首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inheritance of resistance to angular leaf spot (ALS) disease caused by Phaeoisariopsis griseola (Sacc.) Ferr was investigated in two common bean cultivars, Mexico 54 and BAT 332. Both Andean and Mesoamerican backgrounds were used to determine the stability of the resistance gene in each of the two cultivars. Resistance to P. griseola was phenotypically evaluated by artificial inoculation with one of the most widely distributed pathotypes, 63–39. Evaluation of the parental genotypes, F1, F2 and backcross populations revealed that the resistance to angular leaf spot in the cultivars Mexico 54 and BAT 332 to pathotype 63–39 is controlled by a single dominant gene, when both the Andean and Mesoamerican backgrounds were used. Allelism test showed that ALS resistance in Mexico 54 and BAT 332 to pathotype 63–39 was conditioned by the same resistance locus. Resistant and susceptible segregating populations generated using Mexico 54 resistant parent were selected for DNA extraction and amplification to check for the presence /absence of the SCAR OPN02 and RAPD OPE04 markers linked to the Phg-2 resistance gene. The results indicated that the SCAR OPN02 was not polymorphic in the study populations and therefore of limited application in selecting resistant genotypes in such populations. On the other hand, the RAPD OPE04 marker was observed in all resistant individuals and was absent in those scored susceptible based on virulence data. Use of the RAPD OPE04 marker in marker-assisted selection is underway.  相似文献   

2.
Inheritance of reaction to Pseudomonas lachrymans in pickling cucumber   总被引:2,自引:0,他引:2  
Summary Cucumber (Cucumis sativus) lines resistant to angular leafspot caused by Pseudomonas lachrymans react to an infection by developing necrotic lesions that lack the chlorotic halo characteristic of the susceptible reaction. The inheritance of the non-halo lesion reaction was studied in all possible crosses between resistant lines MSU 9402 and Gy 14A, and susceptible cultivars Wisc. SMR 18 and National Pickling. Genetic analysis of the F1, F2, backcross and F3 populations revealed that the non-halo lesion type, associated with resistance, was controlled by a single recessive gene, pl. This character appears to be an important component of resistance to P. lachrymans.  相似文献   

3.
M.W. Farnham  M. Wang  C.E. Thomas 《Euphytica》2002,128(3):405-407
Downy mildew, incited by Peronospora parasitica (Pers.: Fr.) Fr., is a destructive disease of broccoli (Brassica oleraceaL., Italica Group). Resistant cultivars represent a desirable control method to provide a practical, environmentally benign, and long-term means of limiting damage from this disease. Doubled-haploid (DH) lines developed by us exhibit a high level of downy mildew resistance at the cotyledon stage. To determine the mode of inheritance for this resistance, a resistant DH line was crossed to a susceptible DH line to make an F1, from which F2 and backcross (BC) populations were developed. All populations were evaluated for response to artificial inoculation with P. parasitica at the cotyledon stage. All F1 plants (including reciprocals) were as resistant as the resistant parent, indicating no maternal effect for this trait. F2 populations segregated approximately 3resistant to 1 susceptible, BC populations using the resistant parent as the recurrent parent contained all resistant plants, and the BC to the susceptible parent segregated 1 resistant to 1 susceptible. These results indicate that resistance is controlled by a single dominant gene. This gene should be easily incorporated into F1 hybrids and used commercially to prevent downy mildew at the cotyledon stage. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Summary Inheritance of aphid resistance and allelic relationships among sources of resistance was studied in the parents, F1, F2, F3, and backcross populations of cowpea crosses. Each 4-day old seedling was infested with five fourthinstar aphids. Seedling reaction was recorded 14–16 days after infestation when the susceptible check was killed. The segregation data from eight crosses between resistant and susceptible cowpea cultivars indicated that aphid resistance was inherited as a monogenic dominant trait. Segregation data from crosses among eight resistant cultivars indicated that one or two loci and modifier(s) were involved in the expression of resistance to aphids. It was suggested that further studies on allelism among sources of resistance needed to be conducted in order to resolve this.  相似文献   

