
Two indica rice (Oryza sativa L.) cultivars, viz. ‘Swarna’ and ‘Kalinga III’ were compared for their response to iron (Fe) stress. The cultivars were raised with four Fe levels viz. 0.05, 1, 5, 10 mg L?1 in hydroponic culture. Plant growth, soluble protein, chlorophyll content and phytoferritin of leaves increased significantly with increase in Fe concentration up to 5 mg L?1, but decreased at 10 mg L?1. In contrast, lipid peroxidation, decreased up to 5 mg L?1 then increased at 10 mg L?1. However, at 10 mg L?1 of Fe these parameters were more adversely affected in ‘Swarna’ than ‘Kalinga III’. The later also accumulated relatively more Fe, zinc (Zn), manganese (Mn), and copper (Cu) from the growing medium. Zinc concentrations of the tissue, on the other hand, exhibited the opposite trend. Iron stress may, thus lead to secondary metallic ion stresses and under such situations cultivars like ‘Kalinga III’ will perform better than ‘Swarna’.  相似文献   

13.
Abstract

Eight methods to determine exchangeable cations and cation exchange capacity (CEC) were compared for some highly weathered benchmark soils of Alabama. The methods were: (1) 1N NH4OAc at pH 7.0 by replacement (for CEC only), (2) 1N NH4OAc at pH 7.0 (summation of basic cations plus 1N KCl extractable Al), (3) 1N NH4OAc at pH 7.0 (summation of basic cations plus exchangeable H+), (4) 0.1M BaCl2 (summation of basic cations plus exchangeable Mn, Fe and Al), (5) Mehlich 1 (summation of basic cations plus 1N KCl extractable Al), (6) Mehlich 1 (summation of basic cations plus exchangeable H+), (7) Mehlich 3 (summation of basic cations plus 1N KCl extractable Al), and (8) Mehlich 3 (summation of basic cations plus exchangeable H+). The 0.1M BaCl2 was chosen as the standard method for the highly weathered soils and the other methods compared to it. The results indicated that the 1N NH4OAc replacement method gave significantly higher CEC values compared to the summation methods. This was probably due to the overestimation of the field CEC caused by measurement of pH dependent cation exchange sites in these soils. There was, however, close agreement between the BaCl2 method and the summation methods that included extractable Al. The generally good agreement between these summation methods suggests that the Mehlich 1 and Mehlich 3 extractants, commonly used to determine available nutrients in the southeastem USA, may also be used to measure effective CEC of some acid‐rich sesquioxide benchmark soils of Alabama. However, 1N KCl extractable Al as opposed to exchangeable H+ should be included in the computation.  相似文献   

14.
Abstract

Problems are invariably encountered when attempts are made to explain the variability in Bray percent yields or plant response in terms of soil or plant iron (Fe). To resolve this inconsistency, the present investigation was initiated to identify a combination of soil extractable Fe, soil properties and form of plant Fe that may be used as a measure of Fe deficiency. The study involved 16 diverse soils, using upland rice (Oryza sativa L.) as the test crop and Fe‐EDDHA [ferric ethylenediamine di (o‐hydroxyl‐phenyl acetic acid)] as source of Fe. The results showed that Bray percent yields were neither related to DTPA (diethylenetriamine pentaacetic acid) or EDTA (ethylenediamine tetraacetic acid) extractable Fe nor with total plant Fe. Even the inclusion of pH, lime, organic carbon and clay data in the regression equations was of no value. However, Bray percent yields were significantly and positively (r = 0.57* ) associated with ferrous Fe (Fe2+) in 40‐day‐old rice plants. The explanation concerning variability in Bray percent yields obtained on diverse soils could be increased about one and half 2 times (R2= 0.59*) if the contribution of lime and soil pH was also incorporated in the stepwise regression analysis. The individual contribution to R of lime, pi respectively. Thus, it appears that Fe2+ concentration in plants (along with soil pH) may identify Fe deficiency. The critical limit to separate Fe deficient from green rice plants was set at 45 ug Fe2+/g in the leaves.  相似文献   

15.
Reasons for chlorosis of vine (Vitis vinifera L.) under field conditions
  • 1 Analysis of leaf and soil samples from green and chlorotic vineyards did not result in a clear correlation between chlorosis and one of the soil factors determined (pH, concentration of HCO3?, water soluble P, DTPA-extractable Fe, Mn, Zn, Cu).
  • 2 In severe chlorotic leaves the concentration of all elements investigated was increased, while in weak chlorotic leaves the concentration of Fe, Mn, Zn, Cu and P stayed unchanged.
  • 3 There was no change neither in the P: Fe nor in the K: Ca ratio of the leaves due to chlorosis, but significant differences existed in the ratio extractable Fe: total Fe and total P: extractable Fe between green and chlorotic leaves.
  • 4 The increased amount of Mn and Zn in severe chlorotic leaves reached a 100 %, the also increased amount of Fe only a 20% extractability by 0,5 n HCl, which together with the high P-concentration can be assumed as a main reason for chlorosis.
  相似文献   

16.
St. Augustinegrass [Stenotaphrum secondatum (Walt.) Kuntze] is a home lawn grass widely used in the southern United States. At present, phosphorus (P) fertilization of St. Augustinegrass is based primarily on Mehlich 1 P test. One criticism of Mehlich 1 extractant is that it extracts some fraction of soil P pool that is not available to plants, whereas, iron (Fe) oxide P and water‐extractable P methods are reported to be better related to plant growth in some cases. Literature relative to the soil test procedure comparison for St. Augustinegrass was not found. The objective of this study was to evaluate Mehlich 1 P, Fe oxide P, and water‐extractable P to identify the most suitable soil test method for St. Augustinegrass growth. Established pots of ‘Floratam’ were subjected to P application of 0, 0.14, 0.27, 0.54, and 1.07 g m?2 every 4 wk for 12 wk. Measurements included tissue growth rates, tissue P concentration, soil Mehlich 1 P, Fe oxide P, and water‐extractable P concentrations. Phosphorus application increased soil test P concentrations. Soil Mehlich 1 P, Fe oxide P, and water‐extractable P concentrations were closely correlated to each other. Three soil test P levels and tissue P concentrations were highly correlated with Mehlich 1 P, which best predicted tissue P levels. Three soil test P levels were also closely correlated to the St. Augustinegrass top growth rate. Critical minimum Fe oxide P and water‐extractable P concentration was 3 mg kg?1. Overall, Mehlich 1 P was the best soil P test for St. Augustinegrass among the three extractants tested.  相似文献   

17.
In this study, we selected three soil pedons on the shoulder, backslope, and footslope along a serpentine toposequence to measure cobalt (Co) extractability using six single‐extraction procedures. These extraction procedures are distilled water, 0.11 M acetic acid in the first step of the BCR sequential extraction (BCR1), 1 M ammonium acetate (NH4OAc; pH 7.0), 0.01 M calcium chloride (CaCl2), diethylenetriamine pentaacetic acid (DTPA), and 0.1 M hydrochloric acid (HCl). Although the Co concentrations in the water extracts of the study soils ranged from 0.15 to 0.93 mg kg?1, those with HCl extraction can be up to 22.1 mg kg?1. The extractable Co concentrations in the study soils demonstrate that the extraction capacity is in the order HCl > DTPA > CaCl2 ? NH4OAc > BCR1 > H2O. The percentages of extractable Co after applying the six single‐extraction procedures reveal that Co mobility is greatest in the soils on the backslope, moderate on the footslope, and least mobile on the shoulder.  相似文献   