5.
Summary Three triticale lines, Siskiyou, M2A-Beagle, and OK 77842 have been reported to possess resistance to bacterial leaf streak caused by Xanthomonas campestris, pv. translucens (Xct.). The three resistant lines were crossed to susceptible lines and crossed with each other. F2, BC1-F1, BC2-F1 plants were inoculated with a mixture of two Xct strains. The segregation data indicate the presence of a single dominant gene in each of the three resistant lines to bacterial leaf streak. These three genes are either the same or closely linked herein designated as Xct1.  相似文献   

6.
A. K. Singh  S. S. Saini 《Euphytica》1980,29(1):175-176
Summary Angular leaf spot (Isariopsis griseola Sacc.) is a serious disease of French bean in the hills of India and 40 to 70 per cent of the green pods are damaged and rendered unmarketable. Crosses were made between PLB 257, (Phaseolus coccineus L.), a red flowering pole tope, resistant to angular leaf spot, and Contender (Phaseolus vulgaris L.), a highly susceptible commercial cultivar. Studies of the F1, F2, and F3 progenies indicated that PLB 257, carries a recessive gene imparting resistance to angular leaf spot.  相似文献   

7.
Summary The resistance sources among various test cultivars of urdbean to Colletotrichum truncatum, a leaf spotting pathogen, were identified and genetics of resistance was worked out by studying F1, F2 and F3 generations of crosses between resistant cultivars and the susceptible cv. Kulu 4 and of those among the resistant parents. The resistance was found to be controlled by single dominant genes and the resistance genes were non-allelic.  相似文献   

8.
Summary Black rot disease caused by Xanthomonas campestris pv. campestris is a limiting factor in the commercial production of the cauliflower crop. Crosses were attempted between SN 445, a mid season cultivar resistant to black rot and two highly susceptible commercial cultivars (Pusa Snowball-1 and K-1). Studies of the F1's, F2's and back crosses indicated that SN 445, carries a dominant gene imparting resistance to black rot.  相似文献   

9.
Three segregating F2 populations were developed by self-pollinating 3 black rot resistant F1 plants, derived from across between black rot resistant parent line 11B-1-12 and the susceptible cauliflower cultivar ‘Snow Ball’. Plants were wound inoculated using 4 isolates ofXanthomonas campestris pv. campestris (Xcc) race 4, and disease severity ratings of F2 plants from the three populations were scored. A total of 860 arbitrary oligonucleotide primers were used to amplify DNA from black rot resistant and susceptible F2 plants and bulks. Eight RAPD markers amplified fragments associated with completely disease free plants following black rot inoculation,which segregated in frequencies far lower than expected. Segregation of markers with black rot resistance indicates that a single, dominant major gene controls black rot resistance in these plants. Stability of this black rot resistance gene in populations derived from 11B-1-12 may complicate introgression into B. oleracea genotypes for hybrid production. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
P. K. Singh  G. R. Hughes 《Euphytica》2006,152(3):413-420
The fungus Pyrenophora tritici-repentis, causal agent of tan spot of wheat, produces two phenotypically distinct symptoms, tan necrosis and extensive chlorosis. The inheritance of resistance to chlorosis induced by P. tritici-repentis races 1 and 3 was studied in crosses between common wheat resistant genotypes Erik, Hadden, Red Chief, Glenlea, and 86ISMN 2137 and susceptible genotype 6B-365. Plants were inoculated under controlled environmental conditions at the two-leaf stage and disease rating was based on presence or absence of chlorosis. In all the resistant × susceptible crosses, F1 plants were resistant and the segregation of the F2 generation and F3 families indicated that a single dominant gene controlled resistance. Lack of segregation in a partial diallel series of crosses among the resistant genotypes tested with race 3␣indicated that the resistant genotypes possessed␣the same resistance gene. This resistance gene was effective against chlorosis induced by P.␣tritici-repentis races 1 and 3.  相似文献   

11.
The legume pod borer, Helicoverpa armigera, is one of the most devastating pests of pigeonpea. High levels of resistance to pod borer have been reported in the wild relative of pigeonpea, Cajanus scarabaeoides. Trichomes (their type, orientation, density and length) and their exudates on pod wall surface play an important role in the ovipositional behavior and host selection process of insect herbivores. They have been widely exploited as an insect defense mechanism in number of crops. In the present investigation, inheritance of resistance to pod borer and different types of trichomes (A, B, C and D) on the pod wall surface in the parents (C. cajan and C. scarabaeoides) and their F1, F2, BC1 (C. cajan × F1), and F3 generations has been studied. Trichomes of the wild parents (high density of the non-glandular trichomes C and D, and glandular trichome B and low density of glandular trichome A) were dominant over the trichome features of C. cajan. A single dominant gene as indicated by the segregation patterns individually will govern each trait in the F2 and backcross generation. Segregation ratio of 3 (resistant): 1 (susceptible) for resistance to pod borer in the F2 generation under field conditions was corroborated with a ratio of 1:1 in the backcross generation, and the ratio of 1 non-segregating (resistant): 2 segregating (3 resistant: 1 susceptible): 1 non-segregating (susceptible) in F3 generation. Similar results were obtained for pod borer resistance under no-choice conditions. Resistance to pod borer and trichomes associated with it (low density of type A trichome and high density of type C) are governed individually by a dominant allele of a single gene in C. scarabaeoides. Following backcrossing, these traits can be transferred from C. scarabaeoides into the cultivated background.  相似文献   

12.
M. K. Banerjee  Kalloo 《Euphytica》1987,36(2):581-584
Summary Inheritance of resistance to tomato leaf curl virus (TLCV) was studied in the progenies derived from interspecific crosses between TLCV resistant Lycopersicon hirsutum f. glabratum line B 6013 and five susceptible cultivars (HS 101, HS 102, HS 110, Pusa Ruby and Punjab Chhuhara) of L. esculentum. P1, P2, F1, F2, B1 and B2 progenies of the five crosses were artificially inoculated with local strains of TLCV by means of the vector whitefly, Bemisia tabaci (Genn.). and the disease reaction was studied in all the crosses. Reaction of parents, F1, F2 and backcrosses suggests that resistance derived from L. hirsutum f. glabratum B 6013 is based on two epistatic genes, one from the wild parent and one from the cultivated one, resulting in a 13:3 segragation in the F2.  相似文献   

13.
The genetic base of cultivars within market classes of common bean (Phaseolus vulgaris L.) is narrow. Moreover, small- and medium-seeded Middle American cultivars often possess higher yield and resistance to abiotic and biotic stresses than their large-seeded Andean counterparts. Thus, for broadening the genetic base and breeding for higher yielding multiple stress resistant Andean cultivars use of inter-gene pool populations is essential. Our objective was to determine the feasibility of introgressing resistance to Been common mosaic virus (BCMV, a potyvirus), and the common [caused by Xanthomonas campestris pv. phaseoli (Xcp) and X. campestris pv. phaseoli var. fuscans (Xcpf)] and halo [caused by Pseudomonas syringae pv. phaseolicola (Psp)] bacterial blights from the Middle American to Andean bean, using gamete selection. Also, we investigated the relative importance of the use of a landrace cultivar versus elite breeding line as the last parent making maximum genetic contribution in multiple-parent inter-gene pool crosses for breeding for resistance to diseases. Two multiple-parent crosses, namely ZARA I = Wilkinson 2 /// ‘ICA Tundama’ / ‘Edmund’ // VAX 3 / PVA 773 and ZARA II = ‘Moradillo’ /// ICA Tundama / Edmund // VAX 3 / PVA 773 were made. From the F1 to F5 single plant selection was practiced for resistance to the common and halo bacterial blights in both populations at Valladolid, Spain. The parents and F5-derived F6 breeding lines were evaluated separately for BCMV, and common and halo bacterial blights in the greenhouse at Filer and Kimberly, Idaho in 2001. They were also evaluated for the two bacterial blights, growth habit, seed color and 100-seed weight at Valladolid in 2002. All 20 F1 plants of ZARA I were resistant or intermediate to common and halo bacterial blights in the greenhouse, but their F2 and subsequent families segregated for both bacterial blights. Segregation for resistant, intermediate, and susceptible plants for common bacterial blight occurred in the F1 of ZARA II. Simple correlation coefficient for common bacterial blight between the F1 and F1-derived F2 families was positive (r = 0.54 P < 0.05) for ZARA II. From the F2 to F5 the number of families resistant to both bacterial blights decreased in both populations. Only four of 20 F1 plants in ZARA I resulted in seven F6 breeding lines, and only one of 32 F1 plants in ZARA II resulted in one F6 breeding line resistant to the three diseases. None of the selected breeding lines had seed size as large as the largest Andean parent. The use of elite breeding line or cultivar as the last parent making maximum genetic contribution to the multiple-parent inter-gene pool crosses, relatively large population size in the F1, and simultaneous selection for plant type, seed traits as well as resistance to diseases would be crucial for introgression and pyramiding of favorable alleles and quantitative trait loci (QTL) of interest between the Andean and Middle American beans.  相似文献   