18.
We extracted molybdenum (Mo) from eight acid forest soils (19 A, E, and B horizons) in NE-Bavaria and from one site in the Ore Mountains, using (1) anion exchange-resin, (2) 0.2 M ammonium oxalate, and (3) ascorbic acid/ammonium oxalate. The Mo concentrations in the anion exchange-resin fraction varied between 5 and 28 μg kg-1. Oxalate-extractable Mo ranged from 44 to 407 μg kg-1 and after reduction of iron (Fe) with ascorbic acid, 135 to 1071 μg Mo kg-1 were extracted. The lowest concentrations of Mo were measured in acid and sesquioxide impoverished E horizons. The total concentrations of Mo in spruce needles correlated with ion exchange resin extractable Mo, indicating that this fraction represents Mo readily available to plants. The Mo and Fe dissolution kinetics during oxalate extraction were studied on 8 of the soil samples to obtain further information on Mo mobilization. Oxalate extractable iron (Feo) was mobilized within a few hours. A first order equation was applicable to the Fe dissolution kinetics with the rate constants ranging between 0.9 and 9.0 h-1. The mobilization of Mo occurred in two distinct stages. An initially rapid dissolution was followed by a further increase in extractable Mo but with slower kinetics. A combined first order-diffusion equation was found to be appropriate for modelling the results. The first order rate constants for Mo mobilization ranged from 0.6 to 11.4 h-1. However, correlations between the rates of reaction of Mo and Fe could not be established, indicating that Mo is either not distributed equally along Fe minerals or that there is another pool, possibly the organic substance of the soil, from which Mo is extractable by oxalate.  相似文献   

19.
Radioactively labeled iron (59Fe) was used to study differential uptake in sorghum plants in the recovery stage of chlorosis. Radio-labeled 59Fe was supplied through root feeding in nutrient solution experiment (48 hrs, pH 6.2) to non-chlorotic and chlorotic plants. Chlorotic plants were further treated with foliar spray [ferrous sulfate (FeSO4), FeSO4 + thiourea (TU), FeSO4 + citric acid (CA), FeSO4 + thioglycollic acid (TGA)] to study the uptake of radio-labeled 59Fe through root feeding during recovery process of chlorosis. Under iron deficiency, the differential uptake of 59Fe was markedly increased in leaves and stem of chlorotic control (-Fe) sorghum plants as compared to non-chlorotic control (+Fe) and foliar sprayed (FeSO4, FeSO4 + TU, FeSO4 + CA, and FeSO4 + TGA) plants. The lowest uptake of 59Fe was observed in younger leaves (24.33 nmol, g?1 fresh weight h?1) and stem (1.98 nmol, g?1 fresh weight h?1) of non-chlorotic control followed by foliar sprayed plants in comparison to chlorotic control, respectively. Similarly less 59Fe uptake was observed in the older leaves of FeSO4 + CA sprayed (21.70 nmol, g?1 fresh weight h?1) plants in comparison to chlorotic control (35.60 nmol, g?1 fresh weight h?1). The highest differential 59Fe uptake through nutrient medium was in the roots of plants, which were foliar sprayed with FeSO4 along with TU. The role of iron alone and along with citric acid and thiol compounds is discussed in recovery of chlorosis.  相似文献   

20.
This study investigated those soil factors related to iron (Fe) chlorosis between Fe status of peach leaves and some soil properties in the Antalya region of Turkey. The total Fe content of leaves was negatively correlated with soil pH and the organic matter content of the soils. Extractable Fe (by 1N HCl) was negatively correlated with the calcium carbonate (CaCO3) and bicarbonate (HCO3‐) content of the soils. In addition, both total‐ and extractable‐Fe contents of leaves were also negatively correlated with the copper (Cu) content of the soils. On the other hand, significant correlations were found among the Fe index, P/Fe ratio of leaves, and soil pH, phosphorus (P), zinc (Zn), and Cu content of the soils. It appears from these studies that high pH, and the CaCO3, HCO3‐, and Cu contents are effective soil factors affecting the availability of Fe and its uptake by the peach trees, and these soil factors were associated with severity of Fe chlorosis in the studied area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号