14.
Summary In studies of the inheritance of resistance, pea seedlings of seven lines in which stems and leaves were both resistant to Mycosphaerella pinodes were crossed with a line in which they were both susceptible. With seven of the crosses resistance was dominant to susceptibility. When F2 progenies of five crosses were inoculated on either stems or leaves independently, phenotypes segregated in a ratio of 3 resistant: 1 susceptible indicating that a single dominant gene controlled resistance. F2 progenies of one other cross gave ratios with a better fit to 9 resistant: 7 susceptible indicating that two co-dominant genes controlled resistance. The F2 progeny of another cross segregated in complex ratios indicating multigene resistance.When resistant lines JI 97 and JI 1089 were crossed with a susceptible line and leaves and stems of each F2 plant were inoculated, resistance phenotypes segregated independently demonstrating that leaf and stem resistance were controlled by different genes. In two experiments where the F2 progeny of the cross JI 97×JI 1089 were tested for stem and leaf resistance separately, both characters segregated in a ratio of 15 resistant:1 susceptible indicating that these two resistant lines contain two non-allelic genes for stem resistance (designated Rmp1 and Rmp2) and two for leaf resistance (designated Rmp3 and Rmp4). Evidence that the gene for leaf resistance in JI 1089 is located in linkage group 4 of Pisum sativum is presented.  相似文献   

15.
P. L. Dyck  E. E. Sykes 《Euphytica》1995,81(3):291-297
Summary Common and durum wheat populations obtained from Sweden and originally collected in Ethiopia were screened for resistance to steum rust and leaf rust. Resistant selections of common wheat were crossed and backcrossed with either stem rust susceptible RL6071, or leaf rust susceptible Thatcher. Genetic studies, based largely on tests of backcross F2 families, showed that four of the selections had in common a recessive gene SrA. Plants with this gene were resistant (1+ infection type) to all stem rust races tested. This gene was neither Sr26 nor Sr29. The resistance of other selections, based on tests with an array of rust isolates, was due to various combinations of Sr6, 8a, 9a, 9d, 9c, 11, 13, 30, and 36. One of the selections had linked genes, Lr19/Sr25. Another selection had a dominant gene for resistance (;1 infection type) to all the races of leaf rust. With the possible exception of this gene for leaf rust resistance and SrA, no obviously new resistance was found.  相似文献   

16.
This study investigated the inheritance of resistance to Fusarium oxysporum f.sp. tracheiphilum (Fot) in cowpea lines. Resistant and susceptible cowpea lines were crossed to develop F1, F2 and backcross populations. Reaction to Fot was evaluated in 2015 and 2016 using seed soak and modified root‐dip inoculation methods. The expression of resistance reaction in the F1 and segregation in F2 generations indicated the role of dominant gene controlling Fot in cowpea. These results were further supported by the result of backcross (BC1P1F1 and BC1P2F1) progeny tests. The backcross of F1 with the resistant parent produced progeny that were uniformly resistant, whereas backcross of F1 with the susceptible parent produced progeny that segregated into 1:1 ratio. The F2 segregation ratio in the reciprocal cross showed no evidence of maternal effect in the inheritance of the resistance. Allelism test suggests that the gene for resistance in TVu 134 was the same in TVu 410 and TVu 109‐1. We also identified an SSR marker, C13‐16, that cosegregated with the gene conferring resistance to Fot in cowpea.  相似文献   

17.
Common beans (Phaseolus vulgaris) are separated into two distinct groups: Andean and Middle American. We identified CAL 143 as the first Andean bean with resistance to angular leaf spot disease caused by Phaeoisariopsis griseola. Angular leaf spot is the most widespread and economically important bean disease in southern and eastern Africa, and it is especially severe on the extensively grown Andean beans. Cal 143 was resistant in Malawi, South Africa, Tanzania, and Zambia, but it was susceptible in Uganda. This was attributed to the presence of races of P. griseola in Uganda not present in the other countries. We identified two additional Andean bean lines, AND 277 and AND 279, with resistance to angular leaf spot in Malawi. We also characterized the virulence diversity of 15 isolates of P. griseola from southern and eastern Africa into nine different races. Five of six isolates from Malawi and two of seven from Uganda, obtained from large-seeded Andean beans, were characterized into four different races considered Andean. These were compatible only or mostly with large-seeded Andean cultivars. The other eight isolates from Uganda, Malawi, and the Democratic Republic of Congo, obtained from a small- or medium-seeded Middle American beans, were characterized into five different Middle American races. These were compatible with Middle American and Andean cultivars. CAL 143 was resistant or intermediate under greenhouse conditions to all but one of the same 15 isolates from southern and eastern Africa, but it was susceptible to an isolate from Uganda obtained from a medium-seeded Middle American bean. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Summary Studies were conducted to determine the inheritance and allelic relationships of genes controlling resistance to the Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), in seven wheat germplasm lines previously identified as resistant to RWA. The seven resistant lines were crossed to a susceptible wheat cultivar Carson, and three resistant wheats, CORWA1, PI294994 and PI243781, lines carrying the resistance genes Dn4, Dn5 and Dn6, respectively. Seedlings of the parents, F1 and F2 were screened for RWA resistance in the greenhouse by artificial infestation. Seedling reactions were evaluated 21 to 28 days after the infestation using a 1 to 9 scale. All the F1 hybrids had equal or near equal levels of resistance to the resistant parent indicating dominant gene control. Only two distinctive classes were present and no intermediate types were observed in the F2 segregation suggesting major gene actions. The resistance in PI225262 was controlled by two dominant genes. Resistance in all other lines was controlled by a single dominant gene. KS92WGRC24 appeared to have the same resistance gene as PI243781 and STARS-9302W-sib had a common allele with PI294994. The other lines had genes different from the three known genes.  相似文献   

19.
The genetics of resistance to Phomopsis stem blight caused by Diaporthe toxica Will., Highet, Gams & Sivasith. in narrow-leafed lupin (Lupinus angustifolius L.) was studied in crosses between resistant cv. Merrit, very resistant breeding line 75A:258 and susceptible cv. Unicrop. A non-destructive glasshouse infection test was developed to assess resistance in the F1, F2, selected F2-derived F3 (F2:3) families, and in selfed parent plants. The F1 of Unicrop × 75A:258 (and reciprocal cross) was very resistant, and the F2 segregated in a ratio of 3:1 (resistant: susceptible), which suggested the presence of a single dominant allele for resistance in 75A:258. In Merrit × Unicrop (and reciprocal), the F1 was moderately resistant, and the F2 segregated in a ratio of 3:1 (resistant: susceptible). Thus Merrit appeared to carry an incompletely dominant resistance allele for resistance. The F1 of Merrit × 75A:258 (and reciprocal) was very resistant and the F2 segregated in a ratio of 15:1 (resistant: susceptible), which supported the existence of independently segregating resistance alleles for resistance in 75A:258 and Merrit. Alleles at loci for early flowering (Ku) and speckled seeds (for which we propose the symbol Spk) segregated normally and independently of the resistance alleles. Resistant F2 plants gave rise to uniformly resistant or segregating F2:3 families, whereas susceptible F2 plants gave rise only to susceptible F2:3 families. However, the variation in resistance in the F2 and some F2:3 families of crosses involving 75A:258, from moderately to extremely resistant, was greater than that expected by chance or environmental variation. We propose the symbols Phr1 to describe the dominant resistance allele in 75A:258, and Phr2 for the incompletely dominant resistance allele in Merrit. Phr1 appears to be epistatic to Phr2, and expression of Phr1 may be altered by independently segregating modifier allele(s). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Summary Pea blight caused by Assochyta pinodella does considerable damage to the pea crop every year. To ascertain the inheritance of resistance to pea blight and incorporate resistance in the commercial cultivars, crosses were made between Kinnauri resistant to pea blight and four highly susceptible commercial pea cultivars — Bonneville, Lincoln, GC 141 and Sel. 18. Studies of the F1's, F2's, back crosses and F3's indicated that Kinnauri carries a dominant gene imparting resistance to pea blight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